参考マニュアル 00809-0104-5901, Rev DC 2023 年 3 月

Rosemount[™] 5900C

レーダーレベルゲージ

ROSEMOUNT

通知

製品を操作する前に本マニュアルをお読みください。人身とシステムの安全を守り、製品性能を最適化するため、本製品を設 置、使用、メンテナンスする前に内容全体を理解してください。

装置の点検またはサポートが必要な場合は、最寄りの Emerson 自動化ソリューション/Rosemount タンク計担当者にご連絡 ください。

スペア部品

非承認スペア部品を代替として使用すると、危険な場合があります。修理、例えばコンポーネントの交換なども安全性を脅か す場合があるので、いかなる場合であっても許可されません。

Rosemount Tank Radar AB は非承認部品、または Rosemount Tank Radar AB が実施しない修理によって引き起こされた故 障、事故などについて一切の責任を負いません。

特定の ETSI 要件 (欧州)

Rosemount 5900C は、閉鎖型(開放型ではない)金属タンク、鉄筋コンクリートタンク、または同等の減衰材料で作られた 同様の筐体構造の恒久的な固定位置に設置する必要があります。Rosemount 🛛 5900C 機器のフランジとアタッチメントは、 設計上必要なマイクロ波シーリングを提供するものとします。

タンクのマンホールまたは接続フランジは、タンク外の空気中に信号が低レベルで漏れないように閉鎖する必要があります。

Rosemount 5900C 装置の取り付けとメンテナンスは、専門的な訓練を受けた人だけが行うものとします。

特定 FCC 要件 (米国)

Rosemount 5900C は、無線周波数エネルギーを発生させ、使用します。本機の設置および使用が適切でない場合、つまり製 造者の指示に厳密に従わない場合、無線周波数放射に関する FCC 規制に違反する可能性があります。

Rosemount TankRadar 5900C は、金属タンクを想定した試験条件で FCC 認証を取得しています。

特定 IC 要件 (カナダ)

この機器の無線承認は、不要な RF 放射を防ぐため、完全な密閉容器に設置する場合に適用されます。野外の場合、現地での 許可が必要です。設置は、メーカーの指示に従って、訓練を受けた設置者が行う必要があります。

本機器の使用は、「干渉なし、保護なし」に基づいています。つまり、ユーザーは、本機器を妨害または損傷する可能性のあ る同じ周波数帯の高出力レーダーの影響を受け入れるものとします。プライマリライセンス運用を妨げていることが判明し た機器は、ユーザーの負担で取り除く必要があります。

マイクロ波の低放射

Rosemount 5900C レーダーレベルゲージから放射されるマイクロ波放射は、Rec 1999/519/EC によって決められた制限と比較して非常に低い値です (0.1 mW よりはるかに小さい)。追加の安全対策は必要ありません。

▲ 注意

本ガイドに記載の製品は、原子力用途向けに設計されたものではありません。原子力施設適用のハードウェアまたは製品を 必要とするアプリケーションに、非原子力施設適用製品を使用すると、読取値が 不適切になります。Rosemount 原子力施設 適用製品についての情報は、お近くの Emerson 販売担当にご連絡ください。

▲ 警告

警告 - 部品を代用すると、本質安全防爆が損われる可能性があります。

AVERTISSEMENT - La substitution de composants peut compromettre la sécurité intrinsèque. 警告 - 可燃性または燃焼性雰囲気中の発火を防ぐために、点検前に電源を切断してください。 AVERTISSEMENT - Ne pas ouvrir en cas de presence d'atmosphere explosive.

目次

第1章	はじめに	7
	1.1 安全上の注意事項	7
	1.2 記号	8
	1.3 取扱説明書の概要	
	1.4 技術文書	
	1.5 サービスサポート	
	1.6 製品リサイクル/処分	
	1.7 梱包材	12
第2章	概要	
	2.1 はじめに	
	2.2 メインラベル	
	2.3 OR コード	
	、 2.4 コンポーネント	
	2.5 システム概要	
	2.6 アンテナ	24
	2.7 設置手順	
第3章	設置	
	 3.1 安全上の注意事項	
	3.2 設置時の考慮事項	
	3.3 機械的な設置	
	3.4 電気的な設置	
箆4音	設定	109
7 4	4.1 安全上の注意事項	
	4.2 概要	
	4.3 Rosemount TankMaster を使用した構成	
	4.4 基本設定	
	4.5 高度な構成	
	4.6 LPG 構成	
	4.7 WinSetup を使用した校正	
	4.8 Foundation [™] Fieldbus 概要	
	4.9 機器の能力	
	4.10 一般ブロック情報	
	4.11 アナログ入力ブロック	
	4.12 アナログ出力ブロック	
	4.13 リソースブロック	
	4.14 475 フィールドコミュニケータメニューツリー	
	4.15 AMS Device Manager を使用した構成	
	- 4.16 アラート設定	
	4.17 DeltaV / AMS Device Manager を使用した LPG 設定	
第5章	操作	

	5.1 安全上の注意事項	
	5.2 Rosemount TankMaster での測定データの表示	194
	5.3 アラーム処理	194
	5.4 AMS Device Manager での測定データの表示	195
第6章	サービスとトラブルシューティング	
	6.1 安全上の注意事項	
	6.2 サービス	
	6.3 トラブルシューティング	211
	6.4 リソースブロックエラーメッセージ	
	6.5 トランスデューサブロックエラーメッセージ	220
	6.6 アナログ入力 (AI) ファンクションブロック	221
	6.7 アラート	
	6.8 AMS Device Manager で機器のステータスを表示する	226
付録A	什様と参照データ	
	A.1 一般	
	A.2 通信 / ディスプレイ / 構成	
	A.3 FOUNDATION [™] Fieldbus フィールドバスの特性	
	A.4 電気	
	 A.5 機械	
	A.6 環境	
	A.7 Rosemount 5900C パラボラアンテナ付	
	A.8 Rosemount 5900C コーンアンテナ付	238
	A.9 Rosemount 5900C スティルパイプ・アレイ・アンテナ付	
	A.10 Rosemount 5900C LPG/LNG アンテナ付属	
	A.11 Rosemount 1 インチと 2 インチのスチルパイプアンテナ付き	243
	A.12 寸法図	
	A.13 ご注文方法	249
付録 B	製品証明書	
	 B.1 欧州指令および UKCA 規制情報	273
	B.2 通常使用区域に関する認証	273
	B.3 環境条件	273
	B.4 電気通信規格への準拠	273
	B.5 FCC	
	B.6 IC	
	B.7 無線機器指令 (RED) 2014/53/EU および無線機器規則 S.I. 2017/1206	274
	B.8 北米での装置の設置	
	B.9 北米	
	B.10 欧州	
	B.11 国際	
	B.12 ブラジル	280
	B.13 中国	
	B.14 技術規則関税同盟 (EAC)	280
	B.15 日本	
	B.16 韓国	
	B.17 インド	282

	B.18 アラブ首長国連邦	
	B.19 その他の認証	
	B.20 パターンの承認	
	B.21 製品認証 Rosemount 2051	
	B.22 承認図面	
付録 C	FOUNDATION [™] Fieldbus フィールドバスブロック情報	
	C.1 リソースブロックパラメータ	
	C.2 アナログ入力ブロックシステムパラメータ	
	C.3 アナログ出力ブロックシステムパラメータ	
	C.4 測定トランデューサブロック	
	C.5 体積トランスデューサブロック	
	C.6 レジスタトランスデューサブロックパラメータ	
	C.7 高度な構成トランデューサブロック	
	C.8 LPG トランスデューサブロックク	
	C.9 サポートされている単位	

1 はじめに

1.1 安全上の注意事項

本項に記載の操作指示および手順は、操作担当者の安全を確保するために特別な予防措置を必要 とする場合があります。安全上の問題が生じかねないことを伝える情報は、警告記号(①)で示 されています。この記号が前に付いている操作を実施する前に、以下の安全上の注意事項をお読 みください。

▲ 警告

これらの設置ガイドラインに従わない場合は、死亡または重傷にいたる可能性があります。

- 設置作業は必ず資格を有する要員が実行してください。
- 本マニュアルに記載の機器だけを使用してください。指定以外の装置を使用すると、装置に 備わっている保護機能が低下する可能性があります。

爆発によって死亡または重傷にいたる可能性があります。

- トランスミッタの動作環境が、危険区域の使用認可条件に適合していることを確認してください。
- ハンドヘルドコミュニケータを爆発の危険性がある環境で接続する前に、ループ内の計器が 本質安全防爆あるいはノンインセンディブ防爆に適合した配線方法に従って設置されている ことを確認してください。
- 爆発の危険がある環境で回路が通電している際は、ゲージカバーを取り外さないでください。

感電により死亡または重傷に至るおそれがあります。

• リード線および端子に接触する場合は、極力注意してください。

▲ 警告

非承認部品を代替として使用することは安全性を脅かす場合があります。また、修理(部品の代 用など)を行った場合も危険が生じることがあるため、絶対に修理をしないでください。

▲ 警告

物理的アクセス

無資格者がエンドユーザーの機器への重大な損傷や設定ミスを引き起こすことがあります。こ のようなこと故意または過失で生じる可能性があるため、防止する必要があります。

物理的なセキュリティは、どのセキュリティ計画にとっても重要な部分であり、システムを保護 する上で必要不可欠です。エンドユーザの資産を保護するため、無資格者による物理的アクセス を制限してください。これは、施設内で使われるすべてのシステムが対象です。

1.2 記号

表 1-1 : 記号

CE	CE マークは、製品が該当する欧州共同体指令に適合していることを示すシンボルです。
(Ex)	EU-Type 検査証明書は、本製品が ATEX 指令の基本衛生安全要件を満たしていることを 宣言する認証機関の声明です。
FM	FM APPROVED マークは、機器が適用される承認基準に従って FM Approvals によって 承認され、危険区域での設置に適していることを示します。
	保護アース
ł۰	接地
81 C	外部ケーブルは 81℃ 以上での使用が承認されている必要があります。
UKA	UKCA (UK Conformity Assessed) マークは、グレートブリテン島 (イングランド、ウェー ルズ、スコットランド) で販売されている商品に使用される英国製品マークです。

1.3 取扱説明書の概要

本取扱説明書は、Rosemount 5900C シリーズレーダーレベルゲージの設置、構成、および保守 に関する情報を提供します。この取扱説明書は、Rosemount 2410 タンクハブを Rosemount 5900C などの対応機器に接続した標準的な Rosemount タンクゲージシステムに基づいていま す。また、FOUNDATION[™] Fieldbus の簡単な概要と、Rosemount 5900C を FOUNDATION フィー ルドバスネットワークにインストールするための機器固有の情報も記載されています。

章 概要では、Rosemount タンクゲージシステムのさまざまなコンポーネントと推奨される設置 手順について簡単に説明します。

章 設置 では、機械的および電気的な設置だけでなく、設置に関する考慮事項についても説明し ます。

章 設定 では、Rosemount TankMaster、Rosemount 475 フィールドコミュニケータ、または AMS Device Manager などのツールを使って、Rosemount 5900C を設定する方法を説明しま す。このセクションでは、Rosemount 5900C を使った FOUNDATION [™]フィールドバス運用の概要 も説明します。

章 操作 では TankMaster で測定データを表示する方法について説明します。また、アラームの 処理についても簡単に説明します。

章 サービスとトラブルシューティング では、ツール、トラブルシューティング、および各種サ ービス手順を説明します。

付録 仕様と参照データ には仕様、寸法図、注文表が含まれています。

付録 製品証明書には、承認および認証に関する情報が記載されています。

付録 FOUNDATION[™] Fieldbus フィールドバスブロック情報 では、Rosemount 5900C で使用され るさまざまな機能ブロックとトランスデューサブロックについて説明します。

1.4 技術文書

Rosemount タンクゲージシステムには、幅広いユーザードキュメントのポートフォリオが含まれています。詳細な一覧については、Emerson.com/Rosemount の製品ページをご覧ください。

リファレンスマニュアル

- Rosemount タンクゲージシステム構成マニュアル (00809-0300-5100)
- Rosemount 2460 システムハブ (00809-0100-2460)
- ・ Rosemount 2410 タンクハブ (00809-0100-2410)
- Rosemount 5900S レーダーレベルゲージ (00809-0100-5900)
- Rosemount 5900C レーダーレベルゲージ (00809-0100-5901)
- Rosemount 2240S マルチ入力温度トランスミッタ (00809-0100-2240)
- Rosemount 2230 グラフィカルフィールドディスプレイ (00809-0100-2230)
- Rosemount 5300 誘導波レーダー (00809-0100-4530)
- Rosemount 5408 レーダーレベルトランスミッタ (00809-0300-4408)
- Rosemount 3308 シリーズワイヤレス誘導波レーダー (00809-0100-4308)
- Rosemount タンクゲージワイヤレスシステム (00809-0100-5200)
- Rosemount TankMaster ソフトウェアインストールマニュアル (00809-0400-5110)
- Rosemount TankMaster WinOpi (00809-0200-5110)
- Rosemount TankMaster WinSetup (00809-0100-5110)
- 基準リフレクタ付き Rosemount 5900 プルーフテスト (00809-0200-5900)
- Rosemount TankMaster 浮き屋根モニタリング (00809-0500-5100)
- Rosemount TankMaster 完全密閉タンク (00809-0500-5110)
- Rosemount TankMaster ネットワーク構成 (303042EN)
- Rosemount 5900 レーダーレベルゲージおよび Rosemount 2410 タンクハブ安全マニュア ルオプション S (00809-0400-5100)
- Rosemount 5900 レーダーレベルゲージおよび Rosemount 2410 タンクハブ安全マニュア ル SIL3 (00809-0200-5100)
- Rosemount TankMaster モバイルユーザーガイド (00809-0100-5120)
- Rosemount TankMaster モバイル設置マニュアル (00809-0200-5120)

製品データシート

- Rosemount タンクゲージシステム (00813-0100-5100)
- Rosemount TankMaster インベントリ管理ソフトウェア (00813-0100-5110)
- Rosemount TankMaster モバイルインベントリ管理ソフトウェア (00813-0100-5120)
- Rosemount 2460 システムハブ (00813-0100-2460)
- Rosemount 2410 タンクハブ (00813-0100-2410)
- Rosemount 5900S レーダーレベルゲージ (00813-0100-5900)
- Rosemount 5900C レーダーレベルゲージ (00813-0100-5901)
- Rosemount 2240S マルチ入力温度トランスミッタ (00813-0100-2240)
- Rosemount 565/566/765/614 温度および水位センサ (00813-0100-5565)
- Rosemount 2230 グラフィカルフィールドディスプレイ (00813-0100-2230)
- Rosemount 5300 レベルトランスミッタ (00813-0100-4530)
- Rosemount 5408 レベルトランスミッタ (00813-0100-4408)

1.5 サービスサポート

サービスサポートについては、現地の Emerson Automation Solutions /Rosemount タンクゲージの担当者にお問い合わせください。お問い合わせ先については、Web サイトのwww.Emerson.com をご覧ください。

1.6 製品リサイクル/処分

機器と梱包材のリサイクルを考慮し、地域と国の法令/規制に従って廃棄してください。

1.7 梱包材

Rosemount タンクレーダー AB は、ISO 14001 環境基準に従って完全に認証されています。当 社製品の発送に使用した段ボールや木箱をリサイクルすることで、環境保護に貢献することがで きます。

再利用とリサイクル

経験上、木箱はさまざまな用途に何度も使えることが分かっています。丁寧に分解すれば、木製 部品は再利用できます。金属廃棄物は転用可能です。

エネルギー再生

役目を終えた製品は木材と金属部品に分けられ、木材は十分な炉で燃料として使うことができま す。

この燃料は含水率が低い (約 7%) ため、通常の木質燃料 (含水率約 20%) よりも発熱量が高くなります。

内装合板を燃やす場合、接着剤に含まれる窒素により、大気中への窒素酸化物の排出量は、樹皮 や破片を燃やす場合の 3~4 倍に増加する可能性があります。

注

埋め立てはリサイクルの選択肢ではないので避けることをお勧めします。

2 概要

2.1 はじめに

Rosemount[™] 5900C は、高精度の非接触測定用 2 線式レーダーレベルゲージです。レベルゲージは、製品表面に向かって周波数を変化させたレーダー信号を連続的に照射します。これにより、放射されたレーダー信号と受信されたレーダー信号の周波数の差を処理することで、非常に正確なレベル測定が可能になります。

Rosemount 5900C は、柔軟な Rosemount タンクゲージシステムの不可欠な部分です。先端的 で堅牢な設計により、幅広い用途に適しています。高精度のレベル測定だけでなく、複雑なタン ク形状や、測定信号に干渉する可能性のあるタンク内の障害物にも対応できるように設計されて います。

図 2-1:システム統合

Rosemount 5900C は、本質安全タンクバスを介して、測定データとステータス情報を Rosemount 2410 タンクハブに送信します。⁽¹⁾。タンクのグループからのデータは、 Rosemount 2460 システムハブによってバッファリングされ、システムハブがデータの要求を受 信するたびに、Rosemount TankMaster PC または他のホストシステムに配信されます。

(1) 本質安全防爆タンクバスは FISCO FOUNDATION[™] Fieldbus 規格に準拠しています。

2.2 メインラベル

2.3 QR コード

コンポーネント 2.4

- A. 端子部
- B. ケーブル入口(½-14 NPT、M20 x 1.5 アダプタ)
- C. フランジ
- D. アンテナ
- E. 接地端子
- F. ラベル
- G. 信号処理電子部品付きのトランスミッタヘッド

2.5 システム概要

Rosemount タンクゲージシステムは、最先端の在庫・保管移転レーダータンクレベルゲージシ ステムです。製油所、タンクファーム、燃料デポでの幅広い用途向けに開発され、性能と安全性 に関する最高レベルの要件を満たしています。

タンク上のフィールド機器は本質安全タンクバスで通信します。タンクバスは標準化されたフィールドバス、FISCO をベースにしています。⁽²⁾ FOUNDATION[™] Fieldbus。そのプロトコルをサポートするあらゆるデバイスの統合を可能にします。バスパワーの2線式本質安全フィールドバスを利用することで、消費電力は最小限に抑えられます。標準化されたフィールドバスにより、他のベンダーの機器をタンクに統合することも可能です。

Rosemount タンクゲージ製品ポートフォリオには、小規模または大規模のカスタマイズされた タンクゲージングシステムを構築するための幅広いコンポーネントが含まれています。このシ ステムには、レーダー式レベル計、温度トランスミッタ、圧力トランスミッタなど、完全な在庫 管理のためのさまざまな装置が含まれています。このようなシステムは、モジュール設計のおか げで簡単に拡張できます。

Rosemount タンクゲージシステムは、すべての主要なタンクゲージシステムと互換性があり、 それを模倣することができる汎用システムです。さらに、実証済みのエミュレーション機能によ り、レベル計から制御室ソリューションまで、タンクファームの近代化を段階的に進めることが できます。

古い機械式ゲージやサーボゲージを、制御システムやフィールドケーブルを交換することなく、 最新の Rosemount タンクゲージングデバイスと交換することが可能です。さらに、古いゲージ を交換することなく、古い HMI/SCADA システムやフィールド通信機器を交換することも可能で す。

さまざまなシステムユニットには、測定データとステータス情報を継続的に収集・処理する分散 型インテリジェンスがあります。情報提供の要請を受けると、最新の情報が即座に返信されま す。

柔軟性の高い Rosemount タンクゲージシステムは、制御室からさまざまな現場装置まで、冗長 性を実現するためにいくつかの組み合わせをサポートしています。各ユニットを二重化し、複数 の制御室ワークステーションを使用することで、すべてのレベルで冗長ネットワーク構成を実現 できます。

⁽²⁾ 文書 IEC 61158-2 を参照

- A. 非危険区域
- B. 危険区域
- C. Rosemount 5900C レーダーレベルゲージ
- D. Rosemount 2240S 温度トランスミッタ
- E. Rosemount 2230 表示器
- F. Rosemount 2410 タンクハブ
- G. Rosemount 3051S 圧力トランスミッタ
- H. Rosemount TankMaster PC
- I. Rosemount 2460 システムハブ
- J. イーサネット (Modbus TCP)

- K. プラントホストコンピュータ
- L. TRL2 Modbus
- M. セグメントカプラ
- N. Rosemount 644 温度トランスミッタ
- O. Rosemount 5300 レベルトランスミッタ
- P. Rosemount 5408 レベルトランスミッタ
- Q. 取引管理輸送/在槽タンクゲージ
- R. 動作制御
- S. プラントホストコンピュータ

図 2-6: ワイヤレスシステムの Rosemount タンクゲージシステムアーキテクチャ

- L. セグメントカプラ
- M. Rosemount 644 温度トランスミッタ

図 2-7: FOUNDATION Fieldbus ネットワークの Rosemount タンクゲージシステムアーキテクチャ

- Rosemount 5900C レーダーレベルゲージ C.
- D. Rosemount 2240S 温度トランスミッタ
- E. PC
- F. Rosemount 2230 表示器
- G. Rosemount 3051S 圧力トランスミッタ

- セグメントカプラ J.
- Rosemount 5300 レベルトランスミッタ Κ.
- Rosemount 5408 レベルトランスミッタ L.
- 取引管理輸送/在槽タンクゲージ Μ.
- 動作制御 N.

2.5.1 TankMaster HMI ソフトウェア

Rosemount TankMaster は強力な Windows ベースのヒューマンマシンインターフェース (HMI) で、タンクの在庫を完全に管理します。Rosemount タンクゲージシステムおよびその他 の対応計器の構成、保守、セットアップ、在庫管理、保管移転機能を提供します。

Rosemount TankMaster は、Microsoft[®] Windows 環境で使用できるように設計されており、ロ ーカルエリアネットワーク (LAN) から測定データに簡単にアクセスできます。

Rosemount TankMaster WinOpi プログラムにより、オペレータは測定されたタンクデータを監 視することができます。アラーム処理、バッチレポート、自動レポート処理、履歴データサンプ リング、および体積、観察密度、その他のパラメータなどの在庫計算が含まれます。さらにデー タを処理するために、プラントのホストコンピュータを接続することができます。

Rosemount TankMaster WinSetup プログラムは、Rosemount タンクゲージシステム内のデバイスの設置、構成、保守のためのグラフィカルユーザーインターフェースです。

2.5.2 Rosemount 2460 システムハブ

Rosemount 2460 システムハブは、レーダーレベルゲージや温度トランスミッタなどのフィール ド機器からのデータを継続的にポーリングし、バッファメモリに保存するデータコンセントレー タです。システムハブは、データ要求を受信するたびに、更新されたバッファメモリからタンク 群のデータを即座に送信できます。

1 つ以上のタンクから測定、計算されたデータは、Rosemount 2410 タンクハブ経由でシステム ハブバッファーメモリと通信されます。要求が受信されるたびに、システムハブがただちにタン クのグループのデータを TankMaster PC またはホストに送信できます。

さらに、Rosemount 2460 は、Honeywell[®] Enraf、Whessoe などの他のベンダーの機器に接続 する際にも使用できます。

Rosemount 2460 には、通信インターフェイスボード用に 8 スロットを搭載しています。これら のボードは、ホストまたはフィールド機器を使用して、個別に通信の構成ができます。TRL2、 RS485、Enraf BPM または Whessoe 0-20 mA/RS485 通信用のいずれかをご注文いただけます。 また、2 つのスロットを RS232 通信用に設定できます。

システムハブの3つのイーサネットポートの1つは、ホストシステムとの Modbus TCP 通信で 使用されます。システムハブを既存の LAN ネットワークに接続すると、イーサネットでの通信 が確立されます。

システムハブは、2 つの同一の機器を使用することで、基幹オペレーションを冗長化できます。 主システムハブがアクティブで、もう一つのハブがパッシブモードです。主ユニットが正常に動 作しなくなった場合、副ユニットがアクティブ化され、障害メッセージが TankMaster (または DCS システム)に送信されます。

2.5.3 Rosemount 2410 タンクハブ

Rosemount 2410 タンクハブは、本質安全 Tankbus を使用して、危険区域にある接続されたフィールド機器への電源として機能します。

タンクハブは、タンク上のフィールド機器から測定データとステータス情報を収集します。さま ざまなホストシステムとの通信用に2つの外部バスを備えています。

Rosemount 2410 には 3 つのバージョンがあります。

- シングルタンク
- マルチタンク
- 機能安全/SIS 用途 (SIL 2 シングルタンク)

Rosemount 2410 のマルチタンクバージョンは、最大 10 タンク、16 機器をサポートします。 Rosemount 5300 では、Rosemount 2410 は最大 5 タンクをサポートします。

Rosemount 2410 は、最大 10 の「仮想」リレー機能の構成をサポートする 2 つのリレーを備えており、各リレーに複数のソース信号を指定できます。

Rosemount 2410 は、本質安全 (IS) と非本質安全 (Non-IS) のアナログ 4-20 mA 入力/出力をサポ ートしています。Emerson ワイヤレス 775 THUM アダプタを IS HART 4-20 mA 出力に接続す ると、タンクハブは *Wireless* HART[®] ネットワークで Emerson ワイヤレスゲートウェイとワイヤ レス通信ができます。

2.5.4 Rosemount 5900C レーダー レベル ゲージ

Rosemount 5900C レーダーレベルゲージは、タンク内の製品レベルを測定するインテリジェントな計器です。異なる用途の要求を満たすために、さまざまなアンテナを使用することができます。Rosemount 5900C は、ビチューメン、原油、精製製品、腐食性化学物質、LPG、LNG など、ほとんどすべての製品の液面レベルを測定できます。

Rosemount 5900C は、タンク内の製品表面に向けてマイクロ波を送ります。レベルは表面からの反響に基づいて計算されます。5900C のどの部分も、タンク内の製品に実際に接触することはなく、タンクの大気にさらされるのはゲージのアンテナ部分だけです。

2.5.5 Rosemount 5300 ガイドウェーブ レーダー

Rosemount 5300 は、液体のレベル測定用のプレミアム 2 線式誘導波レーダーで、さまざまなタ ンク条件下で中精度のアプリケーションに幅広く使用できます。Rosemount 5300 には、液面測 定用の Rosemount 5301 と、液面とインターフェース測定用の Rosemount 5302 があります。

2.5.6 Rosemount 5408 レーダーレベルトランスミッタ

Rosemount 5408 は、小型の貯蔵タンクやバッファタンクで正確で信頼性の高いレベル測定を行う非接触式レベルトランスミッタです。

Rosemount 5408 は、ほぼあらゆる種類の流体 (石油、ガス凝縮水、水、化学物質など) を入れた 金属製容器と非金属製容器のいずれの場合でも、液面を正確かつ確実に測定します。ほとんどの 液体に適しており、攪拌機、泡、高温、高圧を伴う困難な用途に最適です。また、小口径 (2~4 インチ) のスタイリングウェルのあるタンクのレベル測定にも最適です。

ビーム幅が狭いため、Rosemount 5408 は、液面が急速に変わる小〜中規模のサイロ内のバルク 固形物に理想的なソリューションです。

過充填防止、液面逸脱の監視、空転の防止などの安全機能には、Rosemount 5408:SIS が最適です。

2.5.7 Rosemount 2240S 多点入力温度トランスミッタ

Rosemount 2240S 多点入力温度トランスミッタは、最大 16 個の温度スポットセンサと一体型 水位センサを接続できます。

2.5.8 Rosemount 2230 表示器

Rosemount 2230 表示器は、レベル、温度、圧力などのインベントリタンク計測データを表示し ます。4 つのソフトキーでさまざまなメニューをナビゲートし、すべてのタンクデータを現場で 直接確認することができます。Rosemount 2230 は最大 10 タンクをサポートします。1 つのタ ンクに最大 3 台の Rosemount 2230 表示器を使用できます。

2.5.9 Rosemount 644 温度トランスミッタ

Rosemount 644 は、シングルスポット温度センサと組み合わせて使用します。

2.5.10 Rosemount 3051S 圧力トランスミッタ

Rosemount 3051S シリーズは、原油タンク、加圧タンク、フローティングルーフ付き/なしのタンクなど、あらゆる用途に適したトランスミッタとフランジで構成されています。

Rosemount 5900C レーダーレベルゲージを補完するものとして、タンクの底部付近に Rosemount 3051S 圧力トランスミッタを使用することで、製品の密度を計算して表示すること ができます。蒸気圧と液圧を測定するために、スケーリングの異なる1つまたは複数の圧力トラ ンスミッタを同じタンクに使用することができます。

2.5.11 Rosemount 2180 フィールドバスモデム

Rosemount 2180 フィールドバスモデム (FBM) は、TankMaster PC を TRL2 通信バスに接続す るために使用します。Rosemount 2180 は、USB または RS232 インターフェースを使用して PC に接続します。

2.5.12 Emerson ワイヤレスゲートウェイおよび Emerson ワイヤレ ス 775 THUM[™] アダプタ

Emerson Wireless THUM アダプタは、Rosemount 2410 タンクハブと Emerson ワイヤレスゲートウェイ間のワイヤレス通信を可能にします。このゲートウェイは、フィールド機器と TankMaster 在庫管理ソフトウェアやホスト/DCS システムとの間のインターフェースになるネットワークマネージャです。

さまざまな機器およびオプションの詳細については、Rosemount タンクゲージシステムデータ シートを参照してください。

2.6 アンテナ

2.6.1 コーンアンテナ

コーンアンテナ付き Rosemount 5900C は、非接触型レーダーレベルゲージです。小さいノズルの固定屋根タンクにも簡単に取り付けられるように設計されています。

通常、ゲージはタンクの使用中に取り付けます。

パラボラアンテナが推奨される様々な生成物を測定(アスファルトや類似のものを除く)します。

2.6.2

パラボラアンテナ

パラボラアンテナ付き Rosemount 5900C は、軽量製品からアスファルト/アスファルトまで、 あらゆる種類の液体の液面を測定します。このゲージは、屋根が固定されたタンクへの取り付け 用に設計されており、保管移転精度を備えています。

パラボラアンテナの設計は、粘着性や凝縮性のある製品に対して極めて高い耐性を発揮します。 このアンテナはビーム幅が狭いため、内部構造のある狭いタンクに非常に適しています。

2.6.3 アレイアンテナ

スチルパイプアレイアンテナ付き Rosemount 5900C は、スチルパイプ付きタンクで使用され、 他のアンテナの方が適しているメタノールを除くスチルパイプに適したすべての製品で使用さ れます。 このゲージは低損失レーダー伝搬モードを使用しており、静止したパイプ状態の影響をほとんど 排除しています。パイプが古く、錆び、堆積物で覆われていても、最高の精度で測定できます。

スチルパイプアレイアンテナは、5、6、8、10、12 インチのパイプに対応します。既存のスチル パイプに取り付けることができ、設置の際にタンクを停止させる必要はありません。

スチルパイプアレイアンテナ付き Rosemount 5900C には、固定式とヒンジ式ハッチの2つのバ ージョンがあります。ヒンジ付きハッチにより、フルパイプサイズの製品サンプリングや検証用 ハンドディップが可能です。

図 2-10:アレイアンテナ

2.6.4 LPG/LNG アンテナ

LPG/LNG アンテナ付き Rosemount 5900C は、LPG と LNG タンクのレベル測定用に設計されて います。4 インチのスチルパイプが測定用の導波管として使用され、乱流面が測定を妨害するの を防ぎます。レーダー信号はパイプ内を表面に向かって送信されます。

圧力シールはドリップオフ設計の PTFE ウィンドウです。圧力容器での使用が認可されていま す。標準として、ゲージには防火ブロックバルブが装備されています。オプションの蒸気空間圧 カセンサーも用意されています。

LPG/LNG アンテナ付き Rosemount 5900C には、150 PSI 用と 300 PSI 用の 2 つのバージョン があります。

検証ピンを使用すると、測定した距離と検証ピンまでの実際の距離を比較することで、タンクを 開けることなく測定値を検証することができます。

図 2-11 : LPG/LNG アンテナ

2.7 設置手順

以下の手順に従って適切に設置してください。

手順

- 1. 設置に関する考慮事項を確認します。設置時の考慮事項を参照。
- 2. ゲージを取り付けます。機械的な設置を参照。
- 3. ゲージを配線します。電気的な設置を参照。
- 4. カバーおよびケーブル/コンジット接続部が確実に締まっていることを確認します。
- 5. ゲージ電源を入れます。
- 6. ゲージを設定します。設定を参照。
- 7. 測定値を確認します。
- 8. (オプション) 書き込み保護スイッチを有効にします。
- 9. (オプション) SIL を設定します。

3 設置

3.1 安全上の注意事項

本項に記載の操作指示および手順は、操作担当者の安全を確保するために特別な予防措置を必要 とする場合があります。安全上の問題が生じかねないことを伝える情報は、警告記号(①)で示 されています。この記号が前に付いている操作を実施する前に、以下の安全上の注意事項をお読 みください。

▲ 警告

安全な設置方法と点検ガイドラインに従わない場合は、死亡または重傷にいたる可能性がありま す。

- 設置作業は必ず資格を有する要員が実行してください。
- 本マニュアルに記載の機器だけを使用してください。指定以外の装置を使用すると、装置に 備わっている保護機能が低下する可能性があります。
- 適切な資格がない場合は、本マニュアルに記載されている以外の点検を行わないでください。
- 可燃性または燃焼性雰囲気の発火を防ぐために、点検前に電源を切断してください。
- 部品を代用すると、本質安全防爆が損なわれる可能性があります。

爆発によって死亡または重傷にいたる可能性があります。

- トランスミッタの動作環境が、危険区域の使用認可条件に適合していることを確認してください。
- ハンドヘルドコミュニケータを爆発の危険性がある環境で接続する前に、ループ内の計器が 本質安全防爆あるいはノンインセンディブ防爆に適合した配線方法に従って設置されている ことを確認してください。
- 爆発の危険がある環境で回路が通電している際は、ゲージカバーを取り外さないでください。

リード線に高電圧が残留している場合、感電するおそれがあります。

- リード線や端子に触れないでください。
- ゲージの配線中はトランスミッタの主電源がオフであり、その他の外部電源への配線が切断 されていること、または通電していないことを確認してください。

通知

装置は不要な RF 放射を防ぐために完全に閉じられた容器に取り付けるように設計されていま す。設置は適切な地方規制に準ずる必要があり、地域の無線承認を必要とする場合があります。 屋外用途での設置は、サイトライセンス承認の対象となる場合があります。 設置は、メーカーの指示に従って、研修を受けた設置者が行う必要があります。

3.2 設置時の考慮事項

タンク上の適切な Rosemount 5900C レーダー・レベル・ゲージの位置を見つけるには、タンクの状況を注意深く考慮する必要があります。Rosemount 5900C を障害物の影響を最低限に抑えるよう設置するには、レーダー信号ビームの外側が理想です。

環境条件が 仕様と参照データに列挙されている指定限度内にあることを確認します。

Rosemount 5900C レーダー・レベル・ゲージが 仕様と参照データに指定されているより高い圧 力や温度に暴露されないように設置されていることを確認します。

ユーザーは、責任持ってデバイスが以下のような特定のタンク内側への設置要件を満たしている ことを確認してください。

- 濡れた素材の化学的な互換性
- 設計/作動圧力および温度

Rosemount 5900C デバイスの完全な仕様に関しては、貼付のアンテナラベルに記載のモデルコードを特定して ご注文方法のデータと照合することができます。

Rosemount 5900C を意図しない用途 (例えば非常に強く磁界や過酷な気候条件に暴露される可能性のある環境) に設置しないでください。

プラスチック表面と塗装表面を持つアンテナは、一定の過酷な条件において発火するレベルの放 電を起こすことがあります。危険な区域に設置する場合は、工具や清掃用具などに静電気を発生 する可能性のないものを使用にしてください。

3.2.1 コーンアンテナ要件

コーンアンテナの寸法を選択する場合、基本的に可能な限り大きなアンテナ直径を使うよう推奨 します。標準のコーンアンテナはタンク開口部で4インチと6インチと8インチです。4イン チと6インチのコーンは長いタンクノズルに合わせて延長できます。

表 3-1: コーンアンテナの測定範囲

アンテナのサイズ	測定範囲
8インチ	0.8~20 m (2.6~65 フィート)。 (0.4 ~ 30 m (1.3 ~ 100 フィート) を測定可能。精度が低下する可能 性あり)。
6インチ	0.8~20 m (2.6~65 フィート)。 (0.3 ~ 25 m (1 ~ 80 フィート)を測定する可能性。精度が低下する可 能性あり)。
4インチ	0.8~15 m (2.6~50 フィート)。 (0.2 ~ 20 m (0.7 ~ 65 フィート) を測定する可能性。精度が低下する 可能性あり)。

ノズル要件

マイクロ波が妨げられることなく伝播するように、ノズルの寸法は、異なるアンテナに対して指 定された範囲内に保たれる必要があります。

マイクロ波が妨げられることなく伝播するように、ノズルの寸法は、異なるアンテナに対して指 定された範囲内に保たれる必要があります。

図 3-1: ノズルの要件

表 3-2: ノズルの要件

アンテナ	L _{推奨} (mm/インチ)	Ø _{min} (mm/インチ)
4 インチコーン	130	98
6 インチコーン	240	146
8 インチコーン	355	195

注

最適な測定性能を得るためには、アンテナの先端がノズルの外側で終わるようにすることをお勧めします。

図 3-2: コーンアンテナのノズル条件

空き間隔要件

下図に従って、マイクロ波がタンクの壁に妨害されずに伝搬するようにゲージを設置します。最 適な性能を発揮するためには、以下の推奨事項を考慮する必要があります。

- レーダービームに障害物が入らないようにする。
- 乱流の原因となる配管入口から離してゲージを取り付ける。
- アンテナの利得を最大にするため、できるだけ大きなアンテナを選ぶ。

アンテナの利得を最大にするため、できるた
図 3-3:空き間隔
④
●
●

表 3-3:空き間隔要件

インストール要件			
A. 保守スペース	550 mm (21.7 インチ)		
B. 保守スペース	距離 400 mm (15.7 インチ)		
C. ノズル傾斜度	最大 1°		
D. タンク壁との最小距離 ⁽¹⁾	0.6 m (2.0 インチ)		

(1) 精度の低下が許容される場合は、タンク壁面に近い位置への取り付けが許可される場合があります。

ビーム幅

表 3-4:異なるアンテナのビーム幅

アンテナ	半電力ビーム幅
4 インチコーン/プロセスシール	21°
6 インチコーン/プロセスシール	18°
8 インチコーン	15°

図 3-5:異なるアンテナの放射面積の直径

表 3-5:異なるアンテナの放射面積の直径

マンニナのサイブ	フラン	ジからの距離の違いは	こよる放射面積の直径	(m/ft)
72770042	5 m / 16 ft	10 m / 33 ft	15 m / 49 ft	20 m / 66 ft
4 インチコーン	1.9/6.2	3.7/12	5.6/18	7.4/24

表 3-5: 異なるアンテナの放射面積の直径 (続き)

マンニナのサイブ	フラン	ジからの距離の違いによる放射面積の直径 (m/ft)		
72770912	5 m / 16 ft	10 m / 33 ft	15 m / 49 ft	20 m / 66 ft
6 インチコーン	1.6/5.2	3.1/10	4.7/15	6.3/21
8 インチコーン	1.3/4.3	2.6/8.5	3.9/13	5.3/17

3.2.2 パラボラアンテナの要件

傾斜度

パラボラアンテナ付き Rosemount 5900C の傾きは、タンクの中心に向かって 1.5°を超えない ようにしてください。アスファルトのような結露しやすい製品では、レーダービームを傾けるこ となく垂直に照射してください。

図 3-6: パラボラアンテナの最大傾斜角

A. 最大傾斜角 1.5°

フランジ要件

パラボラアンテナ付き Rosemount 5900C は、フランジボールを使用してタンクノズルに取り付 けられます。規定の範囲内でゲージの傾きを簡単に調整できるように設計されています。

フランジボールには2つのバージョンがあります。ナットを使ってフランジにクランプで固定 するものと、フランジに溶接で固定するものがあります。

タンクノズルにゲージを取り付ける前に、フランジボールをフランジに取り付ける必要がありま す。

フランジは、レーダービームがタンク壁に邪魔されないようにするため、一定の要件を満たす必 要があります。これにより、レーダー信号は製品表面で反射され、最大信号強度でレベルゲージ に送り返されます。

タンクのフランジは、アンテナの適切な調整を可能にするため、以下の傾斜要件(図 3-7 を参照)を満たす必要があります。

- タンク壁から最大 4.5° 離す
- タンク壁に向かって最大 2°

図 3-7 : タンクフランジの最大傾斜角

タンクのフランジが 図 3-7 のような要件を満たさない場合でも、溶接されたフランジボールを使用することで、パラボラアンテナの傾斜要件を満たすことができます。フランジボールは、図 3-8 で示されているように、フランジに対して最大 17°の角度で取り付けることができます。

図 3-8: 溶接フランジの最大傾斜角

ノズル要件

パラボラアンテナ付き Rosemount 5900C を 20 インチのノズルに取り付ける場合、ノズルの高 さは 600 mm (24 インチ) 以下にしてください。パラボラ反射鏡の端からノズルの下端まで 5° の角度内にレーダービームの自由通路がなければなりません。 Rosemount 5900C は、フランジと製品表面の間の距離が 800 mm (31 インチ) を超えるように 取り付けてください。最も精度が高くなるのは、この点未満の製品レベルです。

直径が大きいノズルは、5°の自由通路の要件を満たす限り、600 mm (24 インチ) より大きくす ることができます。

- A. 最高の精度を得るには、最低 800 mm (31 インチ)。最低 500 mm (20 インチ)、精度は低下。
- B. 推奨高さ:400 mm (16 インチ)最大高さ:600 mm (24 インチ)
- C. ノズルの最小径:500 mm (20 インチ)
- D. 垂直鉛直線
- E. Ø 440 mm (17.3 インチ)
- F. 5°以上

空き間隔要件

パラボラアンテナ付き Rosemount 5900C のレーダービームの幅は 10°です。レーダービーム 内に障害物(工事用バー、Ø2 インチ以上のパイプなど)があると、妨害エコーが発生する可能 性があるため、一般的には認められません。しかし、ほとんどの場合、滑らかなタンクの壁や小 さな物体は、レーダービームに大きく影響しません。

最適な性能を発揮させるため、アンテナ軸はタンク壁面から少なくとも 800 mm (31 インチ) 離 してください。評価については、Emerson Automation Solutions /Rosemount タンクゲージ部 門にお問い合わせください。

図 3-10: パラボラアンテナ付き Rosemount 5900C の空き間隔要件

3.2.3 スチルパイプアンテナの要件

Rosemount 5900C はスチルパイプへの取り付け用に設計されており、タンクの運転を停止する ことなく、既存のスチルパイプのフランジに取り付けることができます。Rosemount 5900C ス チルパイプアレイアンテナは、パイプサイズ 5、6、8、10、12 インチで使用できます。

設置や保守のしやすさなど、さまざまな要件に対応できるよう、2 つのバージョンが用意されて います。

- Rosemount 5900C スチルパイプアレイアンテナ Fix (固定) バージョン。手浸漬のためにス チルパイプを開ける必要がない場合、簡単に取り付けられるようにフランジが付いています。
- Rosemount 5900C スチルパイプアレイアンテナ Hatch (ハッチ) バージョン。手作業で浸漬 するために開ける必要のあるスチルパイプに適しています。

スチルパイプ要件

Rosemount 5900C スチルパイプアレイアンテナは、5、6、8、10、12 インチのフランジおよび パイプに対応します。この適応は、適切なスチルパイプアレイアンテナを選択することで達成さ れます。

スチルパイプは垂直でなければなりません⁽³⁾ 0.5° 以内 (20 m 以上 0.2 m)。

表 3-6 は、アレイアンテナが取り付け可能な幅広いスケジュールとパイプ内径を示しています。

アンテナサイズ (インチ)	アンテナの寸法 (mm)	パイプ寸法に適合	
		サイズ	内径 (mm)
5	120.2	SCH10-SCH60	125.3 - 134.5
6	145.2	SCH10-SCH60	150.3 - 161.5
8	189	SCH20-SCH80	193.7 - 206.3
10	243	SCH10-SCH60	247.7 - 264.7
12	293.5	SCH 10-40-XS	298.5 - 314.7

表 3-6: アンテナサイズと適切なパイプ内径

⁽³⁾ この要件が満たせない場合は、Emerson / Rosemount タンクゲージにご相談ください。
フランジ要件

スチルパイプアレイアンテナ付き Rosemount 5900C は、5、6、8、10、12 インチのフランジに 対応します。ゲージにはタンクを密閉するためのフランジが付いています。タンクのフランジ は ±2° 以内で水平でなければなりません。

図 3-11 : フランジは ±2° 以内で水平でなければなりません。

推奨される設置方法

新しいタンクを設計する場合は、8 インチ以上のスチルパイプを推奨します。これは、粘着性が あり粘性の高い製品を使用するタンクでは特に重要です。Rosemount 5900C の推奨スチルパイ プの詳細については、図 D9240041-917「推奨スチルパイプ」を参照してください。新しいスチ ルパイプを製造する前に、Emerson Automation Solutions / Rosemount タンクゲージにご相談 されることをお勧めします。

最高の性能を発揮するためには、スチルパイプのスロットまたは穴の総面積は、以下の表3-7の 値を超えてはなりません。記載されている数値は、パイプの長さに関係なく、全長にわたる穴の 総面積を指しています。場合によっては、表3-7に記載されているよりも大きな総面積を許容す ることも可能です。制限を超えた場合は、Emerson Automation Solutions / Rosemount タンク ゲージにご相談ください。

表 3-7: スロットと穴の最大面積

パイプ寸法 (インチ)	最大スロットと穴の面積 (m ²)
5	0.1
6	0.1
8	0.4
10	0.8
12	1.2

空間

スチルパイプアンテナ付き Rosemount 5900C の取り付けには、以下の空きスペースが推奨されます。

図 3-12: アレイアンテナ固定バージョン付き Rosemount 5900C の空間要件

表 3-8:空き間隔要件

位置	空き間隔
A	設置および点検のための推奨スペース 550 mm (22 インチ)
В	設置および点検のための推奨スペース 500 mm (20 インチ)
С	最高の精度を得るには、最低 800 mm (31 インチ)。 最低 500 mm (20 インチ)、精度は低下。
D	製品表面

図 3-13 : アレイアンテナハッチバージョン付き Rosemount 5900C の空間要件

表 3-9 : 空き間隔

位置	空き間隔
A	表 3-10 を参照
В	設置および点検のための推奨スペース 500 mm (20 インチ)
C	最高の精度を得るには、最低 800 mm (31 インチ)。 最低 500 mm (20 インチ)、精度は低下。
D	製品表面

表 3-10: ハッチを開けるための空きスペース (A)

アンテナサイズ (インチ)	スペース (A) (mm/インチ)
5	470/18.5
6	470/18.5
8	480/18.9
10	490/19.3
12	490/19.3

3.2.4 LPG/LNG アンテナの要件

温度と圧力の測定

温度と圧力の測定は、LPG/LNG タンクの高精度レベル測定の必須条件です。Rosemount タン クゲージシステムには、Rosemount 5900C レーダーレベルゲージ、Rosemount 2240S マルチ 入力温度トランスミッタ、Rosemount 644 温度トランスミッタ、および必要なすべての測定変 数を得るための圧力トランスミッタが含まれます。

スチルパイプと検証ピン

ゲージを取り付ける前に、スチルパイプを取り付ける必要があります。スチルパイプはお客様が 提供するものであり、設置図面に従って製造される必要があります。

次の3種類のスチールパイプが推奨されます。

- DN100
- 4 インチ SCH 10 ステンレス鋼パイプ
- 4 インチ SCH 40 ステンレス鋼パイプ

レベルゲージをご注文の際は、必要システム情報 (RSI) フォームでパイプタイプをご指定ください。

図 3-14 の図に示すように、スチルパイプは垂直 ±0.5° 以内、フランジは水平 ±1° 以内でなけれ ばなりません。

スチルパイプは、製品の適切な循環を可能にし、パイプの内側と外側で製品の密度が均等になる ように、多数の穴が開いています。穴の直径は 20 mm または 3/4 インチでなければなりません。 スチルパイプ上部の穴はすべて、パイプの片側の線に沿って開ける必要があります。

検証ピンは、タンクが加圧されているときに、Rosemount 5900C のレベル測定を検証することができます。スチルパイプの他の穴に対して 90 度向きを変えて取り付けられています。

検証ピンは、図 3-14 に示すように、フランジから 1200 mm (47 インチ) 下の位置に設置します。 検証ピンと最大製品レベルとの間には、最低 200 mm (8 インチ) の距離が必要です。この要件を 満たすため、検証ピンはフランジから最大 1000 mm 下まで高く取り付けることができます。

検証ピンは、図 3-14 の図のようにスチルパイプのフランジにあるボルト穴に合わせてください。 検証ピンの位置は、Rosemount 5900C ゲージの適切な位置合わせができるように、スチルパイ プのフランジ (図 3-14 を参照) に明確にマークする必要があります。

スチルパイプへの検証ピンの取り付け方法については、LPG/LNG スチルパイプの取り付け図面 D9240 041-910 を参照してください。取り付け方法は、検証ピンと偏向プレートに同梱されてい ます。

LPG/LNG 測定用に Rosemount 5900C を設定する方法については、LPG 構成および Rosemount タンクゲージシステム構成マニュアルを参照してください。

F. スチルパイプのフランジのマーク

校正リング付き偏向プレート

偏向プレートはスチルパイプの下端に取り付けられ、タンクが空のときに設置段階でゲージを校 正するためのリングと一体型になっています。取り付け方法は、検証ピンと偏向プレートに同梱 されています。

図 3-15: 偏向プレートと検証ピン付きのスチルパイプ

- A. スチルパイプ
- B. 支持材
- C. 最低150 mm (6 インチ)
- D. 校正リング
- E. 偏向プレート

偏向プレートは、3 つの方法のいずれかを使ってスチルパイプに取り付けることができます。

- 溶接
- M4 ネジとナット
- リベッティング

パイプ寸法が 4 インチ SCH 40 および DN 100 の場合、図 3-16 および 図 3-17 に示されているように、偏向プレート用に余分なリングが必要です。

LPG/LNG 測定のための Rosemount 5900C の構成方法の詳細については、LPG 構成および Rosemount タンクゲージシステム構成マニュアルを参照してください。

図 3-16 : 偏向プレートのパイプ 4 インチ SCH 40 への取り付け

A. リングは4 インチSCH40 と表示

図 3-17 : 偏向プレートのパイプ DN 100 への取り付け

空間

LPG/LNG アンテナ付き Rosemount 5900C の取り付けには、以下の空きスペースが推奨されます。

図 3-18 : LPG/LNG アンテナ付き Rosemount 5900C の空間要件

- A. 設置および点検のための推奨スペース 550 mm (22 インチ)
- B. 設置および点検のための推奨スペース 1000 mm (39 インチ)
- C. 最高の精度を得るため、製品表面まで最低 1200 mm (47 インチ)。最小 800 mm (31 イン チ)、精度は低下
- D. オプションの圧力トランスミッタ
- E. 製品表面

最短距離用延長パイプ

Rosemount 5900C レーダーレベルゲージは、フランジと最高製品レベル (スチルパイプと検証 ピン を参照) の間に最低 1200 mm (47 インチ) の隙間があるように設置する必要があります。 必要であれば、延長パイプを使ってレベルゲージを上げることができます。これにより、図 3-19 で示したように、他の方法では不可能だったタンク上部に近い位置での測定が可能になります。

3.3 機械的な設置

3.3.1 パラボラアンテナ

クランプで固定されたフランジボールの取り付け

クランプで固定されたフランジボールをフランジに取り付ける際は、この指示に従ってください。

前提条件

- 1. 厚さ 6~30 mm のフランジを使用します。
- 2. 穴の直径が 96 mm であることを確認します。フランジ穴の片側に小さな凹みを作ります。

図 3-20:フランジ要件

A. 凹み

手順

 フランジに O リングをはめ、フランジボールを穴に挿入します。フランジボール側面の ガイドピンが、フランジの凹部に はまっていることを確認します。

フランジボールがフランジにしっかりとはまるようにナットを締めます (トルク 50 Nm)。

溶接フランジボールの取り付け

溶接フランジボールをフランジに取り付ける際は、この指示に従ってください。

前提条件

章 パラボラアンテナの要件 の要件に従った水平取り付けの場合、穴の直径が 116±2 mm である ことを確認してください。

図 3-21:フランジ要件

A. 116±2 mm

B. 6∼38 mm

章 パラボラアンテナの要件のフランジ要件が満たされない場合、フランジボールの傾斜溶接に 備え、穴を楕円形に加工する必要があります。

手順

1. 溶接が終わるまで、保護プレートをフランジボール の上に置いておきます。これらのプレートは、溶接の火花からフランジボールの表面を保護します。

A. *保護プレート* B. フランジボール 2. フランジをタンクノズルに取り付けたとき、溝が上に向くようにフランジボールを取り付 けてください。

3. タンクのフランジが傾いている場合は、フランジボールをタンクに取り付けたときにフラ ンジボールが水平になるように溶接してください。 タンクのフランジの傾きは 17 度以下にしてください。

4. フランジボールがフランジに溶接されている場合は、保護プレートを取り外してくださ い。

A. 保護プレート

パラボラアンテナの取り付け

このセクションでは、パラボラアンテナ付き Rosemount 5900C の取り付け方法について説明します。

パラボラアンテナとトランスミッタヘッドアセンブリをタンクに取り付けるには、この手順に従ってください。

前提条件

- ゲージをタンクに取り付ける前の注意事項については、パラボラアンテナの要件を参照して ください。
- タンク上部まで運ぶ前に、すべての部品と工具が揃っていることを確認します。

手順

1. パラボラ反射板をアンテナフィーダに取り付け、5 本の M5 ネジを締めます。

2. すべての部品が正しく取り付けられていることを確認します。

4. フランジを回転させ、アンテナ導波管をフランジの穴に挿入します。

5. ワッシャとナットを取り付けます。

ストップワッシャの目的は、アンテナがタンク内に落下するのを防ぐことです。そのた め、アンテナ導波管にしっかりと固定されます。 6. フィンガーナットとアッパーナットを手で締めます。

7. アンテナとフランジをタンクノズルに取り付け、フランジネジを締めます。

8. アンテナ導波管にレベルゲージを設置します。トランスミッタヘッド内のガイドピンが アンテナ導波管の溝に合っていることを確認してください。

- 9. トランスミッタヘッドとアンテナをつなぐナットを締めます。
- 10. フィンガーナットを少し緩めます。

C. フィンガーナット

11. ヘッド上部のネジに沿って目測でゲージの位置を合わせます。

12. タンクの中心から壁までの視線に対して、ゲージが 45°の角度になることを確認します。

13. ワッシャボールのマークを使ってゲージを調整し、アンテナがタンクの中心に向かってお よそ 1.5° 傾くようにします。

注

アスファルトのような結露の多い製品の場合、信号強度を最大にするため、ゲージは 0°の傾きで取り付けてください。

14. フィンガーナットを締めます。

注

15. 水準器(オプション)を使用し、タンク中心に対して 1.5°の傾きが正しいことを確認し てください。水準器がトランスミッタヘッドの上の平らで安定した場所に置かれている ことを確認してください。必要に応じてフィンガーナットを緩め、ゲージを調整します。

気泡が 1.5° のマークと重なっていないことを確認します。

A. フィンガーナット

- 16. フィンガーナットをしっかりと締めます。
- アッパーナットを締めてフィンガーナットをロックし(必要であれば、工具を入れるスペースを確保するためにトランスミッタヘッドを一時的に取り外しても構いません)、タブワッシャをナットの上に折り曲げて固定します。

A. アッパーナット

18. ゲージを配線し、Rosemount TankMaster WinSetup ソフトウェアを使用して設定しま す (Rosemount タンクゲージシステム構成マニュアルを参照)。

3.3.2 PTFE シーリング付きコーンアンテナの取り付け

このセクションでは、コーンアンテナおよび PTFE シーリング付き Rosemount 5900C の取り付 け方法について説明します。

PTFE シーリング付きコーンアンテナをタンクに取り付けるには、この手順に従ってください。

前提条件

ゲージをタンクに取り付ける前に、取り付けに関する注意事項についてコーンアンテナ要件を参照してください。

手順

アンテナからロックリングとアダプタを取り外します。フランジガスケットをコーンプレートの上部に取り付ける。フランジの底面が平らであること、すべての部品が汚れがなく乾燥していることを確認します。

アンテナラベルプレートを置き、フランジをロックナットで固定します。ナットがフランジにしっかりと固定されていることを確認します。

3. タンクノズルにフランジとコーンアンテナを慎重に取り付けます。ネジとナットで締め ます。

4. アダプタ WGL をスリーブの上部に取り付けます。アダプタ WGL をロックリングで固定 します。

5. 導波管、アダプタ、導波管ナット、保護スリーブをスリーブの上部に取り付けます。導波 管ナットを締めます。 トランスミッタヘッドを取り付け、ナットを締めます。トランスミッタヘッド内のガイド ピンがアダプターの溝に入ることを確認してください。

7. ゲージを配線し、Rosemount TankMaster WinSetup ソフトウェアを使用して設定します (Rosemount タンクゲージシステム構成マニュアルを参照)。

3.3.3 コーンアンテナ石英シーリングの取り付け

このセクションでは、コーンアンテナおよび石英シーリング付き Rosemount 5900C の取り付け 方法について説明します。

石英シーリング付きコーンアンテナをタンクに取り付けるには、この手順に従ってください。

前提条件

ゲージをタンクに取り付ける前に、取り付けに関する注意事項についてコーンアンテナ要件を参照してください。

手順

アンテナからロックリングとアダプタを取り外します。フランジガスケットをコーンプレートの上部に取り付ける。フランジの底面が平らであること、すべての部品が汚れがなく乾燥していることを確認します。

アンテナラベルプレートを置き、フランジをロックナットで固定します。ナットがフランジにしっかりと固定されていることを確認します。

タンクノズルにフランジとコーンアンテナを慎重に取り付けます。ネジとナットで締めます。

4. アダプタ WGL をスリーブの上部に取り付けます。アダプタ WGL をロックリングで固定 します。

5. アダプタ、導波管ナット、保護スリーブをスリーブの上部に取り付けます。導波管ナット を締めます。

64

6. トランスミッタヘッドを取り付け、ナットを締めます。トランスミッタヘッド内のガイド ピンがアダプターの溝に入ることを確認してください。

7. ゲージを配線し、Rosemount TankMaster WinSetup ソフトウェアを使用して設定します (Rosemount タンクゲージシステム構成マニュアルを参照)。

3.3.4 2 インチ スチルパイプアンテナの取り付け

このセクションでは、2 インチスチルパイプアンテナ付き Rosemount 5900C の取り付け方法に ついて説明します 。

この手順に従って、2インチスチルパイプアンテナをタンクに取り付けます。

手順

- 1. タンクの高さを測定します **R**。タンクの高さは、スティルパイプのフランジの上端からタンクの底まで測ります。
- 2. タンクの高さが 3 m (9.8 フィート) を超える場合は、パイプカップリングを使って 2 本の パイプを接続します。

 ホースクランプ2個を使って、偏向プレートを下部パイプに取り付けます。偏向プレート を使えば、空のタンクの底まで測定できます。下部パイプを切断し、偏向プレートを設置 するスペースと、タンク底部と偏向プレートとの間に約20mm(8インチ)の空きスペー スがあることを確認します。

注

7 m (23 フィート) 以上のスチルパイプは、タンクの動きに耐えるためにアンカーが必要 な場合があります。

5. M6 ナット 5 個を締めます。

- 6. パイプカップリングの側面にある溝を通して、パイプの端を点検します。パイプの端に隙 間がないことを確認します。

 スチルパイプをスタンドパイプに挿入します。タンクのフランジとパイプのフランジの 間にガスケットを付けます。スタンドパイプの最小直径は、パイプカップリングなしで 86 mm (3.39 インチ)、パイプカップリング付きで 99 mm (3.90 インチ) です。スチルパ イプの傾きが 1° 未満であることを確認してください。

アンテナとトランスミッタヘッドの取り付け

2 インチスチルパイプアンテナとトランスミッタヘッドを設置する際は、この段階的な説明に従ってください 。

手順

 アンテナからロックリングとアダプタを取り外します。フランジをアンテナに取り付け、 ナットを締めます。フランジは、中心穴の直径が 34 mm (1.3 インチ)、最大厚さが 42 mm (1.7 インチ) のものを使用してください。

2. アダプタ WGL を取り付け、ロックリングで固定します。

3. フランジとアンテナをタンクに取り付けます。フランジとスチルパイプの間にガスケットを付けます。ネジとナットで締めます。

注 スチルパイプを閉じる前にパイプの内径を測定します。この値は構成中に入力してくだ さい。

 タンクシール材として PTFE を使用する場合は、上部導波管に導波管を挿入します。保護 スリーブをフランジにかぶせます。(タンクシール材に石英を使用した場合、導波管はア ンテナと一体化します)。

- 5. 伝送器ヘッドを取り付けます。アダプタのガイドピンが上部導波管の対応する溝に入る ことを確認してください。
- 6. ナットを締めます。
- 7. ゲージを配線し、Rosemount TankMaster WinSetup ソフトウェアを使用して設定しま す (Rosemount タンクゲージシステム構成マニュアルを参照)。

3.3.5 1 インチ スチルパイプアンテナの取り付け

このセクションでは、1 インチスチルパイプアンテナ付き Rosemount 5900C の取り付け方法に ついて説明します 。

1 インチのスチルパイプアンテナは、小さなノズルを持つタンクや、清浄な製品を含む乱流タン クでの測定に適しています。タンク内の物体は測定性能に影響しないため、ソフトウェアの設定 は簡単です。

この手順に従って、1 インチスチルパイプアンテナをタンクに取り付けます。

手順

1. タンク底部まで約 20 mm (0.8 インチ) 残るようにパイプをカットします。タンクが空の ときに信頼性の高い測定を行うには、偏向板を使用します。

2. アンテナからロックリングとアダプタを取り外します。パイプにフランジを取り付け、ナットを締めます。穴の直径が 34 mm (1.3 インチ) のフランジを使用します。

3. アダプタ WGL を取り付け、ロックリングで固定します。

 1 インチのスチールパイプをノズルに挿入します。スチルパイプとタンクのフランジの 間にガスケットを入れます。

5. 導波管をアダプタに挿入し、保護スリーブをフランジにかぶせます。

- 6. 伝送器ヘッドを取り付けます。アダプタのガイドピンが上部導波管の対応する溝に入る ことを確認してください。
- 7. ナットを締めます。

3.3.6 延長コーンアンテナ

延長コーンアンテナは、ノズルの長いタンクや、ノズルに近い領域での測定を避けたいタンクに 適しています。

以下の場合は、拡張コーンアンテナを使用してください。

- ノズルが高い (図 3-22 を参照):
 - 300 mm (11.8 インチ) 以上のノズル用の ANSI 4 インチアンテナ
 - 400 mm (15.8 インチ) 以上のノズル用の ANSI 6 インチアンテナ
- タンク開口部の近くに障害物がある (図 3-23 を参照)
- ノズルの内側にざらつきがある (図 3-24 を参照)
- ノズルに凹凸や高低差がある (図 3-24 を参照)

図 3-22:高いノズルが付いた地下タンク

図 3-24:ノズルの凹凸

- A. *錆または堆積物*
- B. 高さの違い
- C. 溶接不良

ゲージの取付け

延長コーンアンテナ付き固定バージョンの Rosemount 5900C を取り付けるときは、この指示に 従います。

前提条件

1. フランジと最大製品レベル間の合計距離 A を測定します。

- 拡張コーンアンテナの標準的な長さは 500 mm (20 インチ)です。フランジと最大製品レベル間の合計距離 A が小さい場合、アンテナは以下の仕様に合うようにカットする必要があります。
 - アンテナからタンクの屋根までの距離 > 20 mm (0.8 インチ)
 - 最大製品レベルからアンテナまでの距離 > 30 mm (1.2 インチ)
 - アンテナは 15°の傾斜でカットされています

アンテナの開口部が斜めになっているため、レーダービームの方向はアンテナ開口部の短辺に向 かってわずかに変化します。レーダーエコーを妨害する物体が存在する場合は、その物体がレー ダー信号を妨害しないようにアンテナの向きを調整する必要があります。

手順

1. アンテナとトランスミッタヘッドは、標準的なコーンアンテナを備えたゲージと同じ方法 で取り付けます。

- 2. 選択した設定ツールを使用して、以下のアンテナパラメータを調整します (Rosemount TankMaster が推奨の設定ツールです)。
 - アンテナタイプ。TankMaster[™] WinSetup を使用したアンテナタイプの設定を参照してください。
 - 引き離す長さ (H)。TankMaster[™] WinSetup を使用した引き離す長さの設定を参照し てください。
 - 校正距離

Rosemount 5900C を構成する方法の詳細については、設定を参照してください。

TankMaster[™] WinSetup を使用したアンテナタイプの設定

TankMaster 構成ソフトウェアを使用してアンテナタイプを設定するには、次の手順を実行します (他の構成ツールでは他の手順を使用します)。

手順

- 1. Rosemount[™] TankMaster WinSetup 構成ソフトウェアを起動します。
- 2. WinSetup ワークスペースで、機器アイコンを右クリックします。
- 3. Properties (プロパティ) を選択し、Antenna (アンテナ) タブを開きます。
- Antenna Type (アンテナタイプ) ドロップダウンリストから、該当するアンテナタイプを 選択します。例えば、PTFE シーリングの4インチ延長コーンアンテナの場合は、"コーン 4インチ PTFE"を選択します。

TankMaster[™] WinSetup を使用した引き離す長さの設定

TankMaster 構成ソフトウェアを使用して引き離す長さを設定するには、次の手順を実行します。

前提条件

以下の式を使用して、適切な引き離す長さ (H) を計算します。

H=0.03 + L_{ext}

L_{ext} は、拡張コーンアンテナの長さ (m) です。

図 3-25: 拡張コーンアンテナ用引き離し距離

手順

- 1. Rosemount[™] TankMaster[™] WinSetup 構成ソフトウェアを起動します。
- 2. WinSetup ワークスペースで、機器アイコンを右クリックします。
- 3. Properties (プロパティ) を選択し、Antenna (アンテナ) タブを開きます。
- 4. Hold Off (引き離し) 入力フィールドに、必要な Hold Off (引き離し) の長さを入力します。

TankMaster[™] WinSetup を使用した校正距離の設定

コーンアンテナの延長は小さなオフセット誤差を引き起こします。校正距離パラメータを調整 することでその誤差を解消する必要があります。

手順

1. Rosemount[™] TankMaster[™] WinSetup 構成ソフトウェアを起動します。

- 2. WinSetup ワークスペースで、機器アイコンを右クリックします。
- 3. Properties (プロパティ) を選択し、Geometry (形状) タブを開きます。
- 4. 適切な Calibration Distance (校正距離) を入力します。
 - 4 インチのコーンの場合、校正距離は 100 mm 伸びるごとに約 2 mm です。
 - 6 インチのコーンの場合、校正距離は 100 mm 伸びるごとに約 1 mm です。
 - 8 インチのコーンの場合、校正距離は 0 です。

3.3.7 アレイアンテナ - 固定バージョン

前提条件

ゲージをタンクに取り付ける前に、取り付けに関する注意事項についてスチルパイプアンテナの 要件を参照してください。

スチルパイプを閉じる前にパイプの内径を測定します。構成中にこの値を入力します。

アレイアンテナ付き固定バージョンの Rosemount 5900C を取り付けるときは、この指示に従います。

手順

1. アンテナ導波管をフランジの穴に挿入し、アンテナラベルを文字が下になるように所定の 位置に貼ります。

2. ナットを締めます。

- 3. ラベルプレートのタブをナットの上に折り曲げて、ナットを固定します。
- アンテナラベルプレートをスロットマークの位置で折り曲げ、文字がはっきりと見える位置にします。

5. アンテナとフランジをタンクノズルに取り付け、フランジネジを締めます。

アンテナ導波管の上に慎重にゲージを載せ、ナットを締めます。トランスミッタヘッド内のガイドピンが導波管の溝に合っていることを確認してください。

C. *溝*

7. ゲージを配線し、Rosemount TankMaster WinSetup ソフトウェアを使用して設定しま す (Rosemount タンクゲージシステム構成マニュアルを参照)。

3.3.8 アレイアンテナ - ヒンジ式ハッチ

前提条件

ゲージをタンクに取り付ける前に、取り付けに関する注意事項についてスチルパイプアンテナの 要件を参照してください。

アレイアンテナヒンジ式ハッチバージョン付きの Rosemount 5900C を取り付けるときは、この 指示に従います。

手順

 ノズルにハッチを取り付けます。ハッチには、ノズルフランジに適合する穴パターンを持 つフランジが溶接されています。

2. フランジネジを締めます。小さいハッチには、ネジの他にピンボルトが 2、3 本付いてい る場合があります。 3. アンテナを蓋に取り付けます。蓋の内側のガイドピンがアンテナ導波管の溝に合ってい ることを確認してください。

4. アンテナを蓋に固定しているナットを締めます。

A. ナット

5. O リングがカバーの全周に正しくはめ込まれ、ハンドディッププ レートの後ろに押し下 げられていることを確認します。

6. 蓋を閉め、ロックネジを締めます。

B. ハンドディッププレート

- A ·B С \bigcirc \bigcirc R \bigcirc A. ナット B. アンテナ導波管 C. 溝
- 8. ゲージを配線し、Rosemount TankMaster WinSetup ソフトウェアを使用して設定しま す (Rosemount タンクゲージシステム構成マニュアルを参照)。

7. アンテナ導波管の上に慎重にゲージを載せ、ナットを締めます。トランスミッタヘッド内

のガイドピンがアンテナ導波管の溝に合っていることを確認してください。

3.3.9 LPG/LNG アンテナ

前提条件

タンク上部に運ぶ前に、すべての部品と工具が揃っていることを確認します。

注

スティルパイプのフランジには、検証ピンの方向を示すマークがなければなりません。クロージ ングがスチルパイプのフランジにあるマークと一直線上にあることを注意深く確認します。

ゲージをタンクに取り付ける前に、取り付けに関する注意事項について LPG/LNG アンテナの要件を参照してください。

LPG/LNG アンテナを設置する際は、この段階的な説明に従ってください。

手順

- 1. 機械設置図 9240041-910 に従ってスチルパイプを設置します。
- 2. コーンアンテナがスチルパイプに収まっていることを確認します。コーンアンテナとパ イプの間の隙間は 2 mm 以下にしてください。

A. 2 mm 以下

 M6の六角ネジ4本を使ってアンテナをクロージングに取り付けます。クロージングと アンテナアセンブリの取り扱いには十分注意してください。アンテナにへこみがなく、損 傷がないことが重要です。

アンテナを取り付けるまで、保護キャップは導波管につけたままにしておきます。

- A. 保護キャップ
- B. ボールバルブ
- C. クロージング
- D. 4 本の M6 ネジ
- E. アンテナ
- 4. ガスケット(お客様提供)をスチルパイプのフランジに取り付けます
- 5. スチルパイプにアンテナを慎重に取り付けます。

- 6. マークがパイプフランジの切り欠きと一直線になるように、クロージングを向けます。
- クロージングをスチルパイプのフランジに締め付けます (お客様提供のネジとナット)。 タンクは密閉され、Rosemount タンクゲージ装置に関する限り、加圧することができま す。

加圧タンクに安全に設置するためには、ゲージを適切な地域、国、国際規格、基準、慣行 に従って設置することが重要です。

8. 導波管から保護キャップを取り外します。

注

アダプタをフランジに取り付けます。
 フランジのガイドピンがアダプタ底部の穴に合っていることを確認します。

- 10. アダプタ上部のマークとクロージングのマークが一致していることを確認します。
- 11. ブラケットと圧力トランスミッタを取り付けます。
- 12. ワッシャ付き M10 ネジ4本を締めます。
- 13. 圧力トランスミッタ入力のパイプをフランジの入口に接続し、ナットを締めます。
- 14. Rosemount 5900C レーダーゲージをアダプタに取り付けます。レーダーゲージの導波 管内のガイドピンがアダプタの溝に合っていることを確認してください。検証ピンの方 向は、スチルパイプのフランジとクロージングにあるマークで示されます。詳細について は、LPG/LNG アンテナの要件 を参照してください。

(アダプターの 2 番目の溝は、TankRadar Rex レベルゲージを Rosemount 5900C に交換 する際の測定確認に使用します)。 15. トランスミッタヘッドとアダプタをつなぐナットを締めます。

注 アダプタには 2 つの溝があります。図 ステップ 16 のように、トランスミッタヘッドを検 証ピンに合わせることができるものを使用してください。

A. 圧力トランスミッタ
B. 圧力トランスミッタのブラケット
C. スチルパイプ
D. ナット
E. アダプタ
F. 検証ピン

16. レベルゲージのヘッドが正しく調整されていることを確認します。端子部のカバーは検 証ピンと平行でなければなりません。スチルパイプのフランジの切り欠きは、検証ピンの 方向を示しています。

- 17. Rosemount タンクゲージシステム設定マニュアルに記載されているように、ゲージを配 線し、Rosemount TankMaster WinSetup ソフトウェアを使用して構成します。
- 18. LPG 測定用レベルゲージを構成します (LPG 構成を参照)。

3.4 電気的な設置

3.4.1 ケーブル / コンジットエントリ

電子機器ハウジングには、½ - 14 NPT 用 の 2 つの口があります。オプションの M20×1.5、 minifast および eurofast アダプタも提供されています。接続は、地域または工場の電気工事規 定に従って行う必要があります。

使用しないポートは、湿気やその他の汚染が電子機器ハウジングの端子板コンパートメントに入らないように、適切に密閉されていることを確認してください。

注

同梱の金属栓を使って未使用ポートをすべて塞いでください。納品時に取り付けられているプ ラスチック製のプラグは密閉機能が十分ではありません。

注

導管を密閉して水やほこりの侵入を防ぎ、必要なレベルで入口を保護し、将来プラグやグランド を取り外すために、導管のオスネジにはネジシール (PTFE) テープや接着剤を貼付する必要があり ます。

NPT はテーパーネジの規格です。グランドを 5~6 本のネジでかみ合わせます。 図 3-26 の図に 示すように、ハウジングの外側にネジ山が多数残っています。

図 3-26 : ケーブル入口と NPT ネジ

A. NPT ネジグランドは、ハウジングの外側に多数のネジ山を残しています。

ケーブル挿入口のグランドが IP クラス 66 および 67 の要件を満たしていることを確認してくだ さい。

3.4.2 接地

ハウジングは必ず、国および地方の電気関連の規則に従って接地する必要があります。指定以外 の装置を使用すると、装置に備わっている保護機能が低下する可能性があります。最も有効的な 接地方法は、最小インピーダンスでアースグランドに直接接続することです。

接地用ねじ接続は 3 箇所あります。2 つはハウジングの端子コンパートメント内にあり、3 つ目 はハウジング上にあります。内部のアースネジは、アース記号で識別されます: ╧。

注

ねじ込み式電線管接続によるトランスミッタの接地は十分ではありません。

接地 - FOUNDATION[™] Fieldbus

Fieldbus セグメントの信号線は接地できません。信号線のどれか 1 つを接地すると Fieldbus セ グメント全体がシャットダウンする可能性があります。

シールド線の接地

通常、Fieldbus セグメントをノイズから守るために、シールド線の接地技術では、グラウンドル ープを作らないようにするためにシールド線に対しては一点アースが必要です。接地点は電源 に設置しなければなりません。

デイジーチェーン接続用に設計された機器は、タンクバスネットワーク全体で連続したシールド を可能にするため、絶縁されたシールドループスルー端子を備えています。

意図しない接地点を避けるため、端子部内のケーブルシールドは絶縁されている必要があります。

3.4.3 タンクバスのケーブル選択

FISCO に準拠するため、Rosemount 5900C シリーズでは、シールドツイストペアを使用しま す。⁽⁴⁾ 要件および EMC 規制を参照してください。推奨ケーブルはタイプ「A」フィールドバスケ ーブルと呼ばれます。ケーブルは供給電圧に適したもので、該当する場合は危険区域での使用が 承認されているものでなければなりません。米国では、容器の近くに防爆電線管を使用する場合 があります。

最大周囲温度より少なくとも 5℃ 高い定格のワイヤを使用してください。

配線を容易にするため、1.0 mm² または 18 AWG のケーブルサイズが推奨されます。ただし、 0.5 ~ 1.5 mm² または 20 ~ 16 AWG の範囲のケーブルを使用できます。

FISCO FOUNDATION[™] Fieldbus 仕様では、タンクバス用ケーブルは以下のケーブルパラメータに準 拠する必要があります。

表 3-11	: FISCO	ケーフノ	ルパフメ	(ータ

パラメータ ⁽¹⁾	值	
ループ抵抗	15 Ω/km \sim 150 Ω/km	
ループインダクタンス	0.4 mH/km \sim 1 mH/km	
キャパシタンス	45 nF/km \sim 200 nF/km	
各スパーの最大長 ⁽²⁾ ケーブル	装置クラス IIC および IIB では 60 m	
トランクを含む最大ケーブル長 ⁽³⁾ およびスパー	装置クラス II C では 1000 m、装置クラス IIB では 1900 m	

(1) 詳細については、IEC 61158-2 規格の要件を参照してください。

(3) トランクは fieldbus ネットワーク上の2 つの機器間の最長のケーブル経路で、ネットワ ークの両端に終端がある部分です。Rosemount タンクゲージシステムでは、トランクは 通常、Rosemount 2410 タンクハブとセグメントカプラまたはデイジーチェーン構成の 最後の機器の間に配置されます。

3.4.4 危険区域

Rosemount 5900C レベルゲージを危険区域に設置する場合は、地域の規制と該当する証明書の 仕様に従わなければなりません。

Rosemount 5900 などの Rosemount タンクゲージ製品の証明書は、Emerson.com/Rosemount Tank Gauging で入手できます。

⁽²⁾ スパーはネットワークの終端されていない部分です。

⁽⁴⁾ IEC 61158-2

3.4.5 電源の要件

Rosemount 5900C は、Rosemount 2410 タンクハブから本質安全 Tankbus 経由で給電されま す。2410 は、Tankbus で FISCO 電源として機能することにより、本質安全フィールドバスセグ メントに給電します。

Rosemount 2410 タンクハブなしで FOUNDATION フィールドバスシステムに設置した場合、 Rosemount 5900C は FF セグメントから電源を供給されます。

3.4.6 電力予測

Rosemount 5900C の消費電力は 50 mA です。これはフィールド機器を Tankbus に接続する際 に考慮しなければなりません。詳細については、Rosemount 2410 Tank Hub リファレンスマニ ュアルの「電力予測」の項を参照してください。

3.4.7 Tankbus

Rosemount タンクゲージシステムは、設置も配線も簡単です。機器は「デイジーチェーン」接続が可能で、外部ジャンクションボックスの数を減らすことができます。

Rosemount タンクゲージシステムでは、機器は本質安全のタンクバスを介して Rosemount 2410 タンクハブと通信します。タンクバスは FISCO 規格に準拠しています。⁽⁵⁾ FOUNDATION Fieldbus 規格。Rosemount 2410 は、タンクバスのフィールド機器の電源として機能します。 FISCO システムは、エンティティコンセプトに基づく従来の IS システムに比べ、より多くのフ ィールド機器をセグメントに接続することができます。

終端処理

FOUNDATION[™] Fieldbus ネットワークの両端にはターミネータが必要です。一般的に、1 つのター ミネータは Fieldbus 電源に設置され、もう 1 つは Fieldbus ネットワークの最後の機器に設置さ れます。

注

2つのターミネータがフィールドバスにあることを確認してください。

Rosemount タンクゲージシステムでは、Rosemount 2410 タンクハブが電源として機能します。 タンクハブは通常フィールドバスセグメントの最初の機器であるため、工場出荷時に組み込まれ ている終端機能が有効になっています。

Rosemount 5900C レーダーレベルゲージの標準バージョン、Rosemount 2230 グラフィカルフィールド表示器、Rosemount 2240S 多点温度トランスミッタなどの機器には、必要に応じて端子台にジャンパを挿入することで簡単に有効にできるターミネータが内蔵されています。

セグメント設計

FISCO フィールドバスセグメントを設計する際にはいくつかの要件を考慮する必要があります。 ケーブル配線は FISCO の要件に準拠しなければなりません。

また、接続されているフィールドデバイスの合計動作電流が、Rosemount 2410 タンクハブの出 力能力の範囲内であることを確認する必要があります。2410 は 250 mA ⁽⁶⁾ を供給できます。そ の結果、フィールド機器数は、総消費電流が 250 mA 以下になるように考慮する必要がありま す。

もう一つの要件は、すべてのフィールド機器の端子に少なくとも 9 V の入力電圧があることを保 証することです。そのため、フィールドバスケーブルの電圧降下を考慮する必要があります。

⁽⁵⁾ FISCO=Fieldbus Intrinsically Safe Concept (本質安全の概念)

⁽⁶⁾ スマートワイヤレスシステムでは、2410 はタンクバスで200 mA を供給することができます。

通常、Rosemount 2410 タンクハブとタンク上のフィールドデバイス間の距離は非常に短くなります。多くの場合、FISCO の要件を満たす限り、既存のケーブルを使用することができます。

Rosemount タンクゲージシステムのセグメント設計の詳細については、Rosemount 2410 タン クハブリファレンスマニュアルの「タンクバス」の章を参照してください。

関連情報

タンクバスのケーブル選択 電力予測

3.4.8 標準的な設置

図 3-27 の例は、1 つのタンクにフィールド機器がデイジーチェーン接続されたシステムを示して います。ターミネータは FOUNDATION Fieldbus システムで必要であるため、フィールドバスセグ メントの両端に設置されます。この場合、ターミネータは、Rosemount 2410 タンクハブと、ネ ットワークセグメントの端にあるフィールド機器で有効になっています。

タンクバスのフィールド機器に加えて、図 3-27 は、圧力トランスミッタのような装置が、2410 タンクハブの本質安全防爆仕様の 4 -20 mA アナログ入力にどのように接続できるかを示してい ます。

HART スレーブ機器の最大数:

- パッシブ電流ループ:5
- アクティブ電流ループ:3

- A. タンクバスの長さは、機器の数とケーブルのタイプにより最大 1,000 メートル
- B. 本質安全電源、内蔵パワーコンディショナ、内蔵ターミネータを備えた Rosemount 2410 タンクハブ
- C. Rosemount 2230 ディスプレイ
- D. タンクバス
- *E. IS アナログ入力(セカンダリバス*)
- F. Rosemount 5900 レーダー・レベル・ゲージ
- G. Rosemount 2240S マルチ入力温度伝送器
- H. 最後の機器で有効化された内蔵ターミネータ
- I. Rosemount 3051S 圧力トランスミッタ

タンクハブとタンクのフィールド機器間の最大距離は、タンクバスに接続されている機器の数と ケーブルタイプによって異なります。

ケーブルの選択、電力予測、Tankbus、Rosemount 2410 タンクを含むシステムの設置方法の例 などの詳細については、Rosemount 2410 タンクハブリファレンスマニュアルの「電気的設置」 の章を参照してください。

3.4.9 FOUNDATION[™] Fieldbus システムの Rosemount 5900C

Rosemount 5900C は FOUNDATION Fieldbus (FF) テクノロジをサポートし、既存の FF ネットワークに統合できます。

電源が要件を満たしている限り、Rosemount 5900C は他の FF デバイスと同じように動作できます。

I.S. 電源は以下の要件を満たしている必要があります。

- FISCO/Entity 準拠
- FM 米国、FM カナダ AIS クラス I、ディビジョン 1
- ・ ATEX および IECEx:
 - Ex [ia], or Ex [ib] (FISCO)
 - Ex [ia] (Entity)

図 3-28: I.S. FOUNDATION Fieldbus システムの例

- A. I.S. 電源
- B. トランク
- C. Rosemount 2230 ディスプレイ
- D. セグメントカプラ
- E. Rosemount 644 温度トランスミッタ
- F. Rosemount 5900 レーダー・レベル・ゲージ

次の点を確認します。

- 電源は、接続されたすべての機器に必要な総電流を供給することができます。
- FOUNDATION Fieldbus (FF) に接続された Rosemount 5900C および他の機器は、電源の FISCO または Entity パラメータに準拠しています。
- ・ セグメントカプラの短絡保護⁽⁷⁾は接続された機器の電流消費量と一致します。

関連情報

製品証明書 電源の要件 電力予測

3.4.10 配線

Rosemount 5900C レベルゲージに接続するには、次の手順を実行します。

手順

- 1. 🛆 電源がオフになっていることを確認します。
- 2. 端子部のカバーを取り外します。
- 適切なケーブルグランド/コンジットに配線を通します。ドリップループ付きのケーブル は、ループの下部がケーブル/電線管入口の下になるように設置してください。
- 4. 端子台の説明に従って、配線を接続します。

⁽⁷⁾ 詳細については、Rosemount 2410 リファレンスマニュアル (文書 No. 00809-0100-2410) を参照してください。

- 5. プラス側のリード線が FB+ と表示された端子に、マイナス側のリード線が FB- と表示さ れた端子に接続されていることを確認します。
- 6. 金属栓を使って未使用ポートをすべて塞いでください。
- 7. △ 端子部のカバーは、機械的な停止位置(金属と金属の間)まで締め付ける必要があり ます。防爆要件を満たし、端子部に水が入るのを防ぐため、カバーが完全にはめ込まれて いることを確認してください。
- 8. ケーブルグランド/コンジットを締め付けます。M20 グランドにはアダプタが必要です。

注

カバーを取り付ける前に、指定された侵入防止レベルを確保するために、O リングとシートが良好な状態であることを確認してください。ケーブル入出力接続部(またはプラグ)についても同じ要件が当てはまります。ケーブルは、ケーブルグランドに正しく取り付ける必要があります。

図 3-30 : 端子部

- C. 信号および電源用端子
- D. ロックネジ(ネジを緩めてロック)
- E. 外部接地ネジ
- F. 表紙

導体の推奨事項

必ず、Rosemount 5900C の端子台に適したケーブルを使用してください。次の図で示すように、 端子台は、以下の仕様を満たすケーブル用に設計されています。

図 3-31: 導体および絶縁の要件

- A. 導体の絶縁。最大内径 Ø:2.9 mm
- B. ストリップの長さ:8~9mm。
- C. 導体の断面積については、表 3-12 を参照してください

表 3-12: 導体断面積

導体接続	断面		
	最小	最大	
単線	0.2 mm ² / AWG 24	1.5 mm ² / AWG16	
フレキシブル	0.2 mm ² / AWG 24	1.5 mm ² / AWG16	
ワイヤエンドフェルール付き	0.25 mm ² / AWG 24	1.5 mm ² / AWG16	
プラスチック製カラーフェルール 付き	0.25 mm ² / AWG 24	0.75 mm ² /AWG19	

導線の被覆径が 2.9 mm を超える場合、ケーブルを端子台に正しく挿入できないことがあります。このような場合、ストリップ長を長くする必要があるかもしれません。端子台に導体を取り付けたときに、端子の外側に裸の導体が現れないように、ストリップの長さを調整します。

ソリッド導線、またはエンドフェルール付きのフレキシブル導線は、工具を使わずに簡単に端子 台に押し込むことができます。フレキシブル(撚り線)導線を使用する場合は、導線を挿入する ためにリリースボタンを押す必要があります。

C. 導体

接続を解除するには、解除ボタンを押し、導線を取り外します。

3.4.11 端子台

図 3-34: Rosemount 5900C 端子部

- A. *テスト端子*
- B. 接地端子、内蔵
- C. フィールドバス

表 3-13 : Rosemount 5900C の端子台接続

接続	説明
X1:タンクバス入力	本質安全タンクバス入力、電源、通信 (FOUNDATION Fieldbus システムで加速)
X2:終端	端子台にジャンパが置かれている場合、内蔵回線終端装置はタンクバス上に接 続されます。
X3:シールドループ	ケーブルシールドデイジーチェーンコネクタ (非接地)
X4:タンクバス出力	タンクバス出力が X1 に接続され、オプションで他の機器とデイジーチェーン接 続可能
テスト端子	フィールドコミュニケータ接続用テスト端子

X1 端子は本質安全タンクバスに接続されています。

X2 端子のジャンパは、内蔵終端を有効にします。終端は、Rosemount 5900C ゲージがタンクバ スネットワークの終端に設置されている場合に使用します。タンクバスの終端方法については Tankbus を参照してください。

X3 端子はタンクバスネットワーク全体で連続したシールドを可能にするためにケーブルシール ドを接続するために使用されます。

X4 端子は、Rosemount 2240S マルチ入力温度トランスミッタ、または Rosemount 2230 グラ フィカルフィールドディスプレイなどの他の機器への「デイジーチェーン」接続に使用できま す。「図 3-35」も参照してください。

3.4.12 配線図

Rosemount 5900C の標準バージョンは、本質安全フィールドバス入力を 1 つ備えています。X2 コネクタを短絡することで内蔵フィールドバス終端をアクティブにすることができます。 コネクタ X4 の本質安全は、Rosemount タンクゲージシステムの他の機器への「デイジーチェーン」接続に使用できます。

コネクタ X3 はフィールドバス入出力ケーブルのシールド接続(シャーシ接地から分離)に使用 されます。

図 3-35 は、Rosemount 5900C レベルゲージを Rosemount 2240S 温度トランスミッタに接続 した典型的な配線図を示しています。この例では、タンクバスの最後の機器である温度トランス ミッタで終端が有効になっています (Tankbus を参照)。

温度トランスミッタをタンクハブに接続したい場合は、Rosemount 5900C を温度トランスミッ タに「デイジーチェーン接続」し、Rosemount 5900C の端子台の端子 X2 にジャンパを接続し てタンクバスを終端することができます。

図 3-35: Rosemount 5900C 配線図

- B. Rosemount 2410 タンクハブ
- C. Field communicator
- D. タンクバス
- E. 電源
- F. Shield
- G. Rosemount 2240S マルチ入力温度トランスミッタ、ターミネータ内蔵
- H. Rosemount 5900C $\nu \vec{y} \nu \vec{v} \cdot \vec{v}$

端子台の接続については、端子台を参照してください。
4 設定

4.1 安全上の注意事項

本項に記載の操作指示および手順は、操作担当者の安全を確保するために特別な予防措置を必要 とする場合があります。安全上の問題が生じかねないことを伝える情報は、警告記号(①)で示 されています。この記号が前に付いている操作を実施する前に、以下の安全上の注意事項をお読 みください。

▲ 警告

安全な設置方法と点検ガイドラインに従わない場合は、死亡または重傷にいたる可能性がありま す。

- 設置作業は必ず資格を有する要員が実行してください。
- 本マニュアルに記載の機器だけを使用してください。指定以外の装置を使用すると、装置に 備わっている保護機能が低下する可能性があります。
- 適切な資格がない場合は、本マニュアルに記載されている以外の点検を行わないでください。
- 部品を代用すると、本質安全防爆が損なわれる可能性があります。

爆発によって死亡または重傷にいたる可能性があります。

- トランスミッタの動作環境が、危険区域の使用認可条件に適合していることを確認してください。
- ハンドヘルドコミュニケータを爆発の危険性がある環境で接続する前に、ループ内の計器が 本質安全防爆あるいはノンインセンディブ防爆に適合した配線方法に従って設置されている ことを確認してください。
- 爆発の危険がある環境で回路が通電している際は、ゲージカバーを取り外さないでください。

4.2 概要

Rosemount[™] 5900C は、Rosemount 2460 システムハブや Rosemount 2410 タンクハブなどの Rosemount タンクゲージシステムに取り付けることができます。Rosemount 5900C は、 FOUNDATION[™] Fieldbus システムへの設置もサポートしています。詳細については、システム概要 を参照してください。

Rosemount 5900C の取り付けは、簡単で分かりやすい手順です。Rosemount 2410 タンクハブ と Rosemount 2460 システムハブを使用した Rosemount タンクゲージでは、基本的に以下の 手順があります。

- 準備: ユニット ID、Modbus アドレスをメモします。⁽⁸⁾アンテナタイプ、タンクの高さ、 タンクタイプ、ストラッピングテーブルなどのタンク形状パラメータ。
- 2. 通信プロトコルと通信パラメータを設定します。
- 3. Rosemount 2460 システムハブの構成。
- 4. Rosemount 2410 タンクハブの構成。
- 5. Rosemount 5900C レーダーレベルゲージや Rosemount 2240S マルチ入力温度トラン スミッタなどのフィールド機器の構成。
- 6. Rosemount5900Cの校正。

FOUNDATION Fieldbus システムへの Rosemount 5900C の設置は、リソース、ファンクション、 トランスデューサブロックの完全なセットによってサポートされています。AMS Device Manager のような適切な構成ツールを使用することで、レベルゲージを既存の FOUNDATION Fieldbus ネットワークに簡単に統合することができます。詳細については、FOUNDATION[™] Fieldbus 概要のセクションを参照してください。

Rosemount[™] TankMaster[™] WinSetup プログラムは、Rosemount 2410 タンクハブを含むシス テムで、Rosemount 5900C レーダーレベルゲージの設置と構成に推奨されるツールです。 Rosemount 5900C は、タンクハブを取り付ける際の手順の一部として設置されることが推奨さ れます。

- 1. TankMaster WinSetup の機器設置ウィザードを使用して、Rosemount 2410 タンクハブ を設置し、構成します。
- タンクハブの設置が完了したら、フィールド機器の自動設置が有効になっていることを確認します。Rosemount 2410 タンクハブ、Rosemount 5900C レベルゲージ、および Tankbus 上の他のフィールド機器が、自動的に WinSetup ワークスペースに表示されます。
- 3. Properties (プロパティ) ウィンドウで、Rosemount 5900C レベルゲージを構成します。

Rosemount 5900C レベルゲージを既存のシステムに追加する場合、レベルゲージを構成する前 にタンクハブのデータベースを更新する必要があります。タンクデータベースは、レベルージを 設置されたタンクにマッピングします。

Rosemount TankMaster WinSetup ソフトウェアを使用して、Rosemount 5900C およびその他の機器を設置、構成する方法の詳細については、Rosemount タンクゲージシステム構成マニュアルを参照してください。

システムに Rosemount 2460 システムハブが含まれている場合は、レベルゲージや温度マルチ プレクサなどの他の機器の前に設置、構成する必要があります。

FOUNDATION Fieldbus システムへの Rosemount 5900C の設置の詳細については、FOUNDATION[™] Fieldbus 概要セクションを参照してください。

注

⁽⁸⁾ 詳細については、Rosemount タンクゲージシステム構成マニュアルを参照してください。

Rosemount 5900C は、ほとんどの場合において十分な基本構成をサポートしています。高度な 構成オプションも数多く用意されており、さらなる微調整が必要な特殊な用途に使用することが できます。

4.2.1 基本設定

基本構成には、標準構成のパラメータを指定することが含まれます。ほとんどの場合、これで十 分です。基本構成には以下の項目が含まれます。

- 測定単位
- タンクの形状:タンクの高さ、タンクのタイプ、タンクの底のタイプ、パイプの直径、ホールドオフの距離、校正の距離など。
- プロセス条件:急激なレベル変化、乱流、泡、固形物、製品の誘電範囲
- 体積:標準タンクタイプ、ストラッピングテーブル
- タンクスキャン:Rosemount 5900Cの測定信号を分析
- 空タンクの取り扱い: タンク底面近くでの測定の最適化

詳細については、基本設定 を参照してください。

4.2.2 高度な構成

基本的な構成に加えて、Rosemount 5900C は特定の用途で測定性能を最適化するための高度な 機能をサポートしています。幅広い製品特性、さまざまなタンクタイプ、障害物、タンク内の乱 流状態に対応できるよう、微調整が可能です。

Rosemount 5900C および Rosemount TankMaster WinSetup 設定プログラムでサポートされ ている高度な機能の例:

- 面エコー追跡
- フィルター設定

詳細については、高度な構成 を参照してください。

4.2.3 設定ツール

Rosemount 5900C の構成には、さまざまなツールを使用できます。

- Rosemount TankMaster Winsetup
- フィールドコミュニケータ
- FOUNDATION[™] Fieldbus システム用 AMS Device Manager
- ・ DD4 をサポートする FOUNDATION Fieldbus ホスト

Rosemount TankMaster Winsetup は、基本的な設定オプションだけでなく、高度な設定および サービス機能を含むユーザーフレンドリーなソフトウェアパッケージです。

WinSetup パッケージは、インストールと構成のための強力で使いやすいツールを提供します。 Rosemount タンクゲージシステム構成マニュアルを参照してください。

DeltaV ユーザーの場合、DD については、www.easydeltav.com をご覧ください。デバイス構成 にデバイス記述 (DD) と DD 方法を使用する他のホストの場合は、最新の DD バージョンについ ては、Foundation の Web サイト www.fieldbus.org をご覧ください。

4.3 Rosemount TankMaster を使用した構成

Rosemount TankMaster Winsetup プログラムは、Rosemount 5900C の推奨構成ツールです。 通常、Rosemount 2410 タンクハブは、TRL2 Modbus、RS485 Modbus、Modbus TCP、また はエミュレーションプロトコルを介してホストシステムと通信する Rosemount 2460 システム ハブに接続されています。Rosemount 5900C は、次のいずれかの方法でインストールおよび構 成できます。

- Rosemount 2410 タンクハブの設置および構成手順の一部として構成(推奨)
- Rosemount TankMaster インストールウィザードを使用

通常、Rosemount 5900C レベルゲージは Rosemount TankMaster WinSetup で Rosemount 2410 タンクハブを設置する際、設置手順の一部として設置されます。その後、レベルゲージは WinSetup ワークスペースに表示され、*Properties (プロパティ)* ウィンドウを介して別のステージで設定されます。

Rosemount 5900C レーダーレベルゲージの構成方法の詳細については、Rosemount タンクゲージ構成マニュアルを参照してください。

4.3.1 インストールウィザード

Rosemount TankMaster WinSetup インストールウィザードは、Rosemount 5900C やその他の 機器のインストールと設定を支援するツールです。これは、Rosemount 2410 の設置手順の一部 として、Rosemount 5900C が設置されていない場合に役立ちます。

詳細については、Rosemount タンクゲージシステム構成マニュアルを参照してください。

注

Rosemount 5900C レベルゲージが、Rosemount 2410 タンクハブ経由で「オフライン」で設置 された場合は、*Properties (プロパティ)* ウィンドウで個別に設定する必要があります。

Rosemount TankMaster WinSetup ウィザードを使用して、Rosemount 5900C をインストール するには、次の手順を実行します。

手順

- 1. TankMaster WinSetup プログラムを起動します。
- 2. Devices (機器) フォルダを選択します。
- 3. マウスの右ボタンをクリックし、Install New (新規インストール) を選択します。
- 4. 指示に従います。

インストールウィザードには含まれていない構成オプションが多数あります。タンクス キャン、空のタンク処理、表面エコー追跡、フィルタ設定などのさまざまなオプションの 使用方法については、高度な構成および基本設定を参照してください。

4.4 基本設定

4.4.1 タンク形状

Rosemount 5900C レーダーレベルゲージのタンク形状構成では、以下のパラメータを使用します。

表 4-1:タンク形状パラメータの定義

パラメータ	定義
タンク高さ (R)	タンク基準点からゼロレベルまでの距離
ゲージ基準距離 (G)	タンク基準点からゲージ基準点までの距離
最小レベルオフセット (C)	ゼロレベルからタンク底面までの距離
引き離す長さ	ゲージの基準点にどれだけ近づいてレベルを測定できるかを定義しま す。

アレイアンテナとヒンジ式ハッチ付き Rosemount 5900C では、蓋を開けてゲージをタンク開口 部から離すことで、手による浸漬が可能です。ハッチの内側にはハンドディッププレートがあり ます。このプレートはタンク形状パラメータタンク高さ (R) のタンク基準点として使用されま す。

タンク基準高さ(R)

タンク基準高さ (R) は、ハンドディップノズル (タンク基準点) からタンク底またはそれに近いゼ ロレベル (基準点) までの距離です。ヒンジ式ハッチ付きアレーアンテナの場合、基準点は 図 4-2 のようにハンドディッププレートにあります。

ゲージ基準距離(G)

ゲージ基準距離 (G) はゲージ基準点からタンク基準点までの距離で、図 4-1 と 図 4-3 に示されて いるように、レベルゲージが取り付けられている顧客のフランジまたはマンホールの蓋の上面に 位置しています。

アレイアンテナ付き Rosemount 5900C のヒンジ式ハッチバージョンの場合、タンク基準点とゲ ージ基準点は、図 4-2 に示されているように、スチルパイプゲージスタンドのハンドディッププ レートなど、同じ位置にあります。

ハンドディッププレートをタンク基準点として使用する場合 (図 4-2 を参照)、アレイアンテナヒ ンジ式ハッチバージョンの Rosemount 5900C では G=0 を設定します。

タンク基準点がゲージ基準点より上にある場合、G は正になります。それ以外の場合、G は負です。

最小レベルオフセット (C)

最小レベル距離 (C) は、ゼロレベル (浸水基準点) と製品表面 (タンク底) の最小レベルとの間の距 離として定義されます。C 距離を指定することで、測定範囲をタンクの底まで広げることができ ます。

C>0 の場合、製品表面がゼロレベルより下にあるとき、負のレベル値が表示されます。ゼロレベ ル以下のレベルを Level=0 として表示させたい場合は、*Rosemount TankMaster WinSetup* で Show negative level values as zero (負のレベル値をゼロとして表示) チェックボックスを選択 します。

ゼロレベル以下の測定は、C-distance=0 の場合は承認されません。つまり、Rosemount 5900C は無効なレベルを報告します。

引き離す長さ

引き離す長さは、ゲージの基準点にどれだけ近づいてレベル値を許可できるかを定義します。通 常、引き離す長さを変更する必要はありません。ただし、タンクの上部、例えばタンクのノズル からの妨害エコーがある場合は、アンテナに近い領域での測定を避けるため、引き離す長さを長 くすることができます。

校正距離

この変数を使用して、Rosemount 5900C を校正し、測定された製品レベルが手で浸したレベル と一致するようにします。例えば、実際のタンクの高さとタンクの図面による高さにずれがある 場合、ゲージの設置時に微調整が必要になることがあります。

詳細については、WinSetup を使用した校正 を参照してください。

管径

Rosemount 5900C レーダーレベルゲージを静管に取り付ける場合は、管の内径を指定する必要 があります。管径は、管内のマイクロ波伝搬速度の低下を補正するために使用されます。不正確 な値は、縮尺率エラーとなります。現地調達の静管パイプを使用する場合は、管を取り付ける前 に内径を必ず確認してください。

4.4.2 タンクスキャン

Tank Scan (タンクスキャン) ウィンドウは、測定信号を分析するのに便利なツールです。タンク エコーを表示し、最も重要なパラメータを設定することで、表面エコーと外乱エコーやノイズを 区別することができます。

Tank Scan (タンクスキャン) ウィンドウを開くには、次の手順を実行します。

手順

- 1. TankMaster WinSetup プログラムを起動します。
- 2. *TankMaster WinSetup* ワークスペースで、Rosemount 5900C レーダーレベルゲージを表 すアイコンをクリックします。
- 3. ポップアップメニューから **Properties (プロパティ)** オプションを選択します。 *RLG Properties (RLG プロパティ)* ウィンドウが表示されます。
- 4. *RLG Properties (RLG プロパティ)* ウィンドウで、**Advanced Configuration (詳細設定)** タ ブを選択します。
- 5. Tank Scan (タンクスキャン) ボタンをクリックし、*Tank Scan (タンクスキャン*) ウィンド ウを開きます。

図 4-4:タンクスキャンウィンドウ

Tank Scan (タンクスキャン) ウィンドウが開くと、システムはゲージからタンクデータの 読み取りを開始します (右下に進行状況バーが表示されます)。

タンクスキャンウィンドウ

Tank Scan (タンクスキャン) ウィンドウには、グラフエリア、レジェンド/オプションエリア、ファイルストレージボタン、各種アクションボタンがあります。

Tank Echo (タンクエコー) 曲線は、測定信号をグラフで表示します。水面からのエコーに加えて、タンク内の障害物からのエコーがある可能性があります。

グラフエリアでは、製品表面エコーの追跡を容易にするために、タンク内の障害物から発生する エコーをフィルタで除外するようにゲージを設定することができます。

タンクエコーとエコーピークは、**Reread From Gauge (ゲージから再読み取り)**ボタンでいつで も更新できます。新しいエコー曲線は黒い線で、前の曲線は灰色の線で表示されます。グラフに は最大 2 つの古いエコー曲線が表示される場合があります。古いエコーピークは小さな十字が 目印となります。これは、既存のタンク信号を以前の信号と比較するために使用できます。

タンクスキャン機能の使用方法の詳細については、Rosemount タンクゲージシステム構成マニュアルを参照してください。

4.4.3 空タンクの取り扱い

Empty Tank Handling (空タンク処理) 機能は、表面エコーがタンクの底に近い状態に対応します。この機能は以下が可能です。

- 弱い製品エコーの追跡
- 失われたエコーの処理

表面エコーが失われた場合、この機能により Rosemount 5900C はゼロレベル測定が行われます。

以下に従って、Empty Tank Handling (空タンクの取り扱い) ウィンドウを開きます。

手順

- 1. *TankMaster WinSetup* ワークスペースで、目的の Rosemount 5900C レーダー・レベル・ ゲージのアイコンをクリックします。
- 2. ポップアップメニューから **Properties (プロパティ)** オプションを選択します。 *RLG Properties (RLG プロパティ)* ウィンドウが表示されます。
- 3. *RLG Properties (RLG プロパティ)* ウィンドウで、**Advanced Configuration (詳細設定)** タ ブを選択します。
- 4. Empty Tank Handling (空タンクの取り扱い) ボタンをクリックします。

mpty Tank Handling	×
Level Alarm is Not set when Tank is Empty	
🔲 Use Automatic Extra Echo Detection Settings	
C Activate Extra Echo Function	
Current Value New Value Extra Echo Min Distance (Ullage): 0.000 m 0.000	e 100
Extra Echo Max Distance (Ullage) : 0.000 m 0.	00
Extra Echo Min Amplitude : 100000 mV 100	100
Use Automatic Empty Tank Handling Settings Bottom Echo visible if Tank is Empty	
Current Value New Valu Empty Tank Detection Area : 0.200 m 0.	∍ :00
OK Cancel Apply	Help

タンクが空のとき、レベルアラームが設定されない

製品表面のエコーがタンク底に近い空タンク検出エリアで失われた場合、機器は空タンク状態に なり、無効レベルアラームが作動します (*Diaqnostics (診断*) ウィンドウに表示されます)。

ゲージが空タンク状態になったときにこのアラームをトリガーしない場合は、このチェックボッ クスを有効にします。

余分なエコー機能を有効にする

Extra Echo Detection (余分なエコー検出) 機能は、タンクの底が空のときに強いエコーを発生し ないことを条件に、底がドーム状または円錐状のタンクに使用されます。この機能により、タン ク底部付近での測定がより確実になります。

円錐形の底を持つタンクの場合、タンクが空になると実際のタンク底の下にエコーが現れること があります。機器がタンク底を検出できない場合、この機能を使用することで この余分なエコー が存在するかぎり、機器を空タンク状態に保つことができます。

このようなエコーがあるかどうかは、タンクが空のときにタンクスキャン機能を使えばわかりま す。スキャンがタンク底面より下に伸びていることを確認します。タンクスペクトルは、 Echo Min Distance (余分なエコー最小距離)、 Extra Echo Max Distance (余分なエコー最大距離) およ び Extra Echo Min Amplitude (余分なエコー最小振幅) などのパラメータの適切な値を見つける ために使うことができます。指定されたしきい値を超える振幅で最小距離と最大距離内にエコ ーが現れた場合、タンクは空とみなされます。

余分なエコー最小距離

余分なエコーまでの最小距離を定義します。このパラメータはタンクの高さより大きくする必 要があります。

余分なエコー最大距離

余分なエコーまでの最大距離を定義します。このパラメータは余分なエコー最小距離より大き くする必要があります。

余分なエコー最小振幅

余分なエコーの最小信号強度を定義します。信号強度がこの値を超え、最小距離と最大距離の間 の領域で見つかった場合、デバイスは空のタンク状態に留まり、Level=0を示します。

タンクが空の場合、底部エコーが見える

この機能を使用することにより、底面エコーを外乱エコーとして扱うことで、タンク底面に近い 比較的弱い表面エコーを追跡できます。この機能は、油のようなマイクロ波に対して比較的透明 な製品に有効である可能性があります。

この機能を有効にする前に、WinSetup/タンクスキャン機能を使って、タンクが空のときにタン ク底にはっきりと見えるエコーがあるかどうかを調べる必要があります。この場合、*Empty Tank Handling (空タンク処理)* ウィンドウの Bottom Echo Visible If Tank Is Empty (タンクが空の場 合に底面エコーを表示) チェックボックスがオンになっている必要があります。

Bottom Echo Visible… (底面エコー表示…) 機能を無効です。製品表面エコーの検索はタンク底 部に近い領域 (空タンク検出領域) に限定されます。

水面エコーに干渉する強い底部エコーがない場合、**Use Automatic Empty Tank Handling** Settings (自動空タンク処理設定を使用) チェックボックスをオンにし、レベルゲージが自動的に 空のタンク処理機能を制御するようにします。

空タンク検出エリア

Empty Tank Detection Area (空タンク検出エリア) は、タンク底面から 200mm (8 インチ) を下限とする範囲を定義します。この領域で表面エコーが失われた場合、タンクは空とみなされ(機器は空タンク状態になる)、レベルゲージはゼロレベルを示します。

タンクが空の場合、レベルゲージは2x空タンク検出エリア内の製品表面を探します。新しいエ コーが見つかった場合、それが製品表面とみなされるため、この領域に乱れがないことが重要で す。この領域での安定した計測を保証するために、外乱をフィルタリングしなければならない場 合があります。

空タンク検出エリアは、目に見える底部エコーがない場合に使用されます。 Bottom Echo Visible if Tank is Empty (タンクが空の場合、底部エコーが見える) 機能は無効にする必要があり ます。

4.5 高度な構成

Rosemount 5900C ゲージには、特定の状況で役立つ可能性がある多くの高度な設定オプション があります。これらのオプションは、Rosemount TankMaster Winsetup プログラムと *Rosemount 5900 RLG Properties (プロパティ)* ウィンドウで使用できます。

4.5.1 環境

泡

このパラメータを使用して、泡のような表面エコー振幅が小さく変化する条件に対してゲージを 最適化することができます。泡が軽く、空気を含んでいるときに、実際の製品レベルが測定され ます。重くて密度の高い泡の場合、トランスミッタは泡の上面のレベルを測定します。

乱流面

スプラッシュローディング、攪拌機、ミキサー、または沸騰した生成物は、乱流面を引き起こす 可能性があります。通常、タンク内の波は非常に小さく、局所的な急激なレベル変化を引き起こ します。乱流面パラメータを設定することで、振幅やレベルが小さく急激に変化する場合にレベ ルゲージの性能が向上します。

急激なレベル変化

タンクの充填や排出によって製品液面が急速に変化するような測定条件に合わせて、レベルゲー ジを最適化します。Rosemount 5900C は、最大 1.5 インチ/秒 (40 mm/秒) のレベル変化を追跡 できます。 Rapid Level Changes (急激なレベル変化) 機能により、Rosemount 5900C は最大 8 インチ/秒 (200 mm/秒) のレベル変化を追跡できます。

急激なレベル変化機能は、製品表面がゆっくりと動く通常の状態では使用してはなりません。

固形材料

このパラメータを設定することで、レーダー信号が透過しないコンクリートや穀物などの固形物 に対してゲージを最適化することができます。例えば、このパラメータは、サイロに材料が溜ま っている場合に使用できます。

製品の比誘電率範囲

Dielectric Constant (誘電率) は製品の反射率に関係します。このパラメータは、測定性能を最適 化するために使用できます。ただし、実際の比誘電率が設定値と異なっていても、レベルゲージ は十分な性能を発揮します。

4.5.2 タンクの形状

Tank Type (タンクタイプ) および Tank Bottom Type (タンク底面タイプ) パラメータは、 Rosemount 5900C をさまざまなタンク形状やタンク底面近くの測定に最適化します。

4.5.3 表面エコー追跡

Surface Echo Tracking (表面エコー追跡) 機能を使用することで、製品表面下のある種の「ゴー スト」エコーの問題を解消することができます。例えば、スチルパイプの場合、パイプの壁、フ ランジ、アンテナの間で多重反射が起こる場合があります。タンクのスペクトルでは、これらの エコーは製品表面下のさまざまな距離に振幅のピークとして現れます。

この機能を有効にするには、製品表面の上方に妨害エコーがないことを確認し、Always Track First Echo (常に最初のエコーを追跡) チェックボックスを選択します。 Surface Echo Tracking (表面エコー追跡) ウィンドウを開くには、次の手順を実行します。

手順

- 1. *TankMaster WinSetup* ワークスペースで、任意の Rosemount 5900C アイコンを右クリックします。
- 2. ポップアップメニューから Properties (プロパティ) オプションを選択します。
- 3. *RLG Properties (RLG プロパティ)* ウィンドウで、**Advanced Configuration (詳細設定)** タ ブを選択します。
- 4. Surface Echo Tracking (表面エコー追跡) ボタンをクリックします。

¥	4-9	·Wi	nSetun	表面 エ	コー:追跡・	ィイ	ンド	د
즤	4-9	• VVI	nsetup	我画工.	コー足吻・	71	~ Г	· · /

			Surface Echo Tracking				
📋 Surface Echo Tracking			Always Track First Echo)			
🔽 Always Track First Echo)		Echo Time Out :	Current Value	s	New Value 30	
🔽 Use Automatic Echo Tra	acking Settings		Close Distance :	0.500	m	0.500	
Echo Time Out :	Current Value	2	Search Speed :	0.020	m/s	0.020	
Close Distance :	0.500	m	🔲 Use Automatic Echo Tr	acking Settings	(Adva	anced)	
Search Speed :	0.020	m/s		Current Value		New Value	
🔽 Use Automatic Echo Tra	acking Settings	(Advanced)	FFT Match Threshold : MULT Match Threshold :	0.300	m m	0.300	
FFT Match Threshold :	Current Value	m	Median Filter Size : Min Update Relation :	3		3 0.1	
Modian Filter Size :	0.300 3	m	Slow Search				
Min Update Relation :	0.1		ОК	Cancel		Apply	Help
Slow Search	Cancel	Apply	Help				
	Ganool						

エコータイムアウト

使用 Echo Time Out (エコータイムアウト) を使用して、表面エコーが失われた後、ゲージが表面 エコーの検索を開始するまでの遅延時間を定義します。この時間が経過するまで、ゲージは検索 を開始せず、アラームも作動しません。

クローズ距離

このパラメータは、新しい表面エコー候補を選択できる、現在の表面レベルを中心としたウィン ドウを定義します。ウィンドウのサイズは ±Close Distance (±クローズ距離) です。このウィン ドウの外側のエコーは、表面エコーとはみなされません。レベルゲージは、このウィンドウ内で 最も強いエコー(振幅が最も大きい)に即座にジャンプします。タンク内で急激なレベル変化が ある場合は、ゲージがレベル変化を見逃さないように、"クローズ距離" ウィンドウを大きくしな ければならないことがあります。一方、"クローズ距離" ウィンドウが大きすぎると、表面エコー として無効なエコーが選択される可能性があります。

低速検索

Slow Search (低速検索) 関数は、製品表面のエコーが失われた場合の検索動作を制御し、通常、 乱流状態のタンクに使用されます。ゲージは最後の既知の製品レベルから表面の検索を開始し、 製品表面が見つかるまで徐々に検索領域を増やしていきます。この機能を無効にすると、ゲージ はタンク全体を検索します。

検索速度

Search Speed (検索速度) パラメータは、低速検索機能がアクティブなときに、検索領域 (低速検 索ウィンドウ) をどの程度の速さで拡大するかを示します。

4.5.4 フィルタ設定

Filter Setting (フィルタ設定) ウィンドウを開くには、次の手順を実行します。

手順

- 1. *TankMaster WinSetup* ワークスペースで、任意の Rosemount 5900C レーダーレベルゲー ジアイコンを右クリックします。
- 2. ポップアップメニューから Properties (プロパティ) オプションを選択します。
- 3. *RLG Properties (RLG プロパティ)* ウィンドウで、**Advanced Configuration (詳細設定)** タ ブを選択します。
- 4. Filter Setting (フィルタ設定) ボタンをクリックします。

Filter Setting	
Use Automatic Filter Settings	
Current Value Distance Filter Factor : 0.100	
Active JUMP Filter	
Active Least Sqare Filter	
Active Adaptive Filter	
	Use Automatic Filter Settings
OK Cancel 4	Current Value New Value Distance Filter Factor: 0.100 0.100
	Active JUMP Filter
	Active Least Sqare Filter
	C Active Adaptive Filter
	OK Cancel Apply Help

距離フィルタ係数

このパラメータは、製品レベルのフィルタリング量を定義します(1=100%)。

フィルタ係数が低いということは、新しいレベル値が、最後の既知のレベル値にレベル変化の小 数値(例えば 1%)を加えることによって計算されることを意味します。これはレベル値を安定 させますが、タンク内のレベル変化に対する反応は遅くなります。

フィルタ係数が高いということは、レベル変化のより大きな割合が現在のレベル値に加えられる ことを意味します。この設定にすると、機器はレベル変化にすばやく反応しますが、表示される レベル値が多少乱れることがあります。

ジャンプフィルタ

Jump Filter (ジャンプフィルタ) は、通常、乱流表面を持つ用途に使用され、例えば攪拌機のよう なレベルを通過する際に、エコー追跡をよりスムーズにします。表面エコーが失われ、新しい表 面エコーが見つかった場合、ジャンプフィルタは、新しいエコーにジャンプする前に、レベルゲ ージをしばらく待機させます。その間に、ゲージは新しいエコーが有効なエコーとみなされるか どうかを判断します。 ジャンプフィルタは距離フィルタ係数を使用せず、最小二乗法や適応フィルタ関数と同時に使用 することができます。

最小二乗フィルタ

Least Square (最小二乗) フィルタを使用することで、タンクの充填や排出が遅い場合でも精度が 向上します。レベル値は、高精度で、レベルが変化しても遅れることなく表面に追従します。最 小二乗フィルタは適応フィルタと同時に使用することはできません。

高度なフィルタ

Adaptive Filter (高度なフィルタ) は自動的に表面レベルの動きに適応します。製品レベルの変動 を追跡し、それに応じてフィルタグレードを継続的に調整します。このフィルタは、レベル変化 の迅速な追跡が重要であり、乱流によってレベル測定値が不安定になることがあるタンクで使用 するのに適しています。

4.6 LPG 構成

4.6.1 準備

前提条件

LPG 測定用の Rosemount[™] 5900C の構成を開始する前に、すべての機械的設置が指示に従って 行われ、圧力センサや温度センサなどのすべての外部センサが適切に接続されていることを確認 します。

FOUNDATION[™] Fieldbus 付き Rosemount 5900C では、LPG 設定について、DeltaV / AMS Device Manager を使用した LPG 設定をご覧ください。

製品表面上の高圧蒸気はマイクロ波の伝搬速度に影響を及ぼします。Rosemount 5900C レベル ゲージはこれを補正することができるので、蒸気による測定レベルの偏差を避けることができま す。

ゲージを空のタンクに取り付けたら、ゲージを校正し、LPG 測定用に設定します。

LPG 測定付き Rosemount 5900C を設置するには、次の主な手順を実行します。

手順

- Rosemount タンクゲージシステム構成マニュアルの説明に従って、Rosemount TankMaster WinSetup でタンクと Rosemount 5900C レベルゲージを設置します。適切 なタンクと装置のタイプが選択され、温度センサと圧力センサが適切に設定されているこ とを確認します。ゲージが TankMaster PC と通信していることを確認します。
- 2. Rosemount 5900C ゲージをスチルパイプに取り付けます。検証ピンまでの正確な距離 を測定します。
- Rosemount 5900C レベルゲージの標準手順に従って、Rosemount 5900C を設定します (Rosemount タンクゲージシステム設定マニュアルを参照)。Rosemount TankMaster Winsetup は推奨の構成ツールです。
- 4. 蒸気圧センサを設定します。
- 5. 補正方法を「空気補正のみ」に設定します。
- 6. Rosemount 5900C を校正します。
- 7. 検証ピンを構成します。
- 8. 検証ピンの位置を確認します。
- 9. タンク内の特定のタイプの製品に適用される補正方法を設定します。

Rosemount TankMaster Winsetup を使用した LPG の取り付け手順は、セクション Rosemount[™] TankMaster を使用した LPG 設定で説明されています。

4.6.2 Rosemount[™] TankMaster を使用した LPG 設定

このセクションでは、Rosemount TankMaster 設定ツールを使用して、LPG 測定用に Rosemount 5900C を設定する方法について説明します。

前提条件

以下の説明では、LPG/LNG アンテナ付きの Rosemount 5900C がタンクに設置され、 Rosemount タンクゲージシステム構成マニュアルに記載されている基本構成が実行されている ものとします。

蒸気圧センサの設定

前提条件

蒸気圧ソース機器が動作していることを確認します。

手順

- 1. タンクが空であり、タンク内の雰囲気が空気のみであるこを確認します。
- 2. ゲージのボールバルブ (オプション) が開いていることを確認します。
- Vapor Pressure (蒸気圧) ソース機器を設定します。ATD Properties (ATD プロパティ) ウィンドウを開き、Advanced Parameter Source Configuration (パラメータソース詳細設定) タブを選択します。

このタブで、**Vapor Pressure (蒸気圧)** などのタンクパラメータを Tankbus に接続された ソース機器にマッピングすることができます。

			В	
22XX ATD - ATD-TK-1				X
Communication 2240 MTT Auxiliary Senso) or 22	Average Temperature Calcu 230 Graphical Field Display	ation Analog Input	2240 MTT Temperature Sensor Advanced Parameter Source Configuration
Parameter Mapping	Unit	Source Device Type / ID / No	Source Parame	ter
Vapor Pressure	barG 💌	2051T / 34 / (No 2)	Pressure 1	-
Level	ft 💌	Not Configured	- Level	Y
Level	ft 💌	Not Configured	Level	<u>_</u>
Level	ft 💌	Not Configured	- Level	<u>_</u>
Level	ft 💌	Not Configured	Level	Ŧ
Level	ft 👻	Not Configured	Level	Ŧ
		 Show only devices configured for ta Show all devices. 	ank position: 1	
User Def 1 desc: User Def 2 desc: User Def 3 desc: User Def 4 desc: User Def 5 desc:			marka vake u	

図 4-11: パラメータソース詳細設定タブ

- A. タンクパラメータ、蒸気圧
- B. ソース機器とソースパラメータ

注 補正方法に圧力測定は不要です。 混合比が既知の 1 種類以上の既知のガス (補正方法の 選択参照。)

温度パラメータマッピングの設定

いて計算されます。

Rosemount[™] 644 温度トランスミッタは、蒸気温度と平均液温の計算の入力を提供するために、 手動でマッピングする必要があります。

Rosemount 2240S マルチ入力温度トランスミッタの場合、適切なエレメントからの温度読み取 り値は、自動的に Vapor Temperature (蒸気温度) と Liquid Average Temperature (液体平均温 度) にマッピングされます。

以下の説明は、Rosemount 644 トランスミッタを温度ソースデバイスとして設定する方法を示 しています。

手順

- 最初の 644 温度トランスミッタの Parameter Mapping (パラメータマッピング) リストで Temperature 1 (温度 1) を選択します。タンク上に複数の 644 トランスミッタがある場 合は、それらのトランスミッタもマッピングする必要があります。2 台目と 3 台目の 644 トランスミッタについては、Temperature 2 (温度 2) および Temperature 3 (温度 3) を Parameter Mapping (パラメータマッピング) リストで選択します。 実際の蒸気温度と液体温度のタンクパラメータはマッピングされていません。例えば、蒸 気温度は、現在の製品表面の上にある Rosemount 644 トランスミッタからの出力に基づ
- Source Device Type (ソース機器タイプ) フィールドで、各温度パラメータ (Temperature 1, 2, 3 (温度 1、2、3)) について、以下の図のように、ソース機器として使用する実際の Rosemount 644 トランスミッタを選択します。
- 3. Source Parameter (ソースパラメータ) リストで、**Temperature 1 (温度 1)** を選択します。 Temperature 1 (温度 1) は、Rosemount 644 からの温度出力のソースパラメータ指定で す。

Communication	.	Average Temperature Calc	ulation	2240 MTT Temperature Sensor
2240 MTT Auxiliary Sensor	2230 Gra	phical Field Display	Analog Input	Advanced Parameter Source Configuration
arameter Mapping	init	Source Device Type / ID / No	Source Paramet	ei
Temperature 1		544 / 45 / (No 3)	Temperature 1	
Temperature 2 C	-	544 / 54 / (No 4)	▼ Temperature 1	•
Temperature 3 C	-	644 / 56 / (No 5)	Temperature 1	•
Level m	-	Not Configured	- Level	¥
Level 💌 m	1	Not Configured	- Level	.
	e C	Show only devices configured for Show all devices.	tank position: 1	

注

```
温度エレメントの位置が適切に設定されていることを確認します。これは通常、
Rosemount 5900C レベルゲージの基本構成で行われ、蒸気温度と平均液温を正しく計算
するために必要です。
```

空気補正のみ

検証ピンの校正と設定の前に、適切な LPG 補正方法を設定する必要があります。

手順

- 1. Rosemount TankMaster WinSetup ワークスペースで、*Logical View (論理ビュー)* タブ を選択します。
- 2. レーダーレベルゲージのアイコンを選択します。

3. マウスの右ボタンをクリックし、**LPG Setup (LPG 設定)** を選択し、*LPG Setup (LPG 設定)* ウィンドウを開きます。

🛅 5900 RLG LPG Setup - LT-1		×
LPG Corr State: LPG Vapor Pressure:	Air Corr only 1.000 Bar G	Correction
Status: No problems detected		Config Pins Verify Pins
	Clos	e Help

4. LPG Setup (LPG 設定) ウィンドウで Correction (補正) ボタンをクリックします。

5900 RLG LPG Cor	rection - LT-1		
Correction Method: Aircorr only, LPG co Aircorr only, LPG co Dne known gas One or more unknow Two known gases, Dne or more known Any method (Enter n	irrection disabled rrection disabled wn gases unknown mixratio gases, known mixeratio nethod number)	<u> </u>	
	DK Cancel	Apply Help	

5. 補正方法のリストか **Air Correction Only (空気補正のみ)** を選択し、**OK** ボタンをクリック します。

この設定は、ピン検証手順で使用されます。LPG のセットアップが終了し、タンクを稼働させる場合は、補正方法を、使用する製品の種類に応じた方法に変更する必要があります。

<mark>注</mark> "空気補正のみ" オプションは、タンク雰囲気に空気が含まれ、他のガスが含まれていない 場合にのみ使用する必要があります。

校正

前提条件

校正リングの上に液体がないことを確認してください⁽⁹⁾ ゲージを校正するときに、スチルパイプ の端にそうすると、校正リングだけがゲージによって検出される物体になります。Rosemount 5900C が表示する製品レベルは、タンク底面近くの Zero Level (ゼロレベル) から測定された校正 リングの位置と等しくなります。

手順

1. ゲージ基準点から Rosemount 5900C によって測定された距離を確認します⁽¹⁰⁾ 校正リン グへ。

これは、次の方法で定義されたアレッジ⁽¹⁰⁾値と呼ばれます。量 = R - L。

- R は Tank Reference Point (タンク基準点) から Zero Level (ゼロレベル) まで測定し たタンクの高さです。LPG タンクの場合、校正リングはゼロレベルとして使用され、 Tank Reference Point (タンク基準点) は Gauge Reference Point (ゲージ基準点)。
- L は Zero Level (ゼロレベル) から測定した製品レベルです。

アレッジ値が Gauge Reference Point (**ゲージ基準点)** と校正リングの間の実際の距離と 等しくない場合は、Calibration Distance (校正距離) パラメータを調整する必要がありま す。

 2. 機器アイコンを右クリックして、Properties (プロパティ) → Geometry (形状) タブを選択 します。

3. 任意の Calibration Distance (校正距離) を入力します。

注

スチルパイプの内径が適切に設定されていることが重要です。設定を確認したい場合は、 Antenna (アンテナ) タブを開きます。詳細については、LPG/LNG アンテナの要件 を参照 してください。

⁽⁹⁾ LPG/LNG アンテナの要件を参照してください。

⁽¹⁰⁾ タンク形状を参照してください。

検証ピンの設定

前提条件

検証ピンの位置を正確に測定し、スチルパイプの内径を確認します。

注

製品表面が検証ピンに近い場合、検証ピンからのレーダーエコーと製品表面が干渉します。その ため、検証ピンまでの測定距離の精度が低下することがあります。検証ピンと製品表面の距離が 900 mm 未満の場合は、検証を行わないことを推奨します (LPG/LNG アンテナの要件参照)。

A. 検証ピン

B. 最小クリアランス距離 900 mm

高圧タンクでは手作業による浸漬ができないため、Emerson Automation Solutions / Rosemount Tank Gauging では、このようなタンクのレベルゲージを検証する独自の方法を開 発しました。この方法は、測定を検証するために、固定した検証ピンに対する特殊なレーダー波 伝搬モードによる測定に基づいています。

手順

- 1. Rosemount[™] TankMaster WinSetup ワークスペースで、*Logical View (論理ビュー*) タブ を選択します。
- 2. 任意のレーダーレベルゲージのアイコンを選択します。
- 3. マウスを右クリックし、**LPG Setup (LPG 設定)** を選択して *LPG Setup (LPG 設定*) ウィンド ウを開きます。

📋 5900 RLG LPG Setup - LT-1		<u> </u>
LPG Corr State: LPG Vapor Pressure: LPG Vapor Temperature:	Air Corr only 1.000 Bar G 26.2 °C	Correction
Status: No problems detected		Config Pins Verify Pins
	Clos	e Help

4. LPG Setup (LPG 設定) ウィンドウで Config Pins (ピンの設定) ボタンをクリックします。

	Nro	of Pins: 1		<i>6</i>
PIN 1	NOM POS, m	TRESH, mV 500	RLG Ref po	
Temp f Pipe Ex	or Nom Pos: 15.0 (pansion: 0.00) *C)0 ppm/*C	Pos Po	S
	OK	Canad	Applu	Uolo

5. *LPG Configure Pins (LPG ピンの設定*) ウィンドウで、**Nominal Position (公称位置)** (NOM POS) 入力フィールドに検証ピンの位置を入力します。

Nominal Pos (公称位置) フィールドに入力する値は、ゲージ基準点から実際の検証ピンま での機械的な距離です。この値は、ゲージ基準点から実際の検証ピンまの電気的距離を計 算する検証プロセスの開始点としてのみ機能します。殆どの場合、電気的距離は実際の機 械的距離とは異なります。

6. 閾値が 500 mV であることを確認します。

LPGVerify ウィンドウに表示するためには、検証ピンからのエコーの振幅が閾値以上であ る必要があります (ゲージの測定値を確認する参照)。検証ピンが表示されない場合は、閾 値を小さくすることもできます。製品レベルが検証ピンを超えていないことを確認して ください。

ゲージの測定値を確認する

手順

- 1. Rosemount[™] TankMaster WinSetup ワークスペースで、*Logical View (論理ビュー*) タブ を選択します。
- 2. 任意のレーダーレベルゲージのアイコンを選択します。
- 3. マウスの右ボタンをクリックし、**LPG Setup (LPG 設定)** を選択し、*LPG Setup (LPG 設定)* ウィンドウを開きます。

🛅 5900 RLG LPG Setup - LT-1		×
LPG Corr State: LPG Vapor Pressure: LPG Vapor Temperature:	Air Corr only 1.000 Bar G 26.2 °C	Correction
Status: No problems detected		Config Pins Verify Pins
	Clos	e Help

 LPG Setup (LPG 設定) ウィンドウで Verify Pins (ピンの検証) ボタンをクリックし、LPG Verify Pins (LPG ピンの検証) ウィンドウを開きます。

5900	RLG LPG Verify P	ins - LT-1		×	
Pos 1	Nom Pos, m 1.200	Meas Pos, m 1.252	Thresh, mV 500	Ampl, mV	
		L			— В — А
	Verification running				
	obiems detected				
<u> </u>	tart	Cancel		Help	
А.	公称位置				v
В.	測定位置				

- 5. 検証ピンの公称位置が表示されていることを確認します。
- LPG Verify Pins (LPG ピンの検証) ウィンドウで Start (スタート) ボタンをクリックし、ピンの検証処理を開始します。
 検証が終了すると、レベルゲージによって測定された位置が Measured Position (測定位置) フィールドに表示されます。
- 7. *Measured Position (測定位置*)フィールドに表示される検証ピンの位置に注意してください。

8. 位置が公称位置から逸脱している場合は、LPG Configure Pins (LPG ピンの構成) ウィンド ウに戻り、*公称位置*フィールドに測定位置を入力します。

注 最初に入力された公称位置は、機械的な距離を指します。測定された位置は、レベルゲー ジが「認識する」距離である電気的距離を指します。

🗂 5900 RLG LPG Configure Pins - LT-1	5900	RLG LPG Verify F	Pins - LT-1		×
Nr of Pins: 1	Pos	Nom Pos, m	Meas Pos, m	Thresh, mV	Ampl, mV
PIN NDM 2S, m TRESH, mV 1 1.252 500 Pin 2 Pin 1 Pin 2 Pin 1 Pin 2 Pin 1 Pos Pos	1 No prob	1.200 /erification running olems detected	1.252	500	
Temp for Nom Pos: 15.0 "C Pipe Expansion: 0.000 ppm/"C OK Cancel Apply	Sta	art	Cancel		Help

9. ステップ4から #unique_153/unique_153_Connect_42_Step7をメッセージまで繰り返 します Successful Verification (検証成功)と表示され、公称位置と測定位置が 一致していることを示します。

補正方法の選択

タンク内の混合ガスに応じて、いくつかのオプションが用意されています。

手順

1. LPG Setup (LPG *設定*) ウィンドウで **Correction (補正)** ボタンをクリックし、LPG Correction (LPG *補正*) ウィンドウを開きます。

5900 RLG LPG Correction - LT-1	×
Correction Method: Aircorr only, LPG correction disabled Aircorr only, LPG correction disabled One known gas Dne or more unknown gases Two known gases, known mixratio One or more known gases, known mixratio Any method (Enter method number)	
OKCancel	Apply Help

2. 次の補正方法のいずれかを選択します。

オプション	説明
空気補正、LPG 補 正無効	この方法は、タンク内に蒸気がない場合、すなわちタンクが空で空 気しか入っていない場合にのみ使用してください。これは、 Rosemount 5900C を校正するときの最初のステップで使用されま す。
1 種類の既知のガ ス	この方法は、タンク内のガス種が 1 種類しかない場合に使用できま す。さまざまな補正方法の中で最も精度が高い方法です。他のガス が少量でも精度が低下します。
1 種類以上の不明 なガス	炭化水素、例えばプロパン/ブタンなど、正確な混合物が不明な場合 にこの方法を使用します。
混合比が不明な 2 つのガス	この方法は、混合比が分からなくても、2 つのガスの混合物に適し ています。
混合比が既知の 1 種類以上の既知の ガス	この方法は、タンク内に最大 4 つの製品のよく知られた混合物があ る場合に使用できます。

これで、Rosemount 5900C レベルゲージは、タンクの運転開始時に製品レベルを測定す る準備が整いました。

4.7 WinSetup を使用した校正

Calibrate (校正) 機能は、Rosemount TankMaster WinSetup ツールで、Rosemount 5900C レ ベルゲージを調整して、実際の (手で浸漬した) 製品レベルとレベルゲージで測定した値の間のオ フセットを最小にすることができます。校正機能を使用することで、タンク上部から底部までの 全測定範囲で測定性能を最適化することができます。

校正機能は、手で浸漬したレベルとトランスミッタで測定したレベルの偏差を直線に当てはめ、 Calibration Distance (校正距離) を計算します。

校正機能は、スチルパイプ・アレイ・アンテナ付き Rosemount 5900C に特に適しています。レ ーダーの伝搬速度はスチルパイプの影響を受けます。パイプの内径に基づいて、Rosemount 5900C はパイプの影響を自動的に補正します。平均的なパイプ径を正確に測定するのは難しい ため、微調整が必要な場合が多くあります。校正機能は、Rosemount 5900C の測定値をスチル パイプに沿って最適化するために、補正係数を自動的に計算します。

4.7.1 手作業による浸漬

以下の手順に従って、手作業の浸漬による測定をします。

前提条件

測定間の再現性を確保するため、手動によるアレージ測定は一人のみで行ってください。

校正には 1 本のテープのみ使用してください。テープはスチール製の認可された試験機関で校 正されたものを使用してください。また、曲がったり、ねじれの無いものにしてください。熱膨 張係数および校正温度も必要です。

浸漬ハッチは、レベルゲージの近くにしてください。浸漬ハッチがレベルゲージから離れている と、屋根の動きの違いによって大きな誤差が生じる可能性があります。

手順

- 1.3回連続して測定値が1mm以内になるまで手作業で浸漬します。
- 2. 校正記録に従ってテープを修正します。
- 3. 手作業で浸漬したアレージとゲージレベルの読み取り値を同時に記録します。

4.7.2 校正手順

前提条件

以下の場合は校正しないでください

- タンクを空にしている、または充填している
- 攪拌機が作動している
- 風が強いとき
- 製品表面に泡がある

校正手順には以下のステップが含まれます。

手順

- 1. 手で浸漬した目減り量の値と、レベルゲージで測定した対応する値を記録します。
- 2. 手で浸したレベルの値とレベルゲージの値を WinSetup *Calibration Data (校正データ*)ウ ィンドウに入力します (校正データを入力する を参照)。
- 3. 校正結果のグラフを確認し、必要に応じて、調整計算に使用すべきでない測定ポイントを 除外します。

4.7.3 校正データを入力する

前提条件

Rosemount TankMaster WinSetup の **Calibrate (校正)** 機能を使用する場合は、以下の情報が用 意されていることを確認してください。

- 手作業で浸漬されたアレッジの値のリスト。
- Rosemount 5900C によって測定されたレベル値のリストで、手で浸漬したアレッジ/レベル 値に対応するもの。

手順

- Rosemount TankMaster WinSetup ワークスペースウィンドウで、校正する Rosemount 5900C レベルゲージを選択します。
- 2. マウスの右ボタンをクリックし、Calibrate (校正) を選択するか、Service/Devices (サー ビス/機器) メニューから Calibrate (校正) をを選択します。

Calibrate - LT-TK-1	×
↑ Diff L (mm) 	L(m)
Tank Reference Height: Calibration Distance 20.000 m Old: 0.000 0 m New: 0.000 m	ppm New: ppm
Calibration Data <u>W</u> rite new calibration data to RTG	Cancel Help

- データが入力される前の Calibrate (校正) ウィンドウは空です。 Tank Reference Height (タンク基準高さ) が左下に表示されることを確認して、ゲージが TankMaster と正しく通 信していることを確認してください。
- 4. Calibration Data (校正データ) ボタンをクリックします。

-	and Dipped Level, mm, m	Level, mm, mm	Delta	Enable	Date	Time	Operator
1	3899	3897	-2	×			
2	7895	7894	-1	×			
3	12053	12054	1	×			
4	16072	16074	2	×			
5							
6							
7							
8							
NO	TE: The tank should be me	asured at minimum	4 differen	t intervals:	20%, 40%	, 60% and 80% c	of the tank height.
	Clear All <u>S</u> ave calib	ration data in PC da	atabase	<u>R</u> el	fresh	<u>C</u> ancel	<u>H</u> elp
	Clear All <u>S</u> ave calib	ration data in PC da	atabase	<u>R</u> el	fresh	<u>C</u> ancel	<u>H</u> elp

5. 手作業で浸漬したレベル値と、Rosemount 5900C レベルゲージで測定した対応するレベ ルを入力します。手作業による浸漬レベルは、1 mm 以内の連続した 3 回の測定値の平均 値に基づくことが推奨されます。詳細については、手作業による浸漬を参照してくださ い。

```
<mark>注</mark>
測定単位 mm は Calibration Data (校正データ) ウィンドウで使用されます。
```

- 6. **Refresh (更新)** ボタンをクリックします。WinSetup が手作業で浸漬したレベルと測定し たレベルとの偏差を計算します。
- 入力された値を保存して Calibrate (校正) ウインドウに戻るには、Save Calibration Data in PC Database (PC データベースに校正データを保存) ボタンをクリックします。

Calibrate (校正) ウィンドウには、手作業で浸漬したレベル値とレベルゲージで測定した値 との差を表す測定点を通る直線が表示されます。スチルパイプアンテナの場合は傾斜線 が表示され、そうでない場合は水平線が表示されます。この勾配は、マイクロ波の伝搬速 度に対する静止パイプの直線的な影響によるものです。

8. 線が測定点に合っていることを確認します。ある点が直線から大きく外れている場合、その点は計算から除外することができます。Calibration Data (校正データ) ウィンドウを

開き (Calibration Data (校正データ) ボタンをクリック)、Enable (有効化) 列の該当するチェックボックスのチェックを外します。

9. Write new calibration data to RTG (新しい校正データを RTG に書き込む) ボタンをクリ ックして、現在の校正データをレベルゲージデータベースレジスタに保存します。

Write new calibration data to RTG (新しい校正データを RTG に書き込む) ボタンをクリ ックすると、*Calibration Data (校正データ*) ウィンドウのレベル値が再計算され、古い校 正データが置き換えられます。

これで、Calibrate (校正)ウィンドウで校正結果を再度確認できます。

] Cali	ibra	te -	LT-1																			x
,	↑ Di	iff L (mm)																			
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	.(m) ➡→
Tank 20,1	< Re <u>Heig</u> 000	ferer ght:	nce m	0	Calibra Id: [-0	ation [,003)istar r	n t	New:	-0,00	13	m	0	Correc Id: 37	tion F 7,69	actor	ppm	Nev	y: 377	7,691	P	pm
				Calit	oratio	n <u>D</u> ati	э	<u>\</u>	/rite r	new c	alibra	ation	data t	o RT(à		Canc	el		H	lelp	

すべての測定値は、計算された Calibration Distance (校正距離) および Correction Factor (補正係数)。*Calibration Data (校正データ*) ウィンドウでは、Rosemount 5900C ゲージで 測定されたレベル値が調整されていることも確認できます。もちろん、手作業で浸漬した レベルはそのままです。

	and Dipped Level, mm, m	Level, mm, mm	Delta	Enable	Date	Time	Operator	
1	3899	3899	0	×				
2	7895	7895	0	×				
3	12053	12053	0	×				
4	16072	16072	0	×				
5								
6								
7								
8								16

注

注

校正が完了したときに、Calibration Distance (校正距離) を *Properties/Tank Geometry (プロパティ/タンク形状*) ウィンドウで変更しないでください。
4.8 FOUNDATION[™] Fieldbus 概要

このセクションでは、FOUNDATION Fieldbus 付き Rosemount 5900C レーダーレベルゲージの基本的な設定手順について説明します。

Rosemount 5900C シリーズで使用されている FOUNDATION Fieldbus テクノロジとファンクションブロックの詳細については、FOUNDATION[™] Fieldbus フィールドバスブロック情報 および FOUNDATION Fieldbus ブロックリファレンスマニュアル (文書 No. 00809-0100-4783) を参照してください。

4.8.1 FOUNDATION[™] Fieldbus ブロック演算

フィールドバス機器内のファンクションブロックは、プロセス制御に必要なさまざまなファンク ションを実行します。ファンクションブロックは、アナログ入力 (AI) ファンクションや比例積分 微分 (PID) ファンクションなどのプロセス制御ファンクションを実行します。

標準ファンクションブロックは、ファンクションブロックの入力、出力、制御パラメータ、イベ ント、アラーム、モードを定義し、それらを1つのデバイス内またはフィールドバスネットワー ク上で実装可能なプロセスに組み合わせるための共通構造を提供します。これにより、ファンク ションブロックに共通する特性の識別が容易になります。

ファンクションブロックに加え、フィールドバスデバイスにはファンクションブロックをサ ポー トするために 2 つのブロックタイプがあります。リソースブロックとトランスデューサブロッ クです。

リソースブロックには、デバイスに関連するハードウェア固有の特性が含まれており、入出力パ ラメータはありません。リソースブロック内のアルゴリズムは、物理デバイスのハードウェアの 一般的な動作を監視および制御します。1つのデバイスに定義されるリソースブロックは1つ だけです。

トランスデューサブロックは、ファンクションブロックをローカル入出力ファンクションに接続 します。センサのハードウェアを読み取り、エフェクター(アクチュエータ)のハードウェアに 書き込みます。

リソースブロック

リソースブロックには、診断、ハードウェア、電子部品、モード処理情報が含まれます。リソー スブロックへのリンク可能な入力や出力はありません。

測定トランデューサブロック (TB1100)

測定トランスデューサブロックには、診断、構成、工場出荷時のデフォルト設定、およびレベル ゲージの再起動機能を含む機器情報が含まれています。

レジスタトランスデューサブロック (TB1200)

レジスタトランスデューサブロックにより、サービスエンジニアは機器内のすべてのデータベー スレジスタにアクセスすることができます。

高度な構成トランデューサブロック (TB1300)

高度な構成トランデューサブロックには、高度なレベル測定およびエコー追跡機能のセットアッ プと設定のためのパラメータが含まれています。

体積トランスデューサブロック (TB1400)

体積トランスデューサブロックには、体積計算の設定のためのパラメータが含まれています。

LPG トランスデューサブロック (TB1500)

LPG トランスデューサブロックには、LPG 計算のセットアップと設定、および補正の検証とステ ータスのためのパラメータが含まれています。

アナログ入力ブロック

図 4-13:アナログ入力ブロック

A. OUT_D = 選択されたアラーム状態を通知するディスクリート出力
 B. OUT = ブロック出力値とステータス

アナログ入力 (AI) ファンクションブロックは、フィールド機器の測定値を処理し、他のファンク ションブロックで使用できるようにします。AI ブロックの出力値は、エンジニアリング単位で、 測定の質を示すステータスを含みます。測定機器は、異なるチャンネルで利用可能な複数の測定 値または導出値をもつ場合があります。チャンネル番号を使って、AI ブロックが処理し、リンク されたブロックに渡す変数を定義します。

関連情報

アナログ入力ブロック アナログ入力ブロックシステムパラメータ

PID ブロック

PID ファンクションブロックは、比例/積分/微分 (PID) 制御を行うために必要なすべてのロジッ クが統合されています。このブロックはモード制御、信号の拡張と制限、フォワード制御のフィ ード、追跡のオーバーライド、アラーム制限検知、信号ステータスの伝播をサポートします。

このブロックは、次の 2 つの形式の PID 式をサポートしています。標準と系列。MATHFORM パ ラメータを使って適切な式を選択することができます。標準 ISA PID 式がデフォルトで選択さ れています。

入力セレクタブロック

入力セレクタ (ISEL) 関数ブロックを使用して、最大 8 つの入力値のうち、最初の合格、ホットバ ックアップ、最大、最小、平均を選択し、出力に配置できます。このブロックは、信号ステータ ス伝搬をサポートします。

演算器ブロック

演算 (ARTH) 関数ブロックは、一次入力の範囲拡張機能を設定する機能を提供します。また、9 種類の演算関数を計算するために使用できます。

信号変換器ブロック

関数変換器 (SGCR) 関数ブロックは、入出力関係を定義するあらゆる関数を特性化または近似化 します。X、Y 座標を 20 個まで設定することで機能が定義されます。ブロックは、設定した座標 で定義された曲線を用いて、特定の入力値から出力値を補間します。2 つのアナログ入力信号を 同時に処理し、同じ定義されたカーブを用いて、対応する 2 つの別の出力値を与えることができ ます。

積算器ブロック

積算 (INT) 関数ブロックは、1 つまたは 2 つの変数を時間的に積分します。

このブロックは、最大で2つの入力を取り、入力を積算する方法として6つのオプションがあり、2つのトリップ出力があります。このブロックは積算値または累積値をプレトリップおよび トリップリミットと比較し、リミットに達するとディスクリート出力信号を生成します。

制御セレクタブロック

制御セレクタ関数ブロックは、2 つまたは 3 つの入力のうち 1 つを出力として選択します。通 常、入力は PID やその他の関数ブロックの出力に接続されています。入力のうち 1 つは正常、残 りの 2 つはオーバーライドと見なされます。

出力スプリッタブロック

出力スプリッタファンクションブロックは、1 つの入力から 2 つの制御出力を実行する機能を提供します。1 つの PID などの制御ブロックの出力で、2 つのバルブなどのアクチュエータを制御することができるのです。

アナログ出力ブロック

図 4-14:アナログ出力ブロック

- A. CAS_IN = 他のファンクションブロックからのリモート設定値。
- B. BKCAL_OUT = 他のブロックの BKCAL_IN 入力が、リセットの巻き上がりを防止し、閉ルー プ制御へのバンプレス転送を提供するために必要とする値とステータス。
- C. OUT = ブロック出力値とステータス

アナログ出力 (AO) ファンクションブロックは、指定の I/O チャンネルを介して出力値をフィー ルド機器に割り当てます。ブロックはモード制御、信号ステータスの計算、シミュレーションを サポートします。

関連情報

アナログ出力ブロック アナログ出力ブロックシステムパラメータ

ファンクションブロックの概要

Rosemount 5900C シリーズには、次のファンクションブロックがあります。ます。

- アナログ入力 (AI)
- アナログ出力 (AO)
- 比例/積分/微分 (PID)
- 信号変換 (SGCR)
- 積算器 (INT)
- 演算 (ARTH)

- 入力セレクタ (ISEL)
- ・ 制御セレクタ (CS)
- 出力分配 (OS)

4.9 機器の能力

4.9.1 リンクアクティブスケジューラ

LAS がセグメントから切断された場合、Rosemount 5900C をバックアップリンクアクティブス ケジューラ (LAS) として動作するように指定できます。バックアップ LAS として、Rosemount 5900C はホストが復旧するまで通信の管理を引き継ぎます。

ホストシステムは、特定のデバイスをバックアップ LAS として指定するために特別に設計された 構成ツールを提供することができます。それ以外の場合は、手動で構成することができます。

4.9.2 機能

仮想通信関係 (VCR)

合計 20 の VCR があります。1 つは永久的なもので、19 はホストシステムによって完全に設定可 能です。40 リンクオブジェクトが利用可能です。

表 4-2:通信パラメータ

ネットワークパラメータ	値
スロット時間	8
最大応答遅延	5
最小 PDU 間遅延	8

ブロック実行時間

表 4-3: 実行時間

ブロック	実行時間 (ms)
アナログ入力 (AI)	10
アナログ出力 (AO)	10
比例/積分/微分 (PID)	15
信号変換 (SGCR)	10
積算器 (INT)	10
演算 (ARTH)	10
入力セレクタ (ISEL)	10
制御セレクタ (CS)	10
出力分配 (OS)	10

4.10 一般ブロック情報

4.10.1 モード

モードの変更

許可されたモード

ブロックの動作モードが不正に変更されるのを防ぐことができます。そのためには、 MODE_BLOCK.PERMITTED を設定し、任意の動作モードのみを許可します。常に OOS を許可さ れたモードの 1 つとして選択することをお勧めします。

モードの種類

この取扱説明書に記載されている手順では、以下のモードを理解しておくと便利です。

- AUTO ブロックが実行する機能が実行されます。ブロックに出力があれば、それらは更新され続けます。これは通常動作モードです。
- **サービス** ブロックが実行する機能は実行されません。ブロックに出力がある場合、これらの出 停止 力は通常更新されず、ダウンストリームブロックに渡される値のステータスは
- (OOS) "BAD" となります。ブロックの構成に変更を加えるには、ブロックのモードを OOS に変更します。変更が完了したら、モードを AUTO に戻します。
- MAN
 このモードでは、ブロックから渡される変数を、テストやオーバーライドの目的で手動で設定することができます。
- その他の
 その他のモードには、Cas、RCas、ROut、IMan、LO があります。これらのいくつ
 モード
 かは、Rosemount 5900C の異なるファンクションブロックでサポートされている場合があります。詳しくは、ファンクションブロック取扱説明書 (資料番号 00809-0100-4783) をご参照ください。

注

アップストリームブロックが OOS に設定されると、すべてのダウンストリームブロックの出力 ステータスに影響します。図 4-15 はブロックの階層を示します。

図 4-15: ブロックの階層

- A. リソースブロック
- B. 変換器ブロック
- C. アナログ入力(AI ブロック)
- D. 他のファンクションブロック

4.10.2 ブロックのインスタンス化

Rosemount 5900C はファンクションブロックのインスタンス化をサポートしています。その後、特定の用途のニーズに合わせてブロック数とブロックタイプを定義することができます。インスタンス化できるブロックの数は、機器内のメモリ量と機器がサポートするブロックタイプに

よってのみ制限されます。インスタンス化は、リソースブロックやトランスデューサブロックの ような標準的な機器ブロックには適用されません。

リソースブロックのパラメータ "FREE_SPACE" を読み取ることで、インスタンス化できるブロッ クの数を決定することができます。インスタンス化する各ブロックは、"FREE_SPACE" の 4.6% を占有します。

ブロックのインスタンス化はホストの制御システムや構成ツールによって行われますが、すべて のホストがこの機能を実装しているわけではありません。詳細については、特定のホストまたは 構成ツールのマニュアルを参照してください。

4.10.3 工場出荷時の構成

ファンクションブロックの固定構成は次のとおりです。

機能ブロック	インデックス	デフォルトタグ	使用可能
アナログ入力 ⁽¹⁾	1600	AI 1600	固定
アナログ入力	1700	AI 1700	固定
アナログ入力	1800	AI 1800	固定
アナログ入力	1900	AI 1900	固定
アナログ入力	2000	AI 2000	固定
アナログ入力	2100	AI 2100	固定
アナログ出力 ⁽²⁾	2200	AO 2200	デフォルト、削除可能
アナログ出力	2300	AO 2300	デフォルト、削除可能
PID	2400	PID 2400	デフォルト、削除可能
制御セレクタ	2500	CSEL 2500	デフォルト、削除可能
出力分配	2600	OSPL 2600	デフォルト、削除可能
信号変換	2700	CHAR 2700	デフォルト、削除可能
積算器	2800	INTEG 2800	デフォルト、削除可能
演算	2900	ARITH 2900	デフォルト、削除可能
入力セレクタ	3000	ISEL 3000	デフォルト、削除可能

表 4-4: Rosemount 5900C のファンクションブロック

(1) 詳細については、工場供給 AI ブロック を参照してください。

(2) 詳細については、アナログ出力ブロックを参照してください。

4.11 アナログ入力ブロック

4.11.1 AI ブロックの構成設定

△ AI ブロックの構成には、最低 4 つのパラメータが必要です。以下にパラメータを説明し、最後に設定例を示します。

CHANNEL

目的のセンサ測定に対応するチャンネルを選択します。

表 4-5 : Rosemount 5900C の AI ブロックチャンネル

AI ブロックパラメータ	TB チャンネル値	7° ロセス変数
液面	1	CHANNEL_LEVEL
間隔	2	CHANNEL_DISTANCE
レベルレート	3	CHANNEL_LEVELRATE
信号強度	4	CHANNEL_SIGNAL_STRENGTH
内部温度	5	CHANNEL_HOUSING_TEMPERAT URE
容量	6	CHANNEL_VOLUME

L_TYPE

L_TYPE パラメータは、トランスミッタの測定値(レベル、距離、レベルレート、信号強度、内 部温度、体積)と AI ブロックの目的の出力との関係を定義します。その関係は直接的または間 接的な平方根です。

- **直接** 目的の出力がトランスミッタの測定値(レベル、距離、レベルレート、信号強度、音 量、内部温度)と同じである場合は、直接を選択します。
- 間接 トランスミッタの測定値(レベル、距離、レベルレート、信号強度、音量、内部温度) に基づいて計算された測定値を出力する場合は、間接出力を選択します。トランスミッ タの測定値と計算された測定値の関係は線形になります。
- 間接 目的の出力がトランスミッタ測定に基づく推論測定であり、センサ測定と推論測定の関 平方 係が平方根である場合、間接平方根を選択します。 根

XD_SCALE および OUT_SCALE

XD_SCALE と OUT_SCALE にはそれぞれ 3 つのパラメータがあります。0%、100%、および工学 単位 L_TYPE に基づいて設定します。

- L_TYPE が直 目的の出力が測定された変数である場合、XD_SCALE をプロセスの動作範囲を表 接平方根 すように設定します。OUT_SCALE を XD_SCALE と一致するように設定します。
- L_TYPE が間
 センサの測定値に基づいて推測測定を行う場合は、XD_SCALE をセンサがプロセ
 接平方根
 スで見る動作範囲を表すように設定します。XD_SCALE 0 点と 100% 点に対応
 する推定測定値を決定し、OUT SCALE に設定します。

L_TYPE は間 トランスミッタ測定値に基づいて推算測定が行われ、推算測定値とセンサ測定値 接平方根です の関係が平方根である場合、XD_SCALE をセンサがプロセスで認識する動作範囲 を表すように設定します。XD_SCALE 0 点と 100% 点に対応する推定測定値を 決定し、OUT_SCALE に設定します。

工学単位

注 構成エラーを避けるため、XD_SCALE と OUT_SCALE には機器がサポートする工学単位のみを選 択してください。

関連情報

サポートされている単位

工場供給 AI ブロック 4.11.2

Rosemount 5900C は、表 4-6 にしたがってあらかじめ設定された 6 つの AI ブロックとともに 供給されます。ブロック構成は必要に応じて変更できます。

表 4-6: Rosemount 5900C の工場供給 AI ブロック

AI ブロック	チャンネル	Lタイプ	単位
1	CHANNEL_LEVEL	直接	メータ
2	CHANNEL_DISTANCE	直接	メータ
3	CHANNEL_LEVELRATE	直接	メートル/時
4	CHANNEL_SIGNAL_STRENGTH	直接	mV
5	CHANNEL_HOUSING_TEMPERATURE	直接	deg C
6	CHANNEL_VOLUME	直接	m ³

4.11.3 モード

AI ファンクションブロックは、MODE_BLK パラメータで定義される 3 つの動作モードをサポー トしています。

- 手動 (Man) ブロック出力 (OUT) は手動で設定できます。
- 自動 (Auto) OUT は、アナログ入力の測定値、またはシミュレーションが有効な場合はシミュ レーション値を反映します。
- サービス停止 ブロックは処理されません。FIELD_VAL と PV は更新されず、OUT ステータスは (O/S) Bad に設定されます。サービス停止。BLOCK_ERR パラメータは Out of Service を示します。このモードでは、設定可能なすべてのパラメータを変更できます。 ブロックのターゲットモードは、サポートされているモードの1つ以上に制限す ることができます。

4.11.4 用途の例

レベル値

Rosemount 5900C レーダーレベルゲージは、高さ 15 m のタンク内の製品レベルを測定します。

パラメータ	設定された値
L_TYPE	直接
XD_SCALE	EU_0=0EU_100=15 工学単位=メートル
OUT_SCALE	EU_0=0EU_100=15 工学単位=メートル
CHANNEL	CH1:液面

表 4-7 : Rosemount 5900C レベルゲージのアナログ入力ファンクションブロック構成

4.11.5 シュミレーション

プロセス変数とアラートのラボテストを実行するには、AI ブロックのモードを手動に変更して出 力値を調整するか、設定ツールでシミュレーションを有効にし、測定値とそのステータスの値を 手動で入力します。どちらの場合も、まずフィールド機器の SIMULATE スイッチ (1) を ON 位置 に設定する必要があります。

シミュレーションを有効にした場合、実際の測定値は OUT 値やステータスに影響を与えません。

図 4-16 : シュミレーション スイッチ

4.11.6 プロセスアラーム。

プロセスアラーム検出は OUT 値に基づいて行われます。以下の標準アラームのアラームリミットを設定します.

- High (HI_LIM)
- High high (HI_HI_LIM)
- Low (LO_LIM)
- Low low (LO_LO_LIM)

変数がアラームリミット付近で振動しているときにアラームが発生するのを避けるため、 ALARM_HYS パラメータを使用して PV スパンの割合でアラームヒステリシスを設定できます。

各アラームの優先順位は以下のパラメータで設定します。

- HI_PRI
- HI_HI_PRI

- LO_PRI
- LO_LO_PRI

4.11.7 アラーム優先度

アラームの優先度は5段階に分類されています。

表 4-8: アラームの優先度レベル

優先度番号	優先度説明
0	アラーム状態は使用されません。
1	優先度 1 のアラーム状態はシステムにより認識さ れますが、オペレータには報 告されません。
2	優先度 2 のアラーム状態は、オペレータに報告されますが、オペレータの注意 を必要としません(診断やシステムアラートなど)。
3-7	優先度 3 から 7 のアラーム状態は、優先度の高い推奨アラームです。
8-15	優先度 8 から 15 のアラーム状態は、優先度が高くなるにつれて重大なアラーム となります。

4.11.8 ステータス処理

通常、PV のステータスには、測定値、I/O カードの動作状態、およびアクティブアラーム状態が 反映されます。自動モードでは、PV の値や状態の質が OUT に反映されます。手動モードでは、 OUT ステータス定数制限が設定され、その値は定数であり、OUT ステータスは Good であるこ とを示します。

Uncertain - EU 範囲違反 ステータスが常に設定され、変換のセンサ限界を超えると PV ステータ スが高または低限度に設定されます。

STATUS_OPTS パラメータでは、ステータスの処理を制御するために、以下のオプションから選 択することができます。

制限されている場合は BAD	センサの制限値より高いか低い場合、 Bad に設定します。	OUT ステータスの品質を
制限されている場合は Uncertain	センサの制限値より高いか低い場合、 Uncertain に設定します。	OUT ステータスの品質を
手動モードの場合は Uncertain	モードが手動に設定されている場合、 Uncertain に設定されます。	出力のステータスは

注

ステータスオプションを設定するには、装置が手動または停止モードでなければなりません。AI ブロックは "制限されている場合は BAD" オプションのみをサポートしています。サポートされ ていないオプションは灰色表示されず、サポートされているオプションと同じように画面に表示 されます。

4.11.9 高度な機能

Rosemount[™] フィールドバス機器に付属する AI ファンクションブロックは、以下のパラメータ を追加することで、追加機能を提供します。

ALARM_TYPE AI ファンクションブロックによって検出された1つ以上のプロセスアラーム 状態を OUT_D パラメータの設定で使用できるようにします。 **OUT_D** プロセスアラーム状態の検出に基づく AI ファンクションブロックのディス クリート出力。このパラメータは、検出されたアラーム状態に基づくディス クリート入力を必要とする他のファンクションブロックにリンクできます。

STD_DEV および プロセスのばらつきを判断するために使用できる診断パラメータ。 CAP_STDDEV

4.11.10 フィルタリング

フィルタリング機能は、入力の急激な変化によって生じる出力測定値の変動を滑らかにするため に、装置の応答時間を変化させます。PV_FTIME パラメータでフィルタの時定数(秒)を調整で きます。フィルタ機能を無効にするには、フィルタ時間定数をゼロに設定します。

- L. OUT (百動モード) F. OUT (手動モード)
- G. 時間(秒)

4.11.11 信号変換

線形化タイプ (L_TYPE) パラメータで信号変換タイプを設定できます。FIELD_VAL パラメータ で、変換された信号 (XD_SCALE に対するパーセンテージ) を確認できます。

L_TYPE パラメータで、直接または間接的な信号変換を選択できます。

* XD_SCALE 値

直接

直接信号変換により、信号はアクセスされたチャンネル入力値(またはシミュレーションが有効 な場合はシミュレーションされた値)を通過します。

間接

間接信号変換は、指定された範囲 (XD_SCALE) から PV および OUT パラメータの範囲と単位 (OUT_SCALE) まで、アクセスされたチャンネル入力値 (シミュレーションが有効な場合はシミュ レーション値) に線形に信号を変換します。

 $PV = \left(\frac{FIELD_VAL}{100}\right) \times (EU^{**}@100\% - EU^{**}@0\%) + EU^{**}@0\%$

** OUT SCALE 値

間接平方根

間接平方根信号変換は、間接信号変換で計算された値の平方根を取り、PV パラメータと OUT パ ラメータの範囲と単位にスケーリングします。

$$PV = \sqrt{\left(\frac{FIELD_VAL}{100}\right)} \times (EU^{**}@100\% - EU^{**}@0\%) + EU^{**}@0\%$$

** OUT_SCALE 値

変換された入力値が LOW_CUT パラメータで指定された制限値未満で、ローカットオフ I/O オプ ション (IO_OPTS) が有効 (True) になっている場合、変換値 (PV) にはゼロ値が使用されます。こ のオプションは、差圧測定値がゼロに近い場合に誤読をなくすのに有効で、流量計などのゼロベ ースの測定装置でも役立つ場合があります。

注

低カットオフは、AI ブロックがサポートする唯一の I/O オプションです。I/O オプションは、手動またはサービス停止モードでのみ設定できます。

4.12 アナログ出力ブロック

Rosemount 5900C は、表 4-10 にしたがってあらかじめ設定された 2 つのアナログ出力 (AO) ブロックとともに供給されます。ブロック構成は必要に応じて変更できます。詳細については、アナログ出力ブロックシステムパラメータ を参照してください。

CHANNEL

目的のセンサ測定に対応するチャンネルを選択します。

表 4-9 : Rosemount 5900C の AO ブロックチャンネル

AO ブロックパラメータ	TB チャンネル値	プロセス変数
蒸気温度	7	CHANNEL_VAPOR_TEMPERATURE
圧力	8	CHANNEL_PRESSURE
ユーザー定義	9	CHANNEL_USERDEFINED
タンク温度	10	CHANNEL_TANK_TEMPERATURE

表 4-10 : Rosemount 5900C の工場供給 AO ブロック

AO ブロック	チャンネル	単位
1	CHANNEL_VAPOR_TEMPERATUR E	deg C
2	CHANNEL_PRESSURE	bar (MPa)

XD_SCALE

XD_SCALE には 3 つのパラメータがあります。0%、100%、および工学単位 XD_SCALE 工学単位 を AO ブロックチャンネル値の単位を表すように設定します。

4.12.1 用途の例

LPG

温度と圧力のセンサを備え、LPG 測定用に構成された Rosemount 5900C レーダーレベルゲージ。

E. CAS_IN=他のファンクションブロックからのリモート設定点値

4.13 リソースブロック

4.13.1 FEATURES および FEATURES_SEL

FEATURES パラメータは読み取り専用で、Rosemount 5900C がどの機能をサポートしているか を定義します。以下は、Rosemount 5900C がサポートする FEATURES のリストです。

FEATURES_SEL は、FEATURES パラメータにあるサポートされている機能のいずれかをオンにす るために使用されます。Rosemount の 5900C デフォルト設定は HARD W LOCK です。サポー トされている機能があれば、1 つ以上を選択します。

UNICODE

タグ名を除く、Rosemount 5900C の設定可能な文字列変数はすべてオクテット文字列です。 ASCII または Unicode のいずれかを使用することができます。構成機器が Unicode オクテット 文字列を生成する場合は、Unicode オプションビットを設定する必要があります。

レポート

Rosemount 5900C はアラートレポートをサポートしています。この機能を使用するには、 features ビット列に Reports オプションビットがセットされている必要があります。設定され ていない場合、ホストはアラートをポーリングしなければなりません。このビットがセットされ ている場合、トランスミッタはアラートを積極的に報告します。

SOFT W LOCK および HARD W LOCK

セキュリティと書き込みロック機能への入力には、ハードウェアセキュリティスイッチ、 FEATURE_SEL パラメータのハードウェアとソフトウェア書き込みロックビット、WRITE_LOCK パラメータがあります。

WRITE_LOCK パラメータは、WRITE_LOCK パラメータをクリアする以外は、デバイス内のパラ メータを変更できないようにします。 この間、ブロックは正常に機能し、入出力を更新し、アル ゴリズムを実行します。WRITE_LOCK 条件がクリアされると、WRITE_PRI パラメータに対応す る優先度で WRITE_ALM アラートが生成されます。

FEATURE_SEL パラメータにより、ユーザーはハードウェアまたはソフトウェア書き込みロック、 または書き込みロック機能を選択することができます。ハードウェアセキュリティ機能を有効 にするには、FEATURE_SEL パラメータの HARDW_LOCK ビットを有効にします。このビットが 有効になると、WRITE_LOCK パラメータは読み取り専用となり、ハードウェアスイッチの状態が 反映されます。

ソフトウェア書き込みロックを有効にするには、FEATURE_SEL パラメーターで SOFTW_LOCK ビットを設定する必要があります。このビットが設定されると、WRITE_LOCK パラメータは "Locked" または "Not Locked" に設定されます。WRITE_LOCK パラメータがソフトウェアロッ クによって "Locked" に設定されると、ユーザーが要求した書き込みはすべて拒否されます。

表 4-11 は、WRITE_LOCK パラメータのすべての可能な構成を示します。

FEATURE_SEL HARDW_LOCK ビット	FEATURE_SEL SOFTW_LOCK ビット	セキュリティス イッチ	WRITE_LOCK	WRITE_LOCK 読み取り/書き 込み	ブロックへの書 き込みアクセス
0(オフ)	0(オフ)	NA	1 (ロック解除済 み)	読み取り専用	すべて
0(オフ)	1 (オン)	NA	1 (ロック解除済 み)	読み取り/書き 込み	すべて
0(オフ)	1 (オン)	NA	2 (ロック)	読み取り/書き 込み	なし
1(オン)	0 (オフ) ⁽¹⁾	0 (ロック解除済 み)	1 (ロック解除済 み)	読み取り専用	すべて
1(オン)	0(オフ)	1 (ロック)	2 (ロック)	読み取り専用	なし

表 4-11 : Write_Lock パラメータ

 ハードウェアとソフトウェアの書き込みロックセレクトビットは相互に排他的であり、 ハードウェアセレクトが最優先されます。HARDW_LOCK ビットが1(オン)に設定され ると、SOFTW_LOCK ビットは自動的に0(オフ)に設定され、読み取り専用となります。

4.13.2 MAX_NOTIFY

MAX_NOTIFY パラメータ値は、リソースが確認を得ることなく送信できるアラートレポートの最 大数であり、アラートメッセージに使用可能なバッファ容量に対応します。LIM_NOTIFY パラメ ータ値を調整することで、アラートフラッディングを制御するためにこの数値を低く設定できま す。LIM_NOTIFY がゼロに設定されている場合、アラートは報告されません。

4.13.3 フィールド診断アラート

リソースブロックは、フィールド診断アラートの調整役として機能します。4 つのアラートパラ メータ (FD_FAIL_ALM、FD_OFFSPEC_ALM、FD_MAINT_ALM、FD_CHECK_ALM) があり、トラ ンスミッタソフトウェアによって検出される機器エラーの一部に関する情報が含まれています。

FD_RECOMMEN_ACT パラメータがあり、最優先アラームの推奨アクションテキストを表示しま す。FD_FAIL_ALM の優先度が最も高く、FD_OFFSPEC_ALM、FD_MAINT_ALM と続き、 FD_CHECK_ALM の優先度が最も低くなっています。

故障アラート

障害アラートは、機器または機器の一部が動作不能となる機器内の状態を示します。これは、機 器の修理が必要であり、直ちに修理しなければならないことを意味します。障害アラートに関連 するパラメータは5つあり、具体的には以下の通りです。

FD_FAIL_MAP

このパラメータは、このアラームカテゴリのアクティブとして検出される条件をマッピングしま す。したがって、同じ状態が4つのアラームカテゴリのすべて、一部、またはいずれでもアクテ ィブになる可能性があります。このパラメータには、アラームを送信する原因となる、デバイス を動作不能にするデバイスの状態のリストが含まれます。以下は、優先度の高い状態から順に並 べた一覧です。この優先順位は、後述の FD_FAIL_PRI パラメータとは異なります。これは機器内 にハードコードされており、ユーザーが設定することはできません。

- 1. ソフトウェアの互換性エラー
- 2. メモリ障害- FF I/O ボード
- 3. 機器エラー
- 4. 内部通信に失敗しました

5. エレクトロニクス障害

FD_FAIL_MASK

このパラメータは、FD_FAIL_MAP にリストされた障害状態をマスクします。ビットオンは、その状態がアラームからマスクされ、アラームパラメータを通じてホストにブロードキャストされないことを意味します。

FD_FAIL_PRI

FD_FAIL_ALM のアラーム優先度を指定します。デフォルトは 0、推奨値は 8~15 です。

FD_FAIL_ACTIVE

このパラメータは、どの条件がアクティブであるかを表示します。

FD_FAIL_ALM

機器が動作不能になるような機器内の状態を示すアラーム。

関連情報

アラーム優先度

仕様範囲外アラート

仕様外アラートは、機器が指定された測定範囲外で動作していることを示します。この状態を無 視していると、やがてデバイスに障害が発生します。仕様外アラートに関連するパラメータは5つ あり、以下に説明します。

FD_OFFSPEC_MAP

FD_OFFSPEC_MAP パラメータには、機器または機器の一部が仕様外で動作することを示す条件 のリストが含まれます。以下は、優先度の高い状態から順に並べた一覧です。この優先度は、後 述の FD_OFFSPEC_PRI パラメータとは異なります。これは機器内にハードコードされており、ユ ーザーが設定することはできません。

以下は、その条件の一覧です。⁽¹¹⁾:

- 1. 機器主要情報
- 2. 機器警告

FD_OFFSPEC_MASK

FD_OFFSPEC_MASK パラメータは、FD_OFFSPEC_MAP にリストされた障害状態のいずれかをマ スクします。ビットオンは、その状態がアラームからマスクされ、アラームパラメータを通じて ホストにブロードキャストされないことを意味します。

FD_OFFSPEC_PRI

このパラメータは、FD_OFFSPEC_ALM のアラームの優先度を指定します。デフォルトは 0、推 奨値は 3 ~ 7 です。

FD_OFFSPEC_ACTIVE

FD_OFFSPEC_ACTIVE パラメータは、どの状態がアクティブとして検出されたかを表示します。

FD_OFFSPEC_ALM

機器が指定された測定範囲外で動作していることを示すアラーム。この状態を無視していると、 やがてデバイスに障害が発生します。

⁽¹¹⁾ 仕様外アラートはデフォルトでは有効になっていないことに注意してください。

関連情報

アラーム優先度

要保守アラート

要保守アラートは、機器または機器の一部の保守が近いうちに必要であることを示しています。 この状態を無視していると、やがてデバイスに障害が発生します。要保守アラートに関連するパラ メータは 5 つあり、以下に説明します。

FD_MAINT_MAP

FD_MAINT_MAP パラメータには、デバイスまたはデバイスの一部がすぐに保守を必要とすることを示す条件のリストが含まれています。優先順位は、後述の MAINT_PRI パラメータとは異なります。これは機器内にハードコードされており、ユーザーが設定することはできません。

保守アラームは、Rosemount 5900C のデフォルトでは有効になっていないことに注意してくだ さい。

以下は、その条件の一覧です。

1. 限界に近い補助機器測定

FD_MAINT_MASK

FD_MAINT_MASK パラメータは、FD_MAINT_MAP にリストされた障害状態をマスクします。ビットオンは、その状態がアラームからマスクされ、アラームパラメータを通じてホストにブロードキャストされないことを意味します。

FD_MAINT_PRI

FD_MAINT_PRI は、FD_MAINT_ALM アラーム優先度を指定します。デフォルトは 0、推奨値は 3 ~ 7 です。

FD_MAINT_ACTIVE

FD_MAINT_ACTIVE パラメータは、どの条件がアクティブであるかを表示します。

FD_MAINT_ALM

機器の保守がまもなく必要であることを示すアラーム。この状態を無視していると、やがてデバ イスに障害が発生します。

関連情報

アラーム優先度

機能チェックアラート

機能チェックアラートは、機器の保守など何らかの作業により、機器が一時的に無効であること を示します。

機能チェックアラートに関連するパラメータは5つあり、以下に説明します。

FD_CHECK_MAP

FD_CHECK_MAP パラメータには、機器の主要機能に直接影響を与えない、参考となる条件のリストが含まれます。以下は、その条件の一覧です。

1. 機能のチェック

FD_CHECK_MASK

FD_CHECK_MASK は、FD_CHECK_MAP にリストされた障害状態をマスクします。ビットオン は、その状態がアラームからマスクされ、アラームパラメータを通じてホストにブロードキャス トされないことを意味します。

FD_CHECK_PRI

FD_CHECK_PRI は、FD_CHECK_ALM のアラーム優先度を指定します。デフォルトは 0、推奨値 は 1 または 2 です。

FD_CHECK_ACTIVE

FD_CHECK_ACTIVE パラメータは、どの条件がアクティブであるかを表示します。

FD_CHECK_ALM

FD_CHECK_ALM は、機器の作業中のため、機器出力が一時的に無効であることを示すアラームです。

関連情報

アラーム優先度

4.13.4 アラートに対する推奨アクション

RECOMMENDED_ACTION パラメータは、アラートのどのタイプ、どの特定のイベントがアクティブであるかに基づいて、推奨される一連のアクションを示すテキスト文字列を表示します。

関連情報

推奨されるアクション

4.14 475 フィールドコミュニケータメニューツリー

Rosemount 5900C は、475 フィールドコミュニケータを使用して構成できます。以下のメニュ ーツリーは、構成とサービスで利用可能なオプションを示しています。

図 4-19:フィールドコミュニケータメニューツリー

4.15 AMS Device Manager を使用した構成

Rosemount 5900C は、機器の構成を容易にする DD 方式をサポートしています。以下の説明では、AMS Device Manager アプリケーションを使用して、FOUNDATION Fieldbus バスシステムで Rosemount 5900C を設定する方法を示します。

関連情報

基本設定 高度な構成

4.15.1 ガイド付きセットアップの開始

AMS Device Manager アプリケーションで、Rosemount 5900C を設定します。

手順

- 1. View (表示) → Device Connection View (機器接続の表示) を開きます。
- 2. FF ネットワークアイコンをダブルクリックし、ネットワークノードを展開して機器を表示します。
- 3. 目的のゲージアイコンを右クリックまたはダブルクリックして、メニューオプションのリ ストを開きます。

4. 現在のデバイスと測定ステータスの概要については、**Overview (概要)** オプションを選択 します。

1 5900-DEVICE-0000002252 [5900 Radar L	evel Gauge Rev. 3]		- 0 ×
File Actions Help			
8 №			
Overview	Overview		
⊡-∰ Overview © Overview	Status Device: Cood		Mode: In Service Change
	Primary Purpose Variables	Level 29.196 m Good	Datance (Ulage) 0.804 m Good
	-30 Level	Level Rate -0.000 m/s Good	Signal Strength 1452 mV Good
	Shotcuts		
Overview	Device Information	Measurement Setup	Restart Measurement
🚱 Configure			
Service Tools			
			Send Close <u>H</u> elp
Device last synchronized: Device Parameters	not Synchronized.		

- Change (変更) ボタンをクリックし、機器を Out Of Service (サービス停止) (OOS) モード に設定します。機器モードを変更しない場合、Measurement Setup (測定設定) ウィザー ドを起動すると自動的に変更されます。
- 6. 以下のいずれかの操作を行って、構成ウィザードを開始します。
 - Overview (概要) ウィンドウで Measurement Setup (測定設定) ボタンをクリックします。
 - Configure (構成) オプションを選択し、Guided Setup (ガイド付きセットアップ) ウィンドウで Measurement Setup (測定設定) ボタンをクリックします。

1 5900-DEVICE-0000002252 [5900 Radar	Level Gauge Rev. 3]			- 0 X
File Actions Help				
⊜] . №				
Configure Configure Guided Stup Manual Stup Alert Setup	[Guided Setup]	Measurement Setup Restart Measurement	The Measurement Setup wirand will help you to configu for most applications. You will help you to configu the Wanual Setup. Mean Setup. The wirand will be device in 0.0 mode until the wirand is closed. After completing the setup, it is recommended to do a so in order to initialize new measurements.	re the device srandes in of Service ftware restart
Overview				
Configure				
Service Tools				
	Time: Current	•	Send Close	Help
Device last synchronized: Device Parameter	s not Synchronized.			

 機器が Out Of Service モードに設定されていない場合は、構成を変更するためには、機器を Out Of Service モードに設定する必要があるというエラーメッセージが表示されます。Next (次へ) ボタンをクリックすると、Rosemount 5900C レベルゲージが自動的に Out Of Service (OOS) モードに設定され、Measurement Setup - Units (測定セットアップ - 単位) ウィンドウが表示されます。

easurement Setup - Warning	? 🔫
Measurement Setup - Warning	
The device needs to be in Out of Service mode in order to make configuration changes.	
Warning - The device will be put in Out of Service mode. The output value status will be set to bad.	
Calck weat to contained of Calcell to about.	
	Next> Cancel Help

8. Next (次へ) ボタンをクリックして続行します。

4.15.2 測定設定

手順

1. Guided Setup (ガイド付きセットアップ) を、ガイド付きセットアップの開始の説明に従って開始します。

asurement Setup - Units				
Units				
Length				
ļm	•			
Level Rate				
m/s	•			
Volume				
m ³	•			
Temperature	_			
I deg C	•			
Jugo				
Pressure				
Joar	<u> </u>			
Note: Changing unit/unit	s will affect all present			
Note: Changing unit/unit	s will affect all present			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AQ blocks			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present inding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present inding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present inding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present inding unit except AO blocks.			
Note: Changing unit./unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Lote: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit Parameters with correspo parameters in the AI and	a will affect all present nding unit except AD blocks.			
Lote: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Note: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.			
Lote: Changing unit/unit parameters with correspo parameters in the AI and	s will affect all present nding unit except AO blocks.		1 court	

2. 長さ、レベルレート、体積、温度、圧力の測定単位を選択します。アナログ入力およびア ナログ出力ブロックのパラメータは影響を受けません。 3. **Next (次へ)** ボタンをクリックして、*Measurement Setup - Antenna (測定設定 - アンテナ*) ウィンドウを開きます。

Measurement Setup - Antenna	? <mark>×</mark>
Measurement Setup - Antenna	
Arterna Type Stil-Pipe Array Fixed	Tank Ref Point Ref Point R
	Next> Cancel Help

- 4. 定義済みの Antenna Types (アンテナタイプ) のいずれかを選択し、Rosemount 5900C レ ーダーレベルゲージに接続されたアンテナと一致するようにします。
- 5. オプション: スチルパイプアレイアンテナの場合、 アンテナサイズも必要です。5 ~ 12 イ ンチのサイズを使用できます。
- 6. オプション: Rosemount 5900C が静止配管に設置されている場合は、配管径を入力します。

FOUNDATION[™] Fieldbus パラメータ:

トランスデューサ 1100>ANTENNA_TYPE

トランスデューサ 1100>ANTENNA_SIZE

- トランスデューサ 1100>PIPE_DIAMETER
- トランスデューサ 1100>HOLD_OFF_DIST

7. Next (次へ) ボタンをクリックして、Measurement Setup - Geometry (*測定設定 - 形状*) ウ ィンドウを開きます。

Measurement Setup - Geometry	8	x
Measurement Setup - Geometry Tank Measurements Tank Measurements Tank Reference Height (R) Distance Offset (G) 0.000 m Minimum Level Offset (C) Calibration Distance 0.000 m Calibration Distance 0.000 m Calibration Distance 0.000 m Calibration Distance Show Negative Level as Zero	Tank ref point Gauge ref point ref point	
	<back next=""> Cancel Help</back>	

- 8. Tank Reference Height (R) (タンク基準高さ (R)) はタンク基準点からタンク底付近のゼロレベルまでの距離です。この数字ができるだけ正確であることを確認します。
- 9. Reference Distance (G) (基準距離 (G)) はタンク基準点とゲージ基準点の間の距離で、ゲ ージが取り付けられているノズルフランジまたはマンホールカバーの上面に位置してい ます。タンク基準点がゲージ基準点より上にある場合、G は正になります。そうでない場 合、G は負です。
- 10. Minimum Level Distance (C) (最低レベル距離 (C)) は、ゼロレベル(浸漬基準点)と製品 表面の最低レベル (タンク底) との間の距離として定義されます。C 距離を指定すること で、測定範囲をタンクの底まで広げることができます。

C>0: Rosemount 5900C は、製品表面がゼロレベルより下にある場合、負のレベル値を表示します。

ゼロレベル (データプレート) 以下の製品レベルをゼロと等しく表示したい場合は、Show negative level values as zero (負のレベル値をゼロとして表示) チェックボックスを使用 できます。

FOUNDATION Fieldbus パラメータ:

- トランスデューサ 1100>TANK_HEIGHT_R
- トランスデューサ 1100>OFFSET_DIST_G
- トランスデューサ 1100>BOTTOM_OFFSET_DIST_C
- トランスデューサ 1100>TANK_PRESENTATION

11. **Next (次へ)** ボタンをクリックして、*Measurement Setup - Tank Shape (測定設定 - タンク 形状*) ウィンドウに進みます。

Measurement Setup - Tank Shape	? ×
Measurement Setup - Tank Shape	
Measurement Setup - Tank Shape Tank Type Floating Roof Tank Bottom Type Unknown Note: The level measurement will be optimized according to the selected tank type and tank bottom type. Selected tank type will not affect volume calculation.	
	<back next=""> Cancel Help</back>

- 12. 実際のタンクと一致する Tank Type (タンクタイプ) オプションを選択します。利用可能 なオプションのいずれにも該当しない場合は、**Unknown (不明)** を選択します。
- 13. 実際のタンクと一致する Tank Bottom Type (タンク底面タイプ) を選択します。該当す るオプションがない場合は、**Unknown (不明)**を選択します。

FOUNDATION Fieldbus パラメータ:

トランスデューサ 1100>TANK_SHAPE

トランスデューサ 1100>TANK_BOTTOM_TYPE

14. **Unknown (次へ)** ボタンをクリックして、*Measurement Setup - Environment (測定設定 - 環境*) ウィンドウを開きます。

Measurement Setup - Environment	? <mark>></mark>	\$
Measurement Setup - Environment		
Unknown		
Process Condition		
Foam		
Turbulent Surface		
□ Rapid Level Change (>0.1 m/s, >4 in/s)		
Solid Product		
Note: Level measurement can be optimized according to the selected process conditions. For best performance choose one only if applicable and not more than two options.		
<back cancel<="" finish="" td=""><td>Help</td><td></td></back>	Help	

- 15. タンク内の状況に対応するチェックボックスを選択します。オプションはできるだけ少 なくします。 同時に 2 つ以上のオプションを使用しないことを推奨します。
- 16. ドロップダウンリストから **Product Dielectric Range (製品の誘電範囲)** を選択します。 正しい値の範囲が不明な場合や、タンクの内容物が定期的に変化する場合は、不明オプションを使用します。

FOUNDATION Fieldbus パラメータ:

トランスデューサ 1100>PRODUCT_DC

トランスデューサ 1100>TANK_ENVIRONMENT

17. Finish (完了) ボタンをクリックします。

Measurement Setup - 590	0-DEVICE-000000	2252	X
Device has been returned to Au	to mode.		
	Next >	Cancel	Help

18. *Measurement Setup (測定設定*) ウィンドウで **Cancel (キャンセル)** ボタンをクリックし、 ガイド付きセットアップタブに戻ります。

1 5900-DEVICE-0000002252 (5900 Rada	r Level Gauge Rev. 3]		
File Actions Help			
∰ B. ₩			
Configure	Guided Setup		
Alert Setup		Measurement Setup	The 'Measurement' Setup' wizard will help you to configure the device for most applications. You will find more detailed setup parameters in the 'Manual Setup'. The wizard will put the device in Out of Service mode until the wizard is closed.
		Restart Measurement	After completing the setup, it is recommanded to do a software restart in order to initialize new measurements.
Cuerciev.			
Configure			
Service Tools			
<u>B</u>			
	Time: Current	•	Send Close Help
Device last synchronized: Device Paramete	rs not Synchronized.		

- 19. ガイドされたセットアップが終了したら、**Restart Measurement (想定の再開)** ボタンを クリックして、Rosemount 5900C を再起動することをお勧めします。⁽¹²⁾。
- 20. これで、体積の設定と、必要に応じて詳細設定を続けることができます。体積構成 およ び高度な構成 を参照してください。

⁽¹²⁾ Rosemount 5900C を再起動しても、FOUNDATION Fieldbus 通信に影響しません。

4.15.3 体積構成

体積構成オプションを開くには、次の手順を実行します。

手順

- 1. AMS Device Manager アプリケーションを開きます。
- 2. Configure (構成) → Manual Setup (手動セットアップ) → Volume (体積) を開きます。

体積タブでは、Rosemount 5900C を体積測定用に設定できます。あらかじめ定義された 標準タンクタイプまたはストラッピングテーブルオプションのいずれかに基づく計算方 法を選択できます。ストラッピングテーブルは、標準タンクタイプでは十分な精度が得ら れない場合に使用できます。

選択した体積計算方法 (理想球、垂直円筒、水平円筒) に応じて、タンクの直径 (L1) とタンクの長さ (L2) の 2 つのパラメータの一方または両方を指定する必要があります。

ゼロレベルにゼロ以外の体積を使いたい場合は、体積オフセットパラメータを指定できま す。これは、ゼロレベル未満の製品量を総量に含めたい場合に便利です。

図 4-20 : 体積構成

\$\$ 5900-DEVICE-0000002252 (5900 Radar	Level Gauge Rev. 3]	
File Actions Help		
<u>⊜</u> <u>⊾</u> <u>श</u>		
Configure	Device Antenna Geometry Tank Shape Environment Volume Advanced Classic View	
Guided Setup Manual Setup Alert Setup	Volume Calculation Method Ideal Vertical G/Inder	Mode: Not in Service Change
	Tank Diameter (L1) 0 000 m Tank Length (L2) 0 000 m	
	Volume Offset	
	Note: Level gas can calculate total absenced volume (70%). Tank Matter invertion onforware shall be used for volume calculations according to API standard.	
Overview Configure		
Service Tools		Volume Offset
	Time: Current	Send Close Help
Device last synchronized: Device Parameter	s not Synchronized.	//

4.15.4 高度な構成

Rosemount 5900C レーダーレベルゲージには、いくつかの高度な構成 オプションがあります。 これらは、特定の用途向けに測定性能を最適化するために使用されることがあります。

高度な設定オプションを見つけるには、以下の手順を実行します。

手順

- 1. AMS Device Manager アプリケーションを開きます。
- 2. Configure (構成) → Manual Setup (手動セットアップ) → Advanced (高度)を開きます。

		-A	
900-DEVICE-0000002252 [5900 F	Radar Level Gauge Rev. 3]		
Actions <u>H</u> elp			
) <u>[]</u> , <u>N</u> ?			
onfigure	Device Antenna Geometry Tank Shape Envi	ronment Volume Advanced Classic View	1
Configure Guided Setup	Echo Tuning	Filter Settings	Mode:
Manual Setup	Echo Curve	LPG Setup	In Service Change
	Echo Threshold Settings	Halding (Japut Depistory	
	Echo Peaks	nuturig/ input negisters	
	Echo Tracking		
	Empty Tank Handling		
Overview			
Configure			
Service Tools			
B			
	Time: Current		Send Close <u>H</u> elp

A. 詳細

Advanced Configuration (高度な構成) ウィンドウには、Rosemount 5900C レベルゲージ をさまざまな測定条件に最適化するためのいくつかの機能があります。例えば、エコーし きい値設定機能では、障害物からのエコーをフィルタリングするための振幅しきい値テー ブルを作成することができます。

エコーカーブ(タンクスキャン)、空のタンク処理、表面エコー追跡、フィルタ設定など のさまざまなオプションの使用方法については、高度な構成を参照してください。

エコー曲線

Echo Curve (エコー曲線) ウィンドウでは、Rosemount 5900C からの測定信号を分析できます。 タンクエコーを表示し、表面エコーと外乱エコーやノイズを区別するためのパラメータを設定す ることができます。詳細は、タンクスキャンを参照してください。

		? <mark>—</mark> ×
o Curve		
Echo Peaks	Echo Threshold Settings	Refresh Echo Curve
* R Q Q 🚮	Echo Curve	
Used Hold Off Distance G Amplitude Threshold Points	Bauge Reference Point 🛛 General Amplitude Thr Echo Curve 🔲 Tank Bottom 🔲 Zero Leve	eshold Reference
1542.8		
1388.6 -		
1234.2 -		
1079.9		
ê 925.6-		
월 771.4-		
€ 617.1-		
462.8 -		
308.6		
154.3		
.1.00 9.10 19.20	29.30 39.40 49.50 59.80	69.70 T9.80 89.90 100.00
	Distance (m)	

Echo Peaks (エコーピーク) ボタンを押すと、*Echo Peaks (エコーピーク*) ウィンドウが開き、偽 エコーを登録できます。

Echo Threshold Settings (エコーしきい値設定) ボタンをクリックすると、*Echo Threshold Settings (エコーしきい値設定*) ウィンドウが開き、ノイズをフィルタリングするための一般的な振幅しきい値を設定できます。また、妨害エコーフィルタリングを最適化するために、カスタマイズした振幅しきい値曲線を作成することもできます。

詳細については、Rosemount タンクゲージシステム構成マニュアルの「サービス機能/タンクス キャン」の章を参照してください。

エコーしきい値設定

Echo Threshold Settings (エコーしきい値設定) ウィンドウでは、ノイズをフィルタリングするための一般的な振幅しきい値を作成できます。また、妨害エコーフィルタリングを最適化するために、カスタマイズした振幅しきい値曲線を作成することもできます。

no Threshold Settings		
Threshold Settings		
Units		General Threshold
Length	Signal Strength	400
m		v
Amplitude Threshold Points	(ATP)	
Number of Threshold Point	3	
	4	
	Threshold	Table
Number	Distance	Threshold
1	0.000	1000
2	1.500	400
3	1.600	10
4	100.000	10
5	0.000	0
6	0.000	0
7	0.000	0
l n	10.000	In In

エコーピーク

Echo Peaks (エコーピーク) ウィンドウでは、偽エコーを登録できます。また、どのピークが実際の製品表面であるかを指摘することもできます。この機能は、障害物の多いタンクで表面エコーの追跡を容易にするのに役立ちます。

この機能を使用する場合は、登録されたエコーがタンク内の実際の物体に対応していることを確認する必要があります。

図 4-24 : 偽エコー登録

Refre	sh Echo Peaks	Units					
		Length			Signal Strength		
		Jm		Ψ.	JmV		Ŧ
cho Tunina Too	ols						
	Found	l Echo Peaks			Registere	ed False Echoe	S
Number	Туре	Distance	Amplitude		Number	Distance	
	Unknown	0.000	0		1	0.000	
2	Unknown	0.000	0		2	0.000	
3	Unknown	0.000	0		3	0.000	
4	Unknown	0.000	0		4	0.000	
5	Unknown	0.000	0		5	0.000	
6	Unknown	0.000	0	_ .	6	0.000	
,	I labor accord	10.000	10	•	-	0.000	•
		1					
Se	t As Surface				Register/F	Remove False Echo	
]					
leasurement Ou	tout	_					
istance (I Illage)							
istance (oliage)	0.804 m						
	Good						
		•					

エコー追跡

Surface Echo Tracking (表面エコー追跡) 機能を使用することで、製品表面下のある種の「ゴー スト」エコーの問題を解消することができます。例えば、スチルパイプの場合、パイプの壁、フ ランジ、アンテナの間で多重反射が起こる場合があります。タンクのスペクトルでは、これらの エコーは製品表面下のさまざまな距離に振幅のピークとして現れます。

この機能を有効にするには、製品表面の上方に妨害エコーがないことを確認し、Always Track First Echo (常に最初のエコーを追跡) チェックボックスを選択します。

¥	4-25	:	エコ	一追跡設定
---	------	---	----	-------

Tracking			
Always Track First Echo	☑ Use Slov	v Search	
Echo Tracking			
Use Automatic Echo Tracking Settings			
Echo Timeout 30 s	Used Echo	Timeout 30 s	
Close Distance	Used Close	Distance 0.500 m	
Search Speed 0.020 m/s	Used Slow	Search Speed 0.050 m/	's
Advanced Echo Tracking Use Automatic Advanced Echo Tracking Setting FFT Match Threshold	Used FFT I	Match Threshold	
0.300 m		0.300 m	
		T Match Threshold	
MULT Match Threshold 0.300 m		0.300 m	
MULT Match Threshold 0.300 m Median Filter Size	Used MOL Used Media	0.300 m an Filter Size	7
MULT Match Threshold 0.300 m Median Fiter Size Minimum Update Relation	3 0.1	0.300 m an Filter Size sum Update Relation	7
MULT Match Threshold 0.300 m Median Filter Size Minimum Update Relation	Used MoL J Used Media 0.1 Used Minim	0.300 m an Filter Size ium Update Relation	7

詳細は、表面エコー追跡を参照してください。

空タンクの取り扱い

Empty Tank Handling (空タンクの取り扱い) 機能は、誘電率の低い製品のタンク底面近くでの表面追跡を容易にします。このような製品はマイクロ波に対して比較的透明であり、タンク底からの強いエコーが表面からの比較的弱い測定信号に干渉する可能性があります。そのため、この機能を使用すると、製品表面がタンクの底に近い場合に測定性能が向上する可能性があります。

製品表面のエコーが失われた場合 Empty Tank Detection Area (空タンク検出エリア) タンク底 に近い場所で、機器は空タンク状態になり、無効レベルアラームが作動します。

図 4-26	:	空タ	ン	ク	構成
--------	---	----	---	---	----

Empty Tank Handling	?
Empty Tank Handling	
Do Not Set Invalid Level When Empty	
Extra Echo Detection	
Use Automatic Extra Echo Detection Settings	
Use Extra Echo Function	
Extra Echo Minimum Distance	Used Extra Echo Minimum Distance
j 0.000 m Extra Enha Maximum Distance	Juned Setze Enho Maximum Distance
	32.200 m
Extra Echo Minimum Amplitude	Used Extra Echo Minimum Amplitude
J 100000 mV	J 2000 mV
Empty Tank Handling	
Use Automatic Empty Tank Handling Settings	
M. Bottom Echo Always Visible When Tank Is Empty	
Empty Tank Detection Area 0.200 m	Used Empty Tank Detection Area 0.600 m
	Sand Class Print
	Jenu Liuse Piini

Extra Echo Detection (余分なエコー検出) 機能は、タンクの底が空のときに強いエコーを発生し ないことを条件に、底がドーム状または円錐状のタンクに使用されます。円錐形の底を持つタン クの場合、タンクが空になると実際のタンク底の下にエコーが現れることがあります。機器がタ ンク底を検出できない場合、この機能を使用することで この余分なエコーが存在するかぎり、機 器を空タンク状態に保つことができます。

詳細は、空タンクの取り扱いを参照してください。
フィルター設定

Filter Settings (フィルタ設定) ウィンドウには、タンクの状態や製品表面の動きに応じてエコー追 跡を最適化するためのさまざまな機能が用意されています。

図 4-27 : フィルタ設定			
Filter Settings			? ×
Filter Settings			
₩ Use Automatic Filter Settings			
Manual Filter Settings			
Use Jump Filter			
Use Least Square Filter			
Use Adaptive Filter			
	Send	Close	Print

Distance Filter Factor (距離フィルタ係数) は、製品レベルのフィルタリング量を定義します (1 = 100%)。

低フィルタ係数はレベル値を安定させますが、タンク内のレベル変化に対する反応は遅くなりま す。

高フィルタ係数にすると、機器はレベル変化にすばやく反応しますが、表示されるレベル値が多 少乱れることがあります。

Jump Filter (ジャンプフィルタ) は、通常、乱流表面を持つ用途に使用され、例えば攪拌機のよう なレベルを通過する際に、エコー追跡をよりスムーズにします。

Least Square Filter (最小二乗フィルタ) を使用することで、タンクの充填や排出が遅い場合でも 精度が向上します。最小二乗フィルタは適応フィルタと同時に使用することはできません。

Adaptive Filter (高度なフィルタ) は自動的に表面レベルの動きに適応します。製品レベルの変動 を追跡し、それに応じてフィルタグレードを継続的に調整します。このフィルタは、レベル変化 の迅速な追跡が重要であり、乱流によってレベル測定値が不安定になることがあるタンクで使用 するのに適しています。

4.16 アラート設定

Alert Setup (*アラート設定*) ウィンドウでは、アラートの設定と有効/無効を設定できます。Alert Setup (*アラート設定*) ウィンドウを開くには、以下の手順を実行します。

手順

- 1. Start (スタート) メニューから AMS Device Manager アプリケーションを開きます。
- 2. View (表示) → Device Connection View (機器接続の表示) を開きます。
- 3. FF ネットワークアイコンをダブルクリックし、ネットワークノードを展開します。

- 目的のゲージアイコンを右クリックまたはダブルクリックして、メニューオプションのリストを開きます。
- 5. マウスの右ボタンをクリックし、Configure (構成) オプションを選択します。

onfigure	Alert Setup		
- Guided Setup	Enabled Failure Alerts	Enabled Out of Specification Alerts	Suppressed Alerts
Manual Setup	Check Function	Check Function	It is recommended to only select a particular
	Device Error	Device Error	alert in one category
	Device Major Information	Device Major Information	
	Device Minor Information	Device Minor Information	
	Device Warning	Device Warning	
	 Electronics Failure 	Eectronics Failure	
	Internal Communication Failure	Internal Communication Failure	
	Memory Failure - FF I/O Board	Memory Failure - FF I/O Board	
	Software Incompatibility Error	Software Incompatibility Error	
	Enabled Maintenance Required Alerts	Enabled Function Check Alerts	7
	Check Function	Check Function	
	Device Error	Device Error	
	Device Major Information	Device Major Information	
	Device Minor Information	Device Minor Information	
	Device Warning	Device Warning	
	Electronics Failure	Eectronics Failure	
Overview	Internal Communication Failure	Internal Communication Failure	
Configure	Memory Failure - FF I/O Board	Memory Failure - FF I/O Board	
Service Tools	Software Incompatibility Error	Software Incompatibility Error	
	Time: Current		Sand Class List

6. Alert Setup (アラート設定) オプションを選択します。

- 異なるエラータイプのアラートを設定します。このウィンドウを初めて開くと、エラータ イプとアラートのデフォルト設定(障害、要保守、仕様外、機能チェック)が表示されま す。
- 8. 各エラータイプの設定は、要件に合わせて適切なチェックボックスを選択することで変更 できます。必要であれば、エラー状態を複数のアラートカテゴリにマッピングすることも 可能です。
- 9.構成が完了したら、Send (送信) ボタンをクリックして現在のアラート設定を保存します。

関連情報

AMS Device Manager でのアクティブアラートの表示 アラートのデフォルト設定

4.16.1 アラートのデフォルト設定

Rosemount 5900C では、以下のアラートのデフォルト設定が使用されます。必要に応じて、エ ラーの種類を別の方法で設定することもできます。たとえば、 Device major information (機器 主要情報) エラーは、デフォルトで Rosemount 5900C の要保守アラート (無効) として設定され ています。Alert Setup (アラート設定) ウィンドウでは、アラートを障害、仕様外、要保守、また は機能チェックとして有効にすることができます。

表 4-12: デフォルト アラート設定

エラーの種類	既定の構成	有効/無効
機能のチェック	機能チェックアラート	有効
機器エラー	障害アラート	有効
機器主要情報	仕様外アラート	無効
機器軽微情報	要保守アラート	無効
機器警告	仕様外アラート	無効
電子部品障害	障害アラート	有効
内部通信に失敗しました	障害アラート	有効
メモリ障害- FF I/O ボード	障害アラート	有効
ソフトウェアの互換性エラー	障害アラート	有効

4.16.2 アラートシミュレーション

アラートをシミュレートする場合、デフォルトの設定に従って設定されたアラートのみが表示さ れます。アラートのデフォルト設定を参照してください。

図 4-28:	アラー	トシミュ	レーショ	ン無効
---------	-----	------	------	-----

\$ 5900-DEVICE-0000002252 (5900 Rada	Level Gauge Rev. 3]	
ile Actions <u>H</u> elp		
a 🛯 🖌		
Service Tools	Simulate F7: Simulation Active Aint Simulation [Databled	Simulated Reids O Device Envir Device Envir Device Envir Device Major Harmation Device Major Harmation Device Manor Harmation Device Warring Herman Communication Failure Herman Communication Failure Memory Failure - FFL 00 Board O Scheaue berownsthilde Envir
1 Overview		
G Configure		
🔀 Service Tools		
		Send Close Help
vice last synchronized: 2018-06-20 16:47	20	

図 4-29: アラートシミュレーション無効

4.17 DeltaV / AMS Device Manager を使用した LPG 設 定

Rosemount 5900C は、FOUNDATION Fieldbus システムで LPG 用途の設定ができます。 DeltaV/AMS Device Manager は、次のページで説明する構成をサポートしています。LPG 設定 を実行する前に、LPG 設定用に Rosemount 5900C を準備する方法について 準備 を読むことを お勧めします。

LPG 用途に Rosemount 5900C を構成するには、次の手順を実行します。

手順

1. FOUNDATION Fieldbus ファンクションブロックの構成を行うために、*Control Studio* また は他の適切なツールを開きます。

- 2. Analog Output (アナログ出力) ブロックが Vapor Temperature (蒸気温度) および Vapor Pressure (蒸気圧)。
- 3. DeltaV/AMS Device Manager で、View (表示) → Device Connection View (機器接続の表示)を開きます。
- 4. FF ネットワークアイコンをダブルクリックし、ネットワークノードを展開して機器を表示します。
- 5. Rosemount 5900C ゲージアイコンを右クリックまたはダブルクリックして、メニューオ プションのリストを開きます。
- 6. Configure (構成) オプションを選択します。

7. **Manual Setup (手動設定)** を選択し、**Advanced (詳細)** タブを選択します。

100 Rada	ar Level Gauge Rev. 3]		
File Actions <u>H</u> elp			
Configure Configure Guided Setup Manual Setup Alert Setup	Device Artenna Geometry Tank Shape Envi Echo Tuning Echo Curve Echo Trreshold Settings Echo Treshold Settings Echo Tracking Enpty Tank Handling	ronment Volume [Advanced] Classic View Filter Settings LPG Setup Holding/Input Registers	Mode: In Service Change
Overview Configure Service Tools	Time: Current		Send Close <u>H</u> elp

- 8. LPG SetupLPG (設定) ボタンをクリックします。
- 9. Vapor Pressure and Temperature (蒸気圧と温度) タブを選択します。

LPG Setup	? <mark>×</mark>
Gas Correction Pin Setup Verify Pins Pin Verification Status Vapor Pressure and Temperature Status	
Case Correction Pin Setup Verty Pins Pin Vertication Status Vapor Pressure Vapor Pressure Manual Value Used Imanual Value Used LPG Used Vapor Pressure 0.110 bar Change Vapor Pressure Onange Vapor Pressure Note: The level gauge cannot measure these values. The values must be entered manually or selected from an external source.	26 2 deg C or Temperature
s	end Close Print

 Vapor Pressure (蒸気圧) および Vapor Temperature (蒸気温度) が対応するフィールド に表示されることを確認します。そうでない場合は、機器が正しく配線されているか、ア ナログ出力ブロックが Control Studio などで設定されているかを確認してください。手 動値を使用したい場合は、Change Vapor Temperature (蒸気温度の変更)/Change Vapor Pressure (蒸気圧の変更) ボタンをクリックし、方法の指示に従います。

LPG Setup	? <mark>x</mark>
Gas Correction Pin Setup Verfy Pins Pin Verfication Status Vapor Pressure and Temperature Status LPG Correction	
SendDos	e Print

11. Gas Correction (ガス補正) タブを選択します。

12. 補正方法の Air Correction (空気補正) を選択します。この設定は、ピン検証手順で使用されます。LPG のセットアップが終了し、タンクを運転する準備ができたら、タンク内の製品の種類に対応する補正方法を設定する必要があります。

FOUNDATION Fieldbus パラメータ:

TRANSDUCER 1500>LPG_CORRECTION_METHOD

13. 校正。Rosemount 5900C レーダーレベルゲージで測定した、スチルパイプの端にある校 正リングまでの距離を確認します。測定距離がタンク基準点と校正リング間の実際の距 離と等しくない場合、Calibration Distance (校正距離)を調整します。タンク形状の設定 については、タンク形状を参照してください。

13 5900-DEVICE-0000002252 (5900 Rada	Level Gauge Rev. 3]		
File Actions Help			
@ D. N?			
Configure Configure Cuided Stup Aler Setup Overview Cuided Stup Cuided Stup	Device Arterna Geametry Tark Shape Environment Tark Materina High (7) 1000 m 1000 m	t Volume Advanced Classic View Mode:	In Service Change C of a control C of the control C of the control C of the control C of th
	Time: Current	S	end Close Help
Device last synchronized: Device Paramete	rs not Synchronized.		

注

スチルパイプの内径が適切に設定されていることが重要です。内径設定を確認したい場合は、Antenna (アンテナ) タブを開きます。

LPG/LNG アンテナ付き Rosemount 5900C のスチルパイプの要件については、LPG/LNG アンテナの要件 を参照してください。

FOUNDATION Fieldbus パラメータ:

TRANSDUCER 1100>CALIBRATION_DIST

14. Pin Setup (ピン設定) タブを選択し、検証ピンを設定します。

as Correction	Pin Setup	Verify Pins	Pin Verification	Status	Vapor Pressure and T	emperature	Status		
- Verification	Pin Setup -						1		
Number of P	ins								
			1						
Nominal P	osition			Amplitue	de Threshold				
Pin 1				Pin 1					
	2.000 m	1		1	500 mV				
Pin 2	4 000			Pin 2	E00 1/				
1	4.000 m	1		1	JUU MV				
Pin 3	6 000 -			Pin 3	500 1/				
<u> </u>	0.000			1	500 mV				
LPG Pin Ten	mperature								
LPG Pin Ter	mperature 15.0	deg C							
LPG Pin Ter Pipe Expans	mperature 15.0 ion Factor	deg C							
LPG Pin Ter Pipe Expans	mperature 15.0 sion Factor 0.000	deg C ppm/deg C							
LPG Pin Ter Pipe Expans	mperature 15.0 sion Factor 0.000	deg C ppm/deg C							
LPG Pin Ter Pipe Expans	mperature 15.0 sion Factor 0.000	deg C ppm/deg C							
LPG Pin Ter	mperature 15.0 sion Factor 0.000	deg C ppm/deg C							
LPG Pin Ter Pipe Expans	mperature 15.0 <u>sion Factor</u> 0.000	deg C ppm/deg C							
LPG Pin Ter	mperature 15.0 sion Factor 0.000	deg C ppm/deg C							
LPG Pin Ter	mperature 15.0 sion Factor 0.000	deg C ppm/deg C							
LPG Pin Ter	mperature 15.0 sion Factor 0.000	deg C ppm/deg C							
LPG Pin Ter	mperature 15.0 sion Factor 0.000	deg C ppm/deg C							
LPG Pin Ter	mperature 15.0 sion Factor 0.000	deg C ppm/deg C							
Pipe Expans	mperature 15.0 sion Factor 0.000	deg C ppm/deg C							

15. 公称位置を入力します。通常、検証ピンはフランジから 2500 mm 下の位置に1本設置されます。検証ピンが2本または3本ある場合は、それぞれの公称位置を入力します。さらに、スチルパイプの下端には校正リングを付けます。これはタンク形状パラメーターの較正に使用されます。詳細については、LPG/LNG アンテナの要件を参照してください。 パイプ膨張係数は、スチルパイプの熱膨張を補正します。

FOUNDATION Fieldbus パラメータ:

TRANSDUCER 1500>LPG_NUMBER_OF_PINS

TRANSDUCER 1500>LPG_PIN1_CONFIGURATION

TRANSDUCER 1500>LPG_PIN2_CONFIGURATION

TRANSDUCER 1500>LPG_PIN3_CONFIGURATION

TRANSDUCER 1500>LPG_PIN_TEMPERATURE

TRANSDUCER 1500>LPG_PIN_TEMP_EXP_PPM

16. ピンの位置を確認する:

a) Verify Pins (ピンの検証) タブを開きます。

PG Setup				? ==
Correction Pin Setup	Verify Pins Pin Verificati	ion Status Vapor Pressure a	nd Temperature Status	
Units		0 10 H		
Length		Signal Strength		
hu		priv		
		Reference	Pin	
Reference Pin	Nominal Position	Threshold	Measured Position	Measured Amplitude
1	2.000	500	-1000.000000	-1000.000000
2	4.000	500		
3	6.000	500		
	1	LPC Verification State		
Pin Ver	ification	Idle or Failure		
		plate or r allare		
			ŝ	

- b) Pin Verification (ピンの検証) ボタンをクリックして、検証プロセスを開始します。
- c) Measured Position (測定位置) と Nominal Position (公称位置) (スチルパイプ内の検証ピンの実際の位置) を比較します。
- d) 測定位置が公称位置からずれた場合は、測定位置を記録し、Pin Setup (ピンの設定) タブに戻ります。
- e) 測定位置を *Nominal Position (公称位置*) フィールドに入力し、**Send (送信)** ボタン をクリックします。
- f) 16.a から 16.e をメッセージまで繰り返します Successful Verification (検証成功)と表示され、公称位置と測定位置が一致していることを示します。

FOUNDATION Fieldbus パラメータ:

TRANSDUCER 1500>LPG_VER_PIN1_

TRANSDUCER 1500>LPG_PIN1_CONFIGURATION

17. Gas Correction (ガス補正) タブを選択します。

18. タンク内の製品に適した補正方法を選択します。

オプション	説明
空気補正	この方法は、タンク内に蒸気がない場合、すなわちタンクが空で空気 しか入っていない場合にのみ使用してください。これは、Rosemount 5900C を校正するときの最初のステップで使用されます。
1 種類の既知の ガス	この方法は、タンク内のガス種が 1 種類しかない場合に使用できます。 さまざまな補正方法の中で最も精度が高い方法です。他のガスが少量 でも精度が低下します。
1 種類以上の不 明なガス	炭化水素、例えばプロパン/ブタンなど、正確な混合物が不明な場合に この方法を使用します。
混合比が不明な 2 つのガス	この方法は、混合比が分からなくても、2 つのガスの混合物に適して います。
混合比が既知の 1 種類以上の既 知のガス	この方法は、タンク内に最大 4 つの製品のよく知られた混合物がある 場合に使用できます。

これで、Rosemount 5900C レベルゲージは、タンクの運転開始時に製品レベルを測定す る準備が整いました。

FOUNDATION Fieldbus パラメータ:

TRANSDUCER 1500>LPG_CORRECTION_METHOD

TRANSDUCER 1500>LPG_NUMBER_OF_GASSES

TRANSDUCER 1500>LPG_GAS_TYPE1、TRANSDUCER 1500>LPG_GAS_PERC1

TRANSDUCER 1500>LPG_GAS_TYPE2、TRANSDUCER 1500>LPG_GAS_PERC2

TRANSDUCER 1500>LPG_GAS_TYPE3、TRANSDUCER 1500>LPG_GAS_PERC3

TRANSDUCER 1500>LPG_GAS_TYPE4

5 操作

5.1 安全上の注意事項

本項に記載の操作指示および手順は、操作担当者の安全を確保するために特別な予防措置を必要 とする場合があります。安全上の問題が生じかねないことを伝える情報は、警告記号(①)で示 されています。この記号が前に付いている操作を実施する前に、以下の安全上の注意事項をお読 みください。

▲ 警告

安全な設置方法と点検ガイドラインに従わない場合は、死亡または重傷にいたる可能性がありま す。

- 設置作業は必ず資格を有する要員が実行してください。
- 本マニュアルに記載の機器だけを使用してください。指定以外の装置を使用すると、装置に 備わっている保護機能が低下する可能性があります。
- 適切な資格がない場合は、本マニュアルに記載されている以外の点検を行わないでください。

爆発によって死亡または重傷にいたる可能性があります。

- トランスミッタの動作環境が、危険区域の使用認可条件に適合していることを確認してください。
- ハンドヘルドコミュニケータを爆発の危険性がある環境で接続する前に、ループ内の計器が 本質安全防爆あるいはノンインセンディブ防爆に適合した配線方法に従って設置されている ことを確認してください。
- 爆発の危険がある環境で回路が通電している際は、ゲージカバーを取り外さないでください。

5.2 Rosemount TankMaster での測定データの表示

Rosemount[™] TankMaster には、単一タンクおよびタンクグループの測定データとインベントリ データを表示するためのオプションがいくつかあります。また、TankMaster は独自のパラメー タでカスタムビューを作成するオプションも提供しています。詳細については、Rosemount TankMaster WinOpi リファレンスマニュアルを参照してください。

図 5-1 : Rosemount TankMaster WinOpi の棒グラフ表示の例

5.3 アラーム処理

Rosemount[™] TankMaster WinOpi プログラムは幅広いアラーム機能をサポートしています。ア ラームは、レベル、平均温度、蒸気圧などのさまざまな測定データに対して設定できます。アラ ームリミットは、正味標準容積 (NSV) のような在庫データにも指定できます。

アクティブアラームは Alarm Summary (*アラーム概要*)ウィンドウに表示できます。アラームロ グでは、アクティブではなくなったアラームを表示できます。アラームログはディスクに保存 し、後で参照することができます。

詳細については、Rosemount TankMaster WinOpi リファレンスマニュアルを参照してください。

アラート

アクティブなフィールド診断アラートの設定と表示の方法については、フィールド診断アラート および アラート を参照してください。

5.4 AMS Device Manager での測定データの表示

AMS Device Manager でレベル、体積、レベルレート、信号強度などの測定データを表示するには、次の手順を実行します。

手順

- 1. View (表示) → Device Connection View (機器接続の表示) を開きます。
- 2. FF ネットワークアイコンをダブルクリックし、ネットワークノードを展開して機器を表示します。
- 3. 目的の Rosemount 5900C ゲージアイコンを右クリックまたはダブルクリックして、メニ ューオプションのリストを開きます。

4. Service Tools オプションを選択します。

1 5900-DEVICE-0000002252 (5900 Radar L	evel Gauge Rev. 3]		
File Actions Help			
<u>sa</u> <u>r</u>			
Service Tools	Measurement Variables External Input Varia	bles	
Service Tools Alerts Variables Trends Maintenance	Level 29.270 m	Distance (Ullage) 0.730 m Good	Max -
Simulate			Distance
	Level Rate -0.000 m/s Good	Volume Value 0.000 m² Bad	
	Signal Strength 1256 mV Good	Internal Temperature 25.0 deg C Good	Level Volume
Overview	Tarik Temperature 0.000 deg C		
Configure Service Tools	Bad		
•			Send Close <u>H</u> elp
Device last synchronized: 2018-06-20 16:47:20)		18

6

サービスとトラブルシューティング

6.1 安全上の注意事項

本項に記載の操作指示および手順は、操作担当者の安全を確保するために特別な予防措置を必要 とする場合があります。安全上の問題が生じかねないことを伝える情報は、警告記号(①)で示 されています。この記号が前に付いている操作を実施する前に、以下の安全上の注意事項をお読 みください。

▲ 警告

安全な設置方法と点検ガイドラインに従わない場合は、死亡または重傷にいたる可能性がありま す。

- 設置作業は必ず資格を有する要員が実行してください。
- 本マニュアルに記載の機器だけを使用してください。指定以外の装置を使用すると、装置に 備わっている保護機能が低下する可能性があります。
- 適切な資格がない場合は、本マニュアルに記載されている以外の点検を行わないでください。
- 可燃性または燃焼性雰囲気の発火を防ぐために、点検前に電源を切断してください。
- 部品を代用すると、本質安全防爆が損なわれる可能性があります。

爆発によって死亡または重傷にいたる可能性があります。

- トランスミッタの動作環境が、危険区域の使用認可条件に適合していることを確認してください。
- ハンドヘルドコミュニケータを爆発の危険性がある環境で接続する前に、ループ内の計器が 本質安全防爆あるいはノンインセンディブ防爆に適合した配線方法に従って設置されている ことを確認してください。
- 爆発の危険がある環境で回路が通電している際は、ゲージカバーを取り外さないでください。

6.2 サービス

このセクションでは、Rosemount 5900C レーダーレベルゲージのサービスとメンテナンスに役 立つ機能について簡単に説明します。特に断りのない場合、ほとんどの例は、Rosemount TankMaster WinSetup ツールを使用してこれらの機能にアクセスすることに基づいています。 WinSetup プログラムの使用方法の詳細については、Rosemount タンクゲージシステム構成マ ニュアルを参照してください。

6.2.1 TankMaster[™]を使用した入力レジスタと保持レジスタの表示

Rosemount タンクゲージシステムでは、測定データは、Rosemount 2410 タンクハブ、 Rosemount 5900 レーダーレベルゲージなどのデバイスの **Input Registers (入力レジスタ)** に 連続的に保存されます。機器の入力レジスタを見ることで、機器が正常に動作していることを確 認できます。

Holding Registers (保持レジスタ) には、測定性能を制御するために使用されるさまざまな機器 パラメータが格納されます。

手順

- 1. TankMaster WinSetup プログラムを起動します。
- 2. TankMaster WinSetup ワークスペースウィンドウで機器のアイコンを選択します。

- 右クリックして、View Input/View Holding Registers option (入力を表示/保持レジスタ を表示) オプションを選択するか、Service (サービス) メニューから Devices (機器) → View Input/View Holding Registers (入力を表示/保持レジスタを表示) を選択します。 これで "入力を表示/保持レジスタを表示" ウィンドウが表示されます。
- 4. Registers Type (レジスタタイプ) リストで Predefined (定義済み) または All (すべて) を 選択します。

オプション	説明
定義済み	基本的なレジスタの選択を表示します。
すべて	自分で選んだレジスターを表示します (高度なサービス)。

 All (すべて) オプションでは、Start Register input (開始レジスタ入力) フィールドで開始 値を設定し、Number of Registers (レジスタ数) フィールドで表示するレジスタの総数 (1 ~500) を設定して、レジスタの範囲を指定する必要があります。リストを迅速に更新す るためには、最大 50 レジスタが推奨されます。 6. Registers Scope (レジスタの範囲) ドロップダウンリストには、次の 3 つのオプションが あります。

範囲	説明	アクセスレベル
標準	最も一般的に使用されるレジスタを含む標準設 定	表示のみ
サービス	高度なサービスとトラブルシューティングのた めの幅広いレジスタが含まれています。	監督者
開発者	上級ユーザーのみ	管理者

- 7. Show Values in (**値を表示**) ペインで、適切なレジスタ形式の 10 進数または 16 進数を選 択します。
- Read (読み取り) ボタンをクリックします。
 これで View Input/Holding Registers (入力/保持レジスタを表示) ウィンドウが現在のレジスタ値で更新されます。

6.2.2 レベルゲージ構成のバックアップ

Rosemount 5900C レーダーレベルゲージの入力および保持レジスタをディスクに保存できま す。これはバックアップやトラブルシューティングに役立ちます。あらかじめ定義された保持 レジスタのセットを保存して、現在のゲージ設定のバックアップコピーを作成することができま す。バックアップファイルは、レベルゲージの設定を復元するために使用することができます。

TankMaster[™]を使用した機器構成のバックアップ

Rosemount TankMaster WinSetup を使用して、現在の機器構成をファイルに保存します。

手順

- 1. Rosemount TankMaster WinSetup プログラムを起動します。
- 2. *TankMaster WinSetup* ワークスペースウィンドウで機器のアイコンを右クリックします。
- 3. Save Database to File (データベースをファイルに保存) オプションを選択します。 このオプションは、Service/Devices (サービス/機器) メニューからも利用できます。

 Type of Registers (レジスタのタイプ)、Predefined (定義済み)、または User-defined (ユ ーザー定義) の任意のオプションを選択します⁽¹³⁾および Scope (範囲)。オプションは機 器のタイプによって異なる場合があります。

⁽¹³⁾ ユーザー定義は高度なサービスにのみ使用してください。

📋 Save Database to File - LT	-TK-1 (Version 0.E7)	
Type of Registers Imput Registers Imput Registers Imput Registers <tr< th=""></tr<>		
File Name G:\Program Files\Rosemount	\Backup\Device bac Browse	

- 5. Browse (参照) ボタンをクリックして、フォルダを選択し、バックアップファイルの名前 を入力します。
- 6. Save (保存) ボタンをクリックしてデータベース登録の保存を開始します。

TankMaster[™]を使用した複数の機器構成のバックアップ

Rosemount TankMaster WinSetup を使用して複数の機器の構成を保存します。

手順

- 1. Rosemount TankMaster WinSetup プログラムを起動します。
- 2. WinSetup ワークスペースウィンドウで、**Devices (機器)** フォルダを選択します。
- 3. マウスの右ボタンをクリックし、Save Database of All to Files (すべてのデータベースを ファイルに保存) オプションを選択します。

このオプションは、Service/Devices (サービス/機器) メニューからも利用できます。

Save Device Registers		<u> </u>		
Device <u>T</u> ypes: A	Il devices 💽	·		
Available Devices:	Available Devices: Selected Devices:			
ATD-TK-1	<u>A</u> dd >			
T-TK-1	A <u>d</u> d All >>			
(Q) HUB-1	< <u>R</u> emove			
	<< Re <u>m</u> ove All			
Type of Registers	● Prede	efined Registers		
C Input Registers	⊂ <u>U</u> ser-	Defined Registers (Advanced)		
• Holding Registers	<u>F</u> irst F	Register:		
	Last	Register:		
Folder Name	Packup) Davias has	kup 2000 Browno		
	backap (better bac			
<u>S</u> tart <u>C</u>	Close <u>H</u>	elpDetails ≥>		

 Available Devices (利用可能な機器) ペインから機器を選択し、Add (追加) ボタンを押して、 Selected Devices (選択した機器) ペインに移動します。この操作をすべての機器で繰り返 します。

- 5. Holding Registers (保持レジスタ) と Predefined Registers (定義済みレジスタ) オプションを選択します (ユーザー定義オプションは高度なサービスにのみ使用してください)。
- 6. Browse (参照) ボタンをクリックして、フォルダを選択し、バックアップファイルの名前 を入力します。
- 7. データベースのバックアップを保存するには、Start (スタート) ボタンをクリックします。

バックアップファイルは、ワープロソフトでテキストファイルとして開くことができま す。

🗖 Hold	ing_BAK_090204_2.dnr - Notepad		
<u>Eile E</u> di	t F <u>o</u> rmat <u>V</u> iew <u>H</u> elp		
[DB of	device: LT-1, type REX, version 1G0, d	ate Wed Feb 04 16:09:20 2009]	<u>^</u>
2 3 5 6 7 9 20 22 50 51 52 54 57 58 60	246 TRL2-RtgAddr 0 TRL2-DauAddr 2 TRL2-SystemControl 0 TRL2-ComControl 1 TRL2-PresControl 240 TRL2-GaugeControl -100000 Misc-Level_LO_Limit 100000 Misc-Level_HI_Limit 0 Dply-Length_Unit 0 Dply-Velocity_Unit 0 Dply-Velocity_Unit 0 Dply-Velocity_Unit 0 Dply-Volume_Unit 0 Dply-SingleValue_Item 0 Dply-StartupView 0 Dply-UserDef_Items 0 Dply-UserDef_Mode	na WORD na WORD na SBT na WORD na SENUM na SET mm LINT na SENUM na SENUM na SENUM na SENUM na SENUM na SENUM na SENUM	Y
<			>

6.2.3 TankMaster[™]を使用してバックアップ設定データベースを復 元する

Rosemount TankMaster WinSetup では、現在の保持レジスタデータベースをディスクに保存さ れたバックアップデータベースと置き換えることができます。失われた設定データを復元した い場合などに便利です。

手順

- 1. TankMaster WinSetup ワークスペースウィンドウで機器のアイコンを選択します。
- 右クリックして、Upload Database (データベースのアップロード) を選択するか、
 Service (サービス) メニューから Devices/Upload Database (機器/データベースのアップロード) を選択します。
- 3. Browse (参照) ボタンをクリックし、アップロードするデータベースファイルを選択する か、パスとファイル名を入力します。
- 4. Upload (アップロード) ボタンをクリックします。

6.2.4 TankMaster[™]を使用した診断レジスタの表示と設定

Rosemount TankMaster WinSetup プログラムで現在の機器ステータスを表示できます。*View Diagnostic Register (診断レジスタの表示)* ウィンドウには、データベースレジスタの項目が表示 され、ゲージの動作状態をすぐに確認することができます。また、特に必要なレジスタを追加し てウィンドウを設定することもできます。

手順

1. TankMaster WinSetup ワークスペースウィンドウで機器のアイコンを右クリックしま す。

2. 右クリックして、View Diagnostic Registers (診断レジスタの表示) を選択します。

Name	Register	Value	Unit
Status-DeviceStatus	1000	2	
Status-DeviceError	1002	0	
Status-DeviceWarning	1004	16400	
Standard-MeasStatus	4002	0	
Standard-Ullage	4008	4,42197	m
Standard-SignalStrength	4012	1004,81	mV
DetMeasInfo-Gain	5112	1	

診断レジスタウィンドウ

診断ウィンドウのレジスタ値は読み取り専用です。ウィンドウを開くと、デバイスから読み込ま れます。

値列の表セルの背景色が灰色であることは、そのレジスタが Bitfield 型か ENUM 型であることを 意味します。このタイプのレジスタに対しては、展開された Bitfield/ENUM ウィンドウを開くこ とができます。セルをダブルクリックして展開された Bitfield/ENUM ウィンドウを開きます。

必要に応じて、値を 16 進数で表示することもできます。これは Bitfield と ENUM 型のすべての レジスタに適用されます。Bitfield と ENUM レジスタを 16 進数で表示するには、**Show in Hex** (16 進数で表示)チェックボックスを選択します。

Configure (構成) ボタンをクリックすると、*Configure Diagnostic Registers (診断レジスタを構成)* ウィンドウに表示するレジスタのリストを変更できる *View Diagnostic Registers (診断レジス タの表示)* ウィンドウが開きます。詳細については、Rosemount タンクゲージシステム構成マニュアルを参照してください。

また、**Configure Diagnostic Registers (***診断レジスタを構成***)** ウィンドウには、レジスタログの 自動開始と自動停止のためのログスケジュールを設定できる **Register Log Scheduling (レジス タログスケジュール)** ウィンドウにアクセスするための Log Setup (ログ設定) ボタンがありま す。

関連情報

TankMaster を使用した測定データの記録

6.2.5 TankMaster[™]を使用した機器ファームウェアのアップグレー ド

Rosemount TankMaster WinSetup には、Rosemount Tank Gauging システムの Rosemount 5900C やその他の機器を新しいファームウェアでアップグレードするオプションが含まれています。

前提条件

注

再プログラムするときは、Rosemount 5900C が SIL Safety モードであってはなりません。必要 な安全予防措置が考慮されていることを確認します。

手順

- 1. Rosemount 5900C が中断や障害なく TankMaster と通信していることを確認してください。
- Rosemount TankMaster WinSetup ワークスペースウィンドウ (論理ビュー) で、Devices (機器) フォルダを開き、アップグレードする機器を選択します (あるいは、Devices (機器) フォルダを選択して、複数のデバイスプログラミングを許可します)。
- 3. 右クリックして、Program (プログラム) オプション (複数の機器プログラミングの場合い は Program All (すべてをプログラム) オプション) を選択します。機器が自動的に Program These Devices (これらの機器をプログラム) ペインに表示されます。

Program Devices		×
Device <u>T</u> ypes: RLG	-	
Available Devices:	Pro	gram these Devices:
<u>M</u>	ove >	💞 LT-1
Moy	e All >>	
< R	emove	
<< Re	emove <u>A</u> ll	
File Name and Program Version [C:\Users\TankMaster\Desktop\RLG\ [Type PM_B, Version 0.F0, B00T Result Successfully Programmed Devices:	Device Progra	Mdvanced <u>Betries:</u> 3 •
Start Programming	Close	Help

WinSetup ワークスペースの Devices (機器)フォルダが複数のプログラミング用に選択されている場合、Available Devices (使用可能な機器) ペインからプログラミングしたい機器を選択し、Move (移動) ボタンをクリックします。

Program Devices		—X —
Device <u>T</u> ypes:	All devices 💌	
Available Devices:		Program these Devices:
SYSHUB-201	Move >	
😑 🔘 HUB-101		
ATD-101	Mo <u>v</u> e All >>	
UT-1		
	< R <u>e</u> move	

- 5. プログラムする機器ごとに繰り返します。プログラムする機器のリストを変更したい場合は、**Remove (削除)** ボタンを使用します。
- 6. **Browse (参照)** ボタンをクリックして、フラッシュプログラムファイルを見つけます。こ れらのファイルには拡張子 *.cry が使用されます。
- 7. Start Programming (プログラミングを開始) ボタンをクリックします。

T Start Device Pro	gramming
Statistics	
Device:	LT-1
Blocks Total:	1045
Blocks Sent:	
Program Time:	
Start Programming) <u>A</u> bort Close Help

Start Device Programming (機器プログラミングの開始) ウィンドウが表示されます。

8. Start Programming (プログラミングを開始) ボタンをクリックし、機器のプログラミン グをアクティブにします。

Rosemount 2460 システムハブを使用する場合、最大 25 台の機器をプログラムできます。機器の数が多い場合は、プログラミングを 2 段階に分ける必要があります。

9. Rosemount 5900C ゲージ用の新しい *.ini ファイルを TankMaster インストールフォル ダに追加して、TankMaster インストールを更新します。

Rosemount 5900C には、RLG.ini と RLG0xx.ini の 2 つの *.ini ファイルが使用されます。 xx はアプリケーションソフトウェアの識別コードです。

- a) RLG.ini ファイルを C:\Program Files\Rosemount\Server フォルダにコ ピーします。
- b) RLGOxx.iniファイルをC:\Program Files\Rosemount\Shared folder にコピーします。

6.2.6 TankMaster[™]を使用した書き込み保護

Rosemount 5900C は、意図しない設定変更を避けるために、ソフトウェア書き込み保護が可能 です。ソフトウェア書き込み保護は、保持レジスタデータベースをロックします。

手順

- 1. Rosemount TankMaster WinSetup プログラムを起動します。
- 2. TankMaster WinSetup ワークスペースで、Logical View (論理ビュー) タブを選択します。
- 3. 機器アイコンを右クリックします。

🚊 👘 ТК-59	
🗄 🗐 SYSHUB-201	
🖃 🕼 HUB-101	
	Uninstall
🕂 💼 Fixed Roof	Save Database to File
🗄 📄 Devices	Upload Database
Protocols	View Input Registers
	View Holding Registers
	View Diagnostic Registers
	Restart
	Logging
	Program
	Calibrate
	LPG Setup
	LPG Verify Reference Pins
	Write Protect
	Properties

4. Write Protect (書き込み保護) を選択します。

5900 RLG Write Protect - LT-59				
Write Protect State: Not Protected				
Change Write Protect State				
New State: Protected				
Write Protect Counter: 0				
OK Cancel <u>A</u> pply <u>H</u> elp				

- New State (新しい状態) ドロップダウンリストで、Protected (保護) を選択してから、 Apply (適用) ボタンをクリックして、現在の書き込み保護状態を保存します。 これで保持レジスタのデータベースがロックされました。機器が書き込み保護されてい る限り、構成変更はできません。
- 6. OK ボタンをクリックして、Write Protect (書き込み保護) ウィンドウを閉じます。

機器のロックを解除

機器をロックを解除するには、次の手順を実行します。

手順

- Write Protect (書き込み保護) オプションを選択し、Write Protect (書き込み保護) ウィン ドウを開きます。
- 2. New State (新しい状態) を Not Protected (保護されていない) に設定します。
- 3. Apply (適用) ボタンを押して新しい状態を保存し、OK ボタンを押してウィンドウを閉じます。

AMS Device Manager を使用した書き込み保護

機器をロックするには、次の手順を実行します。

手順

1. AMS Device Manager では、**Configure (構成) Manual Setup (手動セットアップ)**の下の **Devices (機器)** タブで書き込み保護機能を使用できます。

チェックボックスは、機器が書き込み保護されているかどうかを示します。

Configure Guided Setup Alert Setup	Device Arterna Geometry Tank Shape Environment Volume A Units Length m ⁻ Level Rate m ⁻ Volume m ⁻ Volume m ⁻ Temperature [deg C Pressure [bar Note: Changing unit/units will affect all present parameters with corresponding unit except parameters in the Al and AD blocks.	Advanced Classic View Mode: Mode: Mode: Change Write Protect Write Protect Device Device Information
1 Overview		
Configure		

- 2. Write Protect Device (機器の書込み保護) ボタンをクリックします。
- 3. パスワードを入力します。

6.2.7 書込保護スイッチ

スイッチを使用して、Rosemount 5900C データベースの不正な変更を防ぐことができます。ス イッチは FOUNDATION[™] Fieldbus パラメータの変更も防ぎます。

ゲージを保護するには次のようにします。

手順

 密閉されたネジがないか確認してください。保証が有効な場合は、シールを外す前に Emerson Automation Solutions/Rosemount タンクゲージにお問い合わせください。ネ ジ山を傷つけないようにシールを完全に取り外します。

2. ネジを緩めてカバーを取り外します。

A. 書込保護スイッチ

- 3. 書き込み保護スイッチを見つけます。P と書かれた 2 番目のスイッチ (2) です。

- 4. レベルゲージを書き込み保護するには、スイッチ P を上の位置にします。
- 5. ハウジングとカバーの接触面がきれいであることを確認してください。カバーを元に戻し、ネジを締めます。防爆要件を満たし、端子部に水が入るのを防ぐため、カバーが完全にはめ込まれていることを確認してください。

注 カバーを取り付ける前に、指定された侵入防止レベルを確保するために、O リングとシー トが良好な状態であることを確認してください。

6.2.8 TankMaster[™]を使用した測定データの記録

Rosemount 5900C は、診断レジスタのログをサポートします。この機能は、ゲージが正しく動作するかどうかを確認するのに便利です。ログ機能には、Rosemount TankMaster WinSetup プログラムを使用してアクセスできます。

手順

- 1. Rosemount TankMaster WinSetup プログラムを起動します。
- 2. TankMaster WinSetup ワークスペースウィンドウで機器のアイコンを選択します。
- 3. 右クリックして、Logging (ログ) を選択します。

📋 Register Lo	ig Scheduling - L	T-1	×
Log Scheo Manual © Ma Automa	tule Mode anual tic Mode tomatic		Sample Rate
Start	Date (Y-M-D) 2009-04-01 2009-04-01	Time (H:M:S) 18:23:28 19:23:28	Max File Size
	Start	Stop	Max Log Files
	OK	Cancel	Help

4. Manual (手動) または Automatic (自動) モードを選択します。

オプション	説明
マニュアル	手動モードでは、いつでもログを開始できます。ログは、 Stop (停止) ボタンをクリックして停止するまで続行しま す。
自動	自動モードでは、開始時間と停止時間を指定する必要があ ります。ログは停止日時に達するまで継続します。

結果のログファイルは、 Max File Size (最大ファイルサイズ) パラメータで指定されたサ イズを超えません。ログファイルの数が最大ログファイル数に達すると、TankMaster は 既存のログファイルの内容を置き換え始めます。

ログファイル

ログファイルはプレーンテキストファイル形式で保存され、ワープロソフトで表示できます。 C:\Rosemount\TankMaster\Log フォルダに保存されています。ここで、C は Rosemount TankMaster ソフトウェアがインストールされているディスクドライブです。

ログファイルには、View Diagnostic Registers (診断レジスタの表示) ウィンドウと同じ入力レジ スタが含まれます。TankMaster[™]を使用した診断レジスタの表示と設定を参照してください。 View Diagnostic Registers (診断レジスタの表示) ウィンドウを設定することで、ログファイルに 含める入力レジスタを変更できます。詳細については、Rosemount タンクゲージシステム構成 マニュアルを参照してください。

図 6-1:ログファイル

🗖 SEGO)T01-01	729_LT-1_3.lo	og - Notepa	d										×
<u>Eile E</u> dit	: F <u>o</u> rmat	<u>V</u> iew <u>H</u> elp												
=====	=====		=======						=======	=======	=======:			^
Device Device Starter	e Name: :: 5900 d logging	LT-1 1: 2009-02-05	16:54:48											
		,												
Date	Time	IR1002	IR1004	IR1000	IR4002	IR4012	IR5112	IR1420	IRO	IR4	IR54	IR4006	IR2	
2000 0	12 05 16		0	0	0	85528	2222222	0	1	08521	0852	0652	0.65200	
2003-0	12-05 10	:55:08	0	0	0	65536	2382,43	8	1	06521	9652	9052	9,05203	
2003-0	12-03-10	:55:19	0	0	0	65536	2302,1	0	1	96521	9652	9652	9,65215	
2003-0	12-05 16	:55:28	0	0	0	65536	2302,1	8	1	96527	9652	9652	9,65213	
2000-0	12-05 16	:56:14	ñ	ñ	n i	65536	2302,00	8	1	06522	9652	9652	9,6527	
2000-0	12-00-10	:56:24	n n	0	0	65536	2300,0	8	1	06577	9652	9652	9,65217	
2000-0	12-05-10	03:29	ñ	ñ	ñ	85538	2390.95	8	1	96521	9652	9652	9 65204	
2000-0	12-05 17	07:08	ñ	ñ	ñ	65536	2302,85	8	1	96521	9652	9652	9,65205	
2009-0	2.05 17	07:18	ñ	ň	ñ	65536	2392,93	8	1	96521	9652	9652	9,65207	
2009-0	2-05 17	07:28	ñ	ñ	ň	65536	2392,92	8	1	96521	9652	9652	9 65207	
2000 0	2 00 11	.01.20	0	0	0	00000	2002,02	0		00021	0002	0002	0,00201	~
<													2	

6.2.9

TankMaster[™] を使ったデフォルトデータベースの読み込み

デフォルトデータベースは、保持レジスタデータベースの工場出荷時の設定です。Rosemount TankMaster WinSetup には、デフォルトデータベースを読み込むオプションがあります。これ は、例えば、新しいデータベース設定を試した後、元の工場出荷時の設定を再読み込みしたい場 合や、タンクの条件が変更された場合などに便利です。

前提条件

エラーメッセージが表示された場合やデータベースに関するその他の問題が発生した場合は、デ フォルトデータベースを読み込む前にトラブルシューティングを行うことをお勧めします。

注

デフォルトデータベースが読み込まれても、機器アドレスは変更されません。

手順

1. TankMaster WinSetup ワークスペースウィンドウで機器のアイコンを選択します。

- 2. 右クリックして、View Holding Register (保持レジスタを表示) を選択します。
- 3. All (すべて) オプションを選択し、Start Register (開始レジスタ) 入力フィールドに 65510 を入力します。

Search for Registers Type	Registers	Gize:	Sho	w Values in	
All registers	▼ Default	-		Decimal	
Registers Scope	Ŧ			⊂ <u>H</u> exadecir	nal
<u>)</u> tart Register:			<u>N</u> u	mber of Regist	ers:
65510			1		
Name		Regis	ter	Value	Unit
CMD_Default_Database-Command			0	65535	
<u>R</u> ead	Apply	C	lose	+	lelp

- 表示したいレジスタ数を Number of Registers (レジスタ数) フィールドに入力し、Read (読み取り) ボタンをクリックします。
- 5. Value (値) (65535) フィールドをダブルクリックします。

None	
None	

- 6. ドロップダウンリストで、Reset_to_factory_setting オプションを選択します。
- 7. **OK** ボタンをクリックします。

6.3 トラブルシューティング

このセクションでは、機器の誤動作や誤った取り付けによって発生する可能性のあるさまざまな 問題について説明します。Rosemount 2410 タンクハブおよび Rosemount 2460 システムハブ (レガシーシステムでは 2160 フィールドコミュニケーションユニット)に関連する問題や解決策 は、FOUNDATION[™] Fieldbus システムには適用されないことに注意してください。

表 6-1: Rosemount 5900C のトラブルシューティングの一覧表

問題	考えられる原因	動作
Rosemount 5900C レーダー レベルゲージと通信していな い	配線	 機器が Device Live List (機器ライブリスト) に表示されていることを確認します。詳細については、Rosemount 2410 タンクハブリファレンスマニュアルを参照してください。
		・ 配線が端子に正しく接続されていることを確認します。
		・ 端子が汚れていないか、欠陥がないか確認します。
		 アースへの短絡の可能性がないか、配線の絶縁を確認します。
		・ 複数のシールド接地点がないことを確認します。
		 ケーブルシールドが電源側 (Rosemount 2410 タンクハブ) のみで接地されていることを確認します。
		 ケーブルシールドが Tankbus ネットワーク全体で連続して いることを確認します。
		 計器筐体内のシールドが筐体に接触していないことを確認します。
		・ 導管に水が溜まっていないことを確認します。
		 シールド付きツイストペア配線を使用します。
		・ ドリップループで配線を接続します。
		・ Rosemount 2410 タンクハブの配線を確認します。
		・ 電気的な設置を参照
	Tankbus の終端が正しくない	 Tankbus にターミネータが 2 つあることを確認します。通常、Rosemount 2410 タンクハブの内蔵終端が有効になっています。
		• 終端が Tankbus の両端にあることを確認します。
	Tankbus の機器が多すぎる	 Tankbus 上のデバイスの総消費電流が 250 mA 以下である ことを確認します。詳細については、Rosemount 2410 タ ンクハブリファレンスマニュアルを参照してください。
		 Tankbus から1つ以上の機器を削除します。Rosemount 2410 タンクハブは、1つのタンクをサポートします。241 のマルチタンクバージョンは、最大10 タンクをサポートします。
	ケーブルが長すぎる	• 機器端子の入力電圧が9V以上であることを確認します。

表 6-1 : Rosemount 5900C のトラブルシューティングの一覧表 (続き)

問題	考えられる原因	動作
	ハードウェア障害	・ Rosemount 5900C レーダーレベルゲージを確認します。
		・ Rosemount 2460 システムハブを確認します。
		 Rosemount 2180 フィールドバスモデム (FBM) を確認します。
		・ 制御室 PC の通信ポートを確認します。
		 Emerson Automation Solutions /Rosemount タンクゲージサービス部門にお問い合わせください。
	ソフトウェア障害	 Rosemount 5900C ゲージを再起動します。例えば、 Rosemount TankMaster WinSetup の Restart コマンドを 使用します。
		 電源を切り、Rosemount 2410 タンクハブに接続し、すべての機器を再起動します。
		 Emerson Automation Solutions /Rosemount タンクゲー ジサービス部門にお問い合わせください。
Rosemount 5900C レーダー レベルゲージと通信していな	Rosemount 2180 フィールド バスモデム (FBM)	 FBM が制御室 PC の正しいポートに接続されていることを 確認します。
ι, Γ		• FBM が Rosemount 2460 システムハブの正しいポートに 接続されていることを確認します。
	Rosemount 2460 システムハ ブへの接続	 Rosemount 2460 システムハブの正しいフィールドバスポ ートが、Rosemount 2410 タンクハブのプライマリバスに 接続されていることを確認します。
		・ Rosemount 2460 内部の通信ポート LED を確認します。
	Rosemount 2460 システムハ ブの構成が正しくない	 システムハブのタンクデータベースで、Rosemount 5900C と Rosemount 2410 タンクハブの Modbus 通信アドレス を確認します。
		 フィールドポートの通信パラメータの設定を確認します。
		• 正しい通信チャンネルが選択されていることを確認します。
		 Rosemount 2460 システムハブの構成方法の詳細について は、Rosemount タンクゲージシステム構成マニュアルを参 照してください。
	Rosemount 2410 タンクハブ の構成が正しくない	 Rosemount 2410 タンクデータベースを確認し、機器が使用可能で、正しいタンクにマッピングされていることを確認します。
		 Rosemount TankMaster WinSetup で、Rosemount 2410 Tank Hub /Tank Database (Rosemount 2410 タンクハブ/タ ンクデータベース) ウィンドウを開き、Level Modbus (レベ ル Modbus) アドレスが Rosemount 2460 システムハブの タンクデータベースの 2410 Level (2410 レベル) Modbus アドレスと等しいことを確認します。
		 Rosemount 2410 のタンクデータベースを構成する方法の 詳細については、Rosemount タンクゲージシステム構成マ ニュアルを参照してください。
	Rosemount 2410 タンクハブ	・ Rosemount 2410 タンクハブへの配線を確認します。
	への接続 	・ Rosemount 2410 タンクハブを確認し ます。エラー LED または内蔵ディスプレイで情報を確認します。

表 6-1 : Rosemount 5900C のトラブルシューティングの一覧表 (続き)

問題	考えられる原因	動作
	通信プロトコルの構成	Rosemount TankMaster WinSetup/プロトコルチャンネルプロ パティウィンドウ: ・ プロトコルチャンネルが有効になっていることを確認しま す。 ・ プロトコルチャンネル構成を確認します (ポート、パラメー タ、モデム)。
レベル測定なし	通信障害	 配線を確認してください。 Rosemount 5900C の Modbus 通信アドレスを確認します。Rosemount 5900C レーダーレベルゲージの Modbus アドレスの設定方法の詳細については、Rosemount タンクゲージシステム構成マニュアルを参照してください。 Rosemount 2410 タンクハブのタンクデータベースの構成を確認します。 Rosemount 2460 システムハブのタンクデータベースの構成を確認します。
	構成	 Rosemount 5900C が構成されていることを確認します (詳細については、Rosemount タンクゲージシステム構成マニュアルを参照してください)。
	Rosemount 2460 システムハ ブのタンクデータベースの構 成が正しくない	 システムハブのタンクデータベースの Modbus 通信アドレスを確認します。Rosemount TankMaster WinSetup で、Rosemount 2460/Tank Database (Rosemount 2460 / タンクデータベース)ウィンドウを開き、タンクデータベースの2410 Level (2410 レベル) Modbus アドレスが2410 タンクデータベースのLevel Modbus (レベル Modbus) アドレスと等しいことを確認します。 Rosemount 2460 システムハブのタンクデータベースの構成方法の詳細については、Rosemount タンクゲージシステ
	Rosemount 2410 タンクハブ のタンクデータベースの構成 が正しくない	ム構成マニュアルを参照してください。 Rosemount 2410 タンクデータベースを確認し、レベルゲージが使用可能で、正しいタンクにマッピングされていることを確認します。
		 Rosemount TankMaster WinSetup で、Rosemount 2410 Tank Hub /Tank Database (Rosemount 2410 タンクハブ/タ ンクデータベース) ウィンドウを開き、Level Modbus (レベ ル Modbus) アドレスが Rosemount 2460 システムハブの タンクデータベースの 2410 Level (2410 レベル) Modbus アドレスと等しいことを確認します。
		 2410 タンクデータベースの構成方法の詳細については、 Rosemount タンクゲージシステム構成マニュアルを参照 してください。
	ソフトウェアまたはハードウ ェアの障害	 診断情報を確認します。TankMaster[™]を使用した診断レジ スタの表示と設定を参照してください。 機器ステータス入力レジスタを確認します。機器ステータ スを参照してください。 Emerson Automation Solutions /Rosemount タンクゲー
		ジサービス部門にお問い合わせください。

問題	考えられる原因	動作
レベル測定が正しくない	誤った設定	 タンク形状とアンテナパラメータの構成を確認します: - タ ンク基準高さ (R) - ゲージ基準距離 (G) - 校正距離 - アンテナ タイプ - アンテナサイズ (スチルパイプアレイ)。 Rosemount TankMaster WinSetup を使用してタンク形状 とアンテナパラメータを設定する方法については、 Rosemount タンクゲージシステム構成マニュアルを参照 してください。
		 Rosemount 5900C の機械的な設置が設置要件を満たしていることを確認します。例えば、次の点を確認します: - ノズルの高さと直径 - ノズル付近の障害物 - タンク壁までの距離 - 傾斜 - スチルパイプのスロット/穴の総面積。章 設置時の考慮事項を参照してください。
		 Foam (泡)、Turbulent Surface (乱流面) などの環境パラメ ータの構成と、その他の詳細構成オプションを確認します。 WinSetup:Rosemount 5900C プロパティ/環境、 Rosemount 5900C プロパティ/詳細構成。
		・ ステータスと診断情報を確認します。TankMaster [™] を使用 した診断レジスタの表示と設定 を参照してください。
	タンク内の障害物	 Rosemount 5900C がタンク内の障害物に引っかかってい ないことを確認します。
		 Rosemount TankMaster WinSetup のタンクスキャン機能 を使用して、測定信号を分析します:-タンク内の障害物によ る妨害エコーがないか確認します - タンクの底に強い反響 があるかどうかを確認します。スチルパイプの端に偏向プ レートを使用します。タンクスキャン機能の使用方法の詳 細については、Rosemount タンクゲージシステム構成マニ ュアルを参照してください。
レベルゲージの構成を保存で きない	ゲージが書き込み保護されて いる	 書き込み防止スイッチの位置を確認し、OFFの位置にあることを確認します。書込保護スイッチを参照してください。
		 Rosemount TankMaster WinSetup の書き込み保護設定を 確認します。TankMaster[™]を使用した書き込み保護 を参照 してください。

表 6-1 : Rosemount 5900C のトラブルシューティングの一覧表 (続き)

6.3.1 機器ステータス

表 6-2 は、Rosemount 2410 タンクハブのディスプレイ、または Rosemount TankMaster プロ グラムに表示される機器ステータスメッセージを示しています。機器ステータスについては、 Input register 4000 (入力レジスタ 4000) をご覧ください。入力レジスタを表示する方法の詳細 については、TankMaster[™] を使用した入力レジスタと保持レジスタの表示 を参照してください。

表 6-2:機器ステータスメッセージ

メッセージ	説明	動作
実行中のブートソフトウェア	 アプリケーションソフトを起動でき ませんでした。 	新しいソフトウェアでゲージを再プログ ラムします。
	 アプリケーション SW がフラッシュ メモリに読み込まれていません。 フラッシュ SW の前回のアップロー ドに失敗しました 	Emerson Automation Solutions / Rosemount タンクゲージサービス部門に お問い合わせください。

表 6-2:機器ステータスメッセージ(続き)

メッセージ	説明	動作
機器警告	機器警告がアクティブです。	詳細は、警告メッセージ を参照してくだ さい。
機器エラー	機器エラーがアクティブです。	詳細は、エラーメッセージ を参照してく ださい。
BOOT ベータバージョン	使用されたブートプログラムのベータ版	承認されたソフトウェアが使用されてい ることを確認する
APPL ベータバージョン	使用されたアプリケーションプログラム のベータ版	承認されたソフトウェアが使用されてい ることを確認する
レベル補正エラー	LPG モジュールは有効ですが、モジュール の構成が正しくないか、圧力または温度の センサ入力データがありません。	詳細については、入力レジスタ 4702 LPGIregArea-LPG_Corr_Error を参照し てください。
無効な測定	レベルゲージは測定が無効であることを 示します。これは、実際の測定に問題があ るか、その他のエラー表示が原因である可 能性があります。	詳細については、エラーメッセージ、警告 メッセージ、および測定ステータスを確認 してください。
書き込み保護	構成レジスタは書き込み保護されていま す。	次のいずれかを実行する: ロック/ロック解除機能を使用して、 ソフトウェア書き込み保護をオフに します。 書き込み保護スイッチの位置をオフ に変更します。
デフォルトデータベース	すべての構成レジスタはデフォルト値に 設定されています。	装置の校正が有効であることを確認しま す。
ังミュレーション アクティブ	Rosemount 5900C はシミュレーション モードです。	Rosemount 5900C シミュレーションモ ードをリセットします。
SIL モード有効	レベルゲージは SIL モードで動作します。	ゲージが SIL アプリケーション用に適切 に設定されていることを確認します。
FF サービス停止	保守または構成を許可するため、レベルゲ ージはサービス停止モードに設定されま す。	ゲージが作動し始めたら、モードが In Service に戻っていることを確認してくだ さい。
RM 再プログラミング中	新しいソフトウェアが Rosemount 5900C にダウンロードされます	プログラミングが完了したときに、 Rosemount 5900C の動作を確認します。

6.3.2 警告メッセージ

表 6-3 は、Rosemount 2410 タンクハブの内蔵ディスプレイと Rosemount TankMaster プログ ラムに表示される警告メッセージの一覧を示しています。表示するオプションもあります 入力 レジスタ 1004 アクティブ機器警告の概要については警告はエラーよりも重大度が低くなりま す。

表示される可能性のある各警告メッセージについては、表 6-3 に示す入力レジスタ 6100~6130 に詳細情報があります。

表 6-3:警告メッセージ

メッセージ	説明	動作
RAM 警告	入力レジスタ no. 6100 Bit 0:DSP スタック Bit 1:DSP RAM 低	Emerson Automation Solutions / Rosemount タンクゲージサービス部門に お問い合わせください。

表 6-3 : 警告メッセージ (続き)

メッセージ	説明	動作
FPROM 警告	入力レジスタ no. 6102	
HREG 警告	入力レジスタ no. 6104 Bit 0:DSP 工場保持レジスタ	デフォルトデータベースを読み込み、 Rosemount 5900C を再起動します。問題 が解決しない場合は、Emerson Automation Solutions /Rosemount タン クゲージサービス部門にお問い合わせくだ さい。
その他のメモリ警告	入力レジスタ no. 6106	Emerson Automation Solutions /
MWM 警告	入力レジスタ no. 6108 Bit 1:PM と RM のバージョンの不一致	Rosemount ダンクケーンサービス部門に お問い合わせください。
RM 警告	 入力レジスタ no. 6110 Bit 1:SW 構成 Bit 5:FPROM チェックサム Bit 6:FPROM バージョン Bit 9:HREG チェックサム Bit 10:HREG 制限 Bit 11:HREG 書き込み Bit 12:HREG 読み取り Bit 13:HREG バージョン Bit 14:MWM 無効な Id Bit 30:SW 重大な警告 	
その他のハードウェア警告	入力レジスタ no. 6122	
警告の構成	 入力レジスタ no. 6128 Bit 0:スーパーテストアクティブ Bit 1:ATP テーブル無効 Bit 2:特殊補正テーブル無効 Bit 3:ニアゾーン補正テーブル無効 Bit 4:構成モデルコード無効 Bit 5:構成 LPG ピン表示 Bit 6:構成 LPG エラー Bit 7:使用されているシミュレーションモード Bit 8:使用されているデフォルトスイープ モード Bit 9:使用されているテストスイープ Bit 10:ACT テーブル無効 Bit 11:UCT テーブル無効 Bit 12:簡易シミュレーションモード警告 Bit 13:ランプシミュレーションモード警告 Bit 14:TSM フィルタが狭すぎます Bit 15:MMS オフセット更新無効 	 デフォルトのデータベースを読み込 み、レベルゲージを再起動します。 TankMaster[™]を使ったデフォルトデー タベースの読み込みを参照してくださ い。 レベルゲージを構成するか、バックア ップ構成ファイルを読み込みます (TankMaster[™]を使用してバックアッ プ設定データベースを復元するを参 照)。 問題が解決しない場合は、Emerson Automation Solutions /Rosemount タンクゲージサービス部門にお問い合 わせください。
SW 警告	入力レジスタ no. 6130 Bit 8:DSP 未定義ソフトウェア警告	Emerson Automation Solutions/ Rosemount タンクゲージのサービス部門 にお問い合わせください。
6.3.3 エラーメッセージ

表 6-4 は、Rosemount 2410 タンクハブの内蔵ディスプレイと Rosemount TankMaster プログ ラムに表示されるエラーメッセージの一覧を示しています。表示するオプションもあります Input register 1002 (入力レジスタ 1002) アクティブ機器エラーの概要については

表示される可能性のある各エラーメッセージについては、表 6-4 に示す入力レジスタ 6000~ 6030 に詳細情報があります。

表 6-4 : Rosemount 5900C のエラーメッセージ

メッセージ	説明	動作
RAM エラー	入力レジスタ no. 6000 起動テスト中にゲージデータメモリ (RAM) エラーが検出されました。	Emerson Automation Solutions / Rosemount タンクゲージサービス部門に お問い合わせください。
	注 ゲージは自動的にリセットされます。	
	深刻な RAM の問題: Bit 0:DSP RAM Bit 1:DSP スタック Bit 2:DSP RAM チェックサム Bit 3:DSP RAM 低	
FPROM エラー	入力レジスタ no. 6002 起動テスト中にゲージのプログラムメモ リ (FPROM) でエラーが検出されました。	
	<mark>注</mark> ゲージは自動的にリセットされます。	
	重大な FPROM の問題: Bit 0:DSP ブートチェックサム Bit 1:DSP ブートバージョン Bit 2:DSP アプリケーションチェックサ ム	
	ー Bit 3:DSP アプリケーションバージョン Bit 4:FPROM 機器 Bit 5:FPROM 消去 Bit 6:FPROM 書き込み Bit 7:FPROM アクティブブロック未使用	
データベース (Hreg) エラー	入力レジスタ no. 6004 トランスミッタ構成メモリ (EEPROM) で エラーが検出されました。このエラー は、デフォルトのデータベースを読み込 むことで解決できるチェックサムエラー か、ハードウェアエラーです。 注	デフォルトデータベースを読み込み、 Rosemount 5900C レーダーレベルゲージ を再起動します。問題が解決しない場合 は、Emerson Automation Solutions / Rosemount タンクゲージサービス部門に お問い合わせください。
	問題が解決するまで、デフォルト値が使用されます。	
	はいのビットは里へな休存レンスダの向 題を示します。 Bit 0:DSP チェックサム	
	Bit 1:DSP 制限	
	Bit 2:DSP バージョン	
	Bit 3:書き込みエラー	

表 6-4 : Rosemount 5900C のエラーメッセージ (続き)

メッセージ	説明	動作		
その他のメモリエラー	入力レジスタ no. 6006	Emerson Automation Solutions /		
マイクロ波モジュールエラー	入力レジスタ no. 6008 Bit 0:非接続	Rosemount ダンクケージサービス部門に お問い合わせください。 		
RM エラー	入力レジスタ no. 6010 Bit 1:SW 構成 Bit 5:FPROM チェックサム Bit 6:FPROM バージョン Bit 9:HREG チェックサム Bit 10:HREG 制限 Bit 10:HREG 制限 Bit 11:HREG 書き込み Bit 12:HREG 読み取り Bit 13:HREG バージョン Bit 14:MWM 無効な Id Bit 30:SW 重大なエラー			
その他のハードウェアエラー	入力レジスタ no. 6022 不明なハードウェアエラーが検出されま した。 Bit 0:内部温度が範囲を超えています			
設定エラー	 入力レジスタ no. 6028 少なくとも 1 つの設定パラメータが許容範囲外です。 注 問題が解決するまで、デフォルト値が使用されます。 Bit 0:開始コード Bit 1:FF 単位変換 	 デフォルトのデータベースを読み込み、レベルゲージを再起動します。 TankMaster[™]を使ったデフォルトデータベースの読み込みを参照してください。 レベルゲージを構成するか、バックアップ構成ファイルを読み込みます(TankMaster[™]を使用してバックアップ設定データベースを復元するを参照)。 問題が解決しない場合は、Rosemountタンクゲージサービス部門にお問い合わせください。 		
ソフトウェアエラー	入力レジスタ no. 6030 Rosemount 5900C ゲージソフトウェア でエラーが検出されました。 Bit 0:DSP 未定義のソフトウェアエラー Bit 1:DSP タスクが実行されていません Bit 3:シミュレーションエラー	Emerson Automation Solutions / Rosemount タンクゲージサービス部門に お問い合わせください。		

6.3.4 測定ステータス

測定ステータス情報を検索するには、 Input register 4002 (入力レジスタ 4002) を表示します。 表 6-5 は、表示される可能性のあるさまざまなステータスビットを示します。

表 6-5 : Rosemount 5900C の測定ステータス

メッセージ	説明	動作
満杯タンク	レベル測定は満杯タンク状態です。トランスミッ タはタンク上部で表面エコーが検出されるまで待 機します。	製品表面が満杯タンク検出エリアより下になると、 トランスミッタは満杯タンク状態を解除します。

表 6-5 : Rosemount 5900C の測定ステータス (続き)

メッセージ	説明 動作	
空タンク	レベル測定は空タンク状態です。送信機は、水面か らのエコーがタンクの底で検出されるのを待機し ます。	製品表面が空タンク検出エリアより上になると、ト ランスミッタは空タンク状態を解除します。 空タンクの取り扱いを参照してください。
汚れたアンテナ	アンテナが非常に汚染されているため、レベル測定 に影響が出る可能性があります。	アンテナを掃除します。
スイープ直線化警告	スイープが正しく線形化されていません。	警告メッセージを確認してください。MWM 警告 がアクティブになっている場合、トランスミッタの エラーを示している可能性があります。Emerson Automation Solutions/Rosemount タンクゲージ のサービス部門にお問い合わせください。
タンク信号切断警告	最後のタンク信号が切れました。	警告メッセージを確認してください。MWM 警告 がアクティブになっている場合、トランスミッタの エラーを示している可能性があります。Emerson Automation Solutions/Rosemount タンクゲージ のサービス部門にお問い合わせください。
表面エコーなし	表面エコーパルスを検出できません。	この現在の領域で表面エコーを追跡できるように 構成を変更できるかどうかを確認します。
予測レベル	表示されたレベルは予測です。表面エコーを検出 できませんでした。	上記の表面エコーなしを参照してください。
サンプリング失敗	最後のタンク信号のサンプリングに失敗しました。	警告メッセージを確認してください。
無効な体積値	指定された体積値は無効です。	詳細については、体積ステータスをご確認くださ い。
シミュレーション モート゛	シミュレーションモードが有効です。表示された 測定値はシミュレートされた値です。	アクションは不要です。
高度なシミュレーショ ンモード	高度なシミュレーションモードが有効です。指定 された測定値がシミュレートされます。	高度なシミュレーションモードをオフにするには、 保持レジスタ 3600=0 に設定します (TankMaster [™] を使用した入力レジスタと保持レジスタの表示を 参照)。
余分なエコーの追跡	トランスミッタは空のタンクの状態で、余分なエコ ーを追跡しています。	タンクを満杯にしたとき、レベルゲージが製品表面 を追跡していることを確認します。
底面投影有効	底面投影機能がアクティブです。	レベルゲージが製品表面を適切に追跡しているこ とを確認します。
パイプ測定有効	パイプ測定がアクティブです。	アクションは不要です。
登録された偽エコーに 近い表面	登録された偽エコーの近くでは、測定精度がわずか に低下することがあります。	偽エコーの登録機能を使用することにより、トラン スミッタは障害物付近の製品表面を追跡すること ができます。
突然の水位上昇を検出	これは、さまざまな測定上の問題から生じる可能性 があります。	タンクの内部をチェックし、表面で起きている問題 の原因を突き止めてください。

6.4

リソースブロックエラーメッセージ

リソースブロックで見つかったエラー状態。

表 6-6: リソースブロック BLOCK_ERR メッセージ

条件名	説明
ブロック構成エラー	構成エラーは、FEATURES_SEL または CYCLE_SEL で、それぞれ FEATURES または CYCLE_TYPE で設定されていない項目を選択したこ とを示すために使用されます。
シミュレーション有効	これは、シミュレーションスイッチが所定の位置にあることを示して います。これは、I/O ブロックがシミュレートされたデータを使用して いることを示すものではありません。
電源オン	このビットは、リソースブロックが初期化状態のとき、または機器の 電源投入時に設定されます。
サービス停止	実際のモードはサービス停止です。

表 6-7 : リソースブロック DETAILED_STATUS メッセージ

条件名	推奨アクション
センサトランスデューサブロック	1. プロセッサの再起動
	2. コールサービスセンター
製造ブロックエラー	1. プロセッサの再起動
	2. コールサービスセンター
不揮発メモリエラー	1. プロセッサの再起動
	2. コールサービスセンター
ROM 整合性エラー	1. プロセッサの再起動
	2. コールサービスセンター

6.5

トランスデューサブロックエラーメッセージ

トランスデューサブロックで見つかったエラー状態。

表 6-8 : トランスデューサブロック BLOCK_ERR メッセージ

条件名	説明
その他のエラー	XD_ERROR が 0 以外の場合に設定されます。AMS Device Manager で機器のステータスを表示するも参照してください。
サービス停止	実際のモードはサービス停止です。

6.6

アナログ入力 (AI) ファンクションブロック

表 6-9 は、BLOCK_ERR パラメータで報告された条件の一覧を示します。太字の条件は、アナロ グ入力ブロックで使用できます。*イタリック体*の条件は、AI ブロックでは無効であり、参考のた めにのみ記載されています。

BLOCK_ERR にエラービットがセットされるたびにブロックアラームが発生します。AI ブロックのブロックエラータイプは、以下の太字で定義されています。

表 6-9 : BLOCK_ERR 条件

条件番号	条件名と説明
0	その他
1	Block 構成エラー : 選択されたチャンネルが XD_SCALE で選択された工学単位と互換性 のない測定値を送信しているか、 L_TYPE パラメータが構成されていないか、または CHANNEL = ゼロです。
2	リンク構成エラー
3	シミュレーション有効 :シミュレーションが有効で、ブロックの実行にシミュレーション 値が使用されています。
4	ローカルオーバーライド
5	機器故障状態設定
6	機器はまもなく保守が必要です
7	入力失敗/プロセス変数のステータスが異常 :ハードウェアに異常があるか、異常な状態を シミュレートしています。
8	出力失敗 :異常な入力のため、出力に異常があります。
9	メモリ障害
10	失われた静的データ
11	失われた NV データ
12	リードバックチェック失敗
13	機器は今すぐ保守が必要です
14	
15	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー

6.7 アラート

AMS Device Manager では、アクティブなアラートを表示できます。アラームパラメータ (FD_FAIL_ALM、FD_OFFSPEC_ALM、FD_MAINT_ALM、FD_CHECK_ALM) には、いくつかの機器 エラーに関する情報が含まれています。アクティブなエラー状態は FD_xxx_ACTIVE パラメータ に表示され、AMS Device Manager の Service Tools オプションを使用して簡単に一覧表示でき ます。

関連情報

フィールド診断アラート

6.7.1 AMS Device Manager でのアクティブアラートの表示

手順

- 1. Start (スタート) メニューから AMS Device Manager アプリケーションを開きます。
- 2. View (表示) → Device Connection View (機器接続の表示) を開きます。
- 3. FF ネットワークアイコンをダブルクリックし、ネットワークノードを展開して機器を表示します。
- 目的のデバイスアイコンを右クリックまたはダブルクリックして、メニューオプションの リストを開きます。

5. Service Tools オプションを選択します。

1 5900-DEVICE-0000002252 [5900 Radar L	vel Gauge Rev. 3]	
File Actions Help		
Service Tools Service Tools Service Tools Alerts Tends Maintenance Simulate Overview Configure Service Tools	Active Aets No Active Aets No Active Alerts	
		Send Close H
		Jenu Cidse E
Device last synchronized: 2018-06-20 16:47:20		

6. Navigation Pane (*ナビゲーションペイン*) で Alerts (アラート) オプションを選択します。

A. アラート

Active Alerts (アクティブアラート) タブには、現在アクティブなアラートが表示されま す。障害、仕様外、要保守、機能チェックなど、あらゆる種類のアラートを表示すること ができます。エラーの簡単な説明と推奨アクションが表示されます。 7. アラートは優先順位が高い順に「障害」から表示されます。下にスクロールすると、仕様 外、要保守、機能チェックなども表示されます。

A. *機器ステータス*

B. アクティブアラート

関連情報

AMS Device Manager で機器のステータスを表示する アラート設定

6.7.2 推奨されるアクション

FD_RECOMMEN_ACT パラメータは、アラートのどのタイプ、どの特定のイベントがアクティブ であるかに基づいて、推奨される一連のアクションを示すテキスト文字列を表示します。表 6-10 を参照してください。

表 6-10 : RECOMMENDED_ACTION

アラートタイプ	ホスト診断メッセ ージ	説明	推奨されるアクション
なし	該当なし	なし	アクションは不要です
障害	ソフトウェアの互 換性エラー	FF I/O ボードソフトウェアとレーダーレ ベル計メインファームウェアのバージョ ンに互換性がありません。 機器が動作していません (OOS)。	 トランスミッタヘッドを交換してください。 Emerson Automation Solutions/ Rosemount タンクゲージ部門にお問い合わせください。

表 6-10 : RECOMMENDED_ACTION (続き)

アラートタイプ	ホスト診断メッセ ージ	説明	推奨されるアクション	
	メモリ障害- FF I/O ボード	データ保存が完了する前に電源が切れた ため、構成データが破損したか、または保 留中の構成変更が失われました。 デフォルト値が障害ブロックに読み込ま れます。保存されたデータに潜在的なエ ラーがあると、望ましくない動作が発生す る可能性があります。機器が動作してお らず (OOS)、すべての変数のステータスが 「BAD」です。機器の回復は可能です。	 工場出荷時リセット - FF I/O ボード。 エラーが続く場合、メモリチップの 不良が考えられます。トランスミッ タヘッドを交換してください。 	
	機器エラー	トランスミッタヘッドが故障しています。 現場修理が可能な場合もあります。 機器が動作していません (OOS)。 有効な測定値を取得できません。	1. トランスミッタヘッドを交換してく ださい。	
	内部通信に失敗し ました	レーダーレベルゲージのメインボードと FF I/O ボード間の通信が切断されました。	1. トランスミッタヘッドを交換してく ださい。	
	エレクトロニクス障害	機器が、FF I/O ボードモジュールアセンブ リの電気コンポーネントの障害を検出し ました。 機器が動作していません (OOS)。	1. トランスミッタヘッドを交換してく ださい。	
規格外	機器主要情報	測定値は取得されましたが、機器の修理が 必要です。 長期的に測定および装置の動作に影響を 及ぼす可能性のある、設置または物理的環 境に関する問題。 エラーソースの詳細については、機器ステ ータスを参照してください (AMS Device Manager で機器のステータスを表示する を参照)。	1. 機械的な設置と環境を確認します。	
	機器警告	測定値を取得できません。BAD ステータ スの最後の正常値が表示されます。現場 修理が可能な場合もあります。	 レベル測定を再開します。 FF バスを切断して、機器の電源を再 投入します。 測定構成を工場出荷時にリセット し、機器を再構成します。 エラーが続く場合は、Emerson Automation Solutions/Rosemount タンクゲージ部門にお問い合わせく ださい。 	
要保守	機器軽微情報	構成に関連する問題のため、予期しない測 定値が取得されました。	1. 機器の構成を確認します。 エラーソースの詳細については、機器ステ ータスを参照してください (AMS Device Manager で機器のステータスを表示する を参照)。	
機能チェック	機能のチェック	トランスデューサブロックが自動モード ではありません	定期的な準備作業が進行中です。1 つ以 上のトランスデューサブロックがサービ ス停止モードです。 1. トランスデューサブロックを自動モ ードに戻します。	

6.8 AMS Device Manager で機器のステータスを表示す る

現在の機器のステータスを表示するためには、以下の手順を実行します。

手順

- 1. AMS Device Manager を起動し、View (表示) → Device Connection View (デバイス接続 ビュー) を開きます。
- 2. FF ネットワークアイコンをダブルクリックし、ネットワークノードを展開して機器を表示します。
- 3. 目的のデバイスアイコンを右クリックまたはダブルクリックして、メニューオプションの リストを開きます。
- 4. Service Tools を選択します。
- 5. Navigation Pane (**ナビゲーションペイン**) で Maintenance (保守) オプションを選択しま す。

100 Radar 5900-DEVICE-0000002252	Level Gauge R	ev. 3]			
File Actions Help					
Service Tools	Details	Echo Curve Reset/Restore			
Alerts Variables Trends		Device Status			
Simulate					
1 Overview					
Configure					
<u>B</u>					
			Send	Close	Help
Device last synchronized: 2018-06-20 16:47:2	20				

 Details (詳細) タブを選択し、Device Status (機器ステータス) ボタンをクリックします。
 Device Status (機器ステータス) タブでは、チェックボックスがカテゴリ別に分類された 機器の現在のステータスを示します。

Communication Statistics (通信統計情報) タブには、内部通信統計情報が表示されます。 これは、通信に関する警告やエラーが発生した場合のトラブルシューティングに役立つツ ールです。

levice Status Communication Statistics	Device Status					
Internal Communication Statistics Attempts Failures 0 Tmeouts 0 Reset Internal Communication Statistics	Device Status	Communication Statistics				
Attempts Failures 0 Timeouts 0 Reset Internal Communication Statistics						
Attempts [15591] Failures 0 Tmeouts 0 Reset Internal Communication Statistics 0 Heartbeat Count 11884 Send Close Print	Internal Com	nunication Statistics				
Failures Timeouts Reset Internal Communication Statistics Heartbeat Count 11884 Send Close Prin	Attempts		85501			
Felures	1		10091			
Imeouts 0 Reset Internal Communication Statistics Heartbeat Count 11884 Send Close Prince	Failures					
Timeouts Reset Internal Communication Statistics Heartbeat Count 11884 Send Close Prin	J		U			
Reset Internal Communication Statistics Heartbeat Count 11884 Send Close Prin	Timeouts					
Reset Internal Communication Statistics Heartbeat Count 11884 Send Close Prin	1		0			
Heartbeat Count		Reset Internal Communication S	tatistics			
Heatbeat Count 11884 Send Close Prin		neset internal communication o	1010100			
Heartbeat Count 11884 Send Close Prin						
Send Close Prin	Heartbeat Cour	nt	11004			
Send Close Prin	1		11884			
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin						
Send Close Prin					1	
				Send	Close	<u>P</u> rint

機器ステータス アラート設定

A 仕様と参照データ

A.1 一般

A.1.1 機器の精度

パラボラアンテナ、スチルパイプ・ア ± 1 mm (0.04 インチ) レイ・アンテナ、LPG/LNG アンテナ

コーンアンテナ、1 インチ/2 インチス ±2 mm (0.08 インチ) チルパイプアンテナ

機器の精度は標準状態にあります。標準状態とは:スウェーデンの Mölnlycke にある Rosemount Tank Radar AB のテストベンチでの計測。テストベンチは年に1度以上、公式に認 可された研究所であるスウェーデン国立研究所 (RISE) により校正されます。計測範囲は最大で 40 m (130 フィート)です。周囲の温度と湿度はテスト中ほぼ一定に保たれます。テストベンチ 内でのトータルな不確定性は 0.15 mm (0.006 インチ) 未満です。

A.1.2 温度の安定性

一般的には < ± 0.5 mm (0.020 インチ) で -40 ~ +70 °C (-40 ~ +158 °F)

A.1.3 フィールドバス (標準)

FOUNDATION[™] Fieldbus フィールドバス FISCO (タンクバス)

A.1.4 更新時間

0.3 秒ごとに新規計測

A.1.5 再現性

0.2 mm (0.008 インチ)

A.1.6 最大液面レート

200 mm/s まで

A.1.7 度量衡シーリングの可能性

対応

A.1.8 設置時の考慮事項

設置時の考慮事項を参照してください。

A.1.9 測定原理

FMCW 方式(周波数変調連続波)とは、送信されるレーダー信号が 10GHz 付近で直線的に周波 数が変化する方式です。液面からの反射は、反射を受けたときにアンテナから送信される信号と 比較して、わずかに異なる周波数を持っています。この周波数の差は、アンテナと液面との距 離、ひいては液面レベルに正比例します。この技術により、非常に正確でしかも安定して測定値 が得られます。

A.2 通信 / ディスプレイ / 構成

A.2.1 出力変数と単位

- ・ レベルとアレッジ: メートル, センチメートル, ミリメートル, フィート, またはインチ
- ・ レベルのレート:メートル/秒, メートル/時間, フィート/秒, フィート/時間, インチ/分
- 信号強度: mV

A.2.2 設定ツール

Rosemount TankMaster WinSetup、フィールドコミュニケータ

A.3 FOUNDATION[™] Fieldbus フィールドバスの特性

極性感応式

なし

静止時消費電流

51 mA

リフトオフ最低電圧

9.0 VDC

デバイスのキャパシタンス / インダクタンス

製品認証を参照

クラス (ベーシック または リンクマスター)

リンクマスター (LAS)

使用可能な VCR の数

最大 20, 固定ひとつを含む

リンク数

最大 40

最小スロット時間 / 最大反応遅延/ 最小メッセージ間遅延

8/5/8

ブロックと実行時間

表 A-1:実行タイム

ブロック	実行時間
1リソースブロック	該当なし
5 トランスデューサーブロック (液位、 レジスタ、Adv_Config、容量、LPG)	該当なし
6 アナログ入力 (AI)	10 ms
2 アナログ出力 (AO)	10 ms
1 比例/積分/微分 (PID)	15 ms
1 信号変換 (SGCR)	10 ms
1 積分 (INT)	10 ms
1 演算 (ARTH)	10 ms
1 入力セレクタ (ISEL)	10 ms
1 制御セレクタ (CS)	10 ms
1 出力分配 (OS)	10 ms

詳しくは、FOUNDATION Fieldbus フィールドバスブロックのマニュアルを参照してください。

インスタンス化

対応

FOUNDATION Fieldbus への準拠

ITK 6

フィールド診断のサポート

対応

アクション・サポート・ウィザード

測定の再開、書込み禁止デバイス、工場リセット - 測定の設定、開始/停止デバイスのシミュレーション、表面として設定、統計のリセット、全モードの変更、偽エコーの登録/削除、エコーピークの更新、ピンの検証、蒸気圧の変更、蒸気温度の変更

高度な診断

ソフトウェア、メモリ/データベース、電子部、内部通信、シミュレーション、レベル補正、液位 測定、周囲温度、蒸気圧/温度補正、LPG 検証ピン、手動測定値

A.4 電気

A.4.1 タンクバス配線

0.5-1.5 mm² (AWG 22-16)、ツイステッドシールドペア

A.4.2 電源

FISCO:9.0 - 17.5 VDC 極性無反応 (例えば Rosemount 2410 タンクハブ) エンティティ:9.0 - 30.0 VDC 極性無反応

A.4.3 バス電流引き込み

50 mA

A.4.4 マイクロ波出力

< 1 mW

- A.4.5 内蔵タンクバスターミネータ はい (必要なら接続)
- A.4.6 デイジーチェーンの可能性

A.5 機械

A.5.1 ハウジングの材質および表面仕上げ

ポリウレタン塗装鋳造アルミニウム

A.5.2 ケーブル入口 (接続 / グランド)

二つの½ - 14 NPT エントリー、ケーブルグランドまたはコンジット用。使用しないポートを密閉 するための金属プラグ 1 個がトランスミッタ納品時に同梱。

オプション:

- M20 x 1.5 コンジット / ケーブルアダプタ
- 金属製ケーブルグランド (½ 14 NPT)
- 4 ピンオスの Eurofast コネクタまたは A サイズの 4 ピンオスの Minifast コネクタ

A.5.3 総重量

表 A-2: トランスミッタヘッドの重量

トランスミッタヘッド	重量
Rosemount 5900C トランスミッタヘッド	5.1 kg (11.2 lbs)

表 A-3: アンテナ付きの重量

アンテナ付きのトランスミッタヘッド	重量
Rosemount 5900C コーンアンテナ付き	約 12 kg (26 lbs)
Rosemount 5900C パラボラアンテナ付き	約 17 kg (37 lbs)
Rosemount 5900C スチルパイプ・アレイ・アンテナ付き	約 13.5 ~ 24 kg (30 ~ 53 lbs)
Rosemount 5900C LPG/LNG アンテナ付き、6 インチ 150 psi	約 30 kg (66 lbs)
Rosemount 5900C LPG/LNG アンテナ付き、6 インチ 300 psi	約 40 kg (88 lbs)

A.5.4 アンテナ

Rosemount 5900C アンテナは、ドリップオフ設計を採用し、バージョンによっては表面が傾斜 した研磨済み PTFE になっています。アンテナ上の結露が最低限に抑えられ、レーダーの信号強 度を損ないません。これにより、メンテナンス時の作業の自由度、高い精度、および高い信頼性 を保つことができます。タンクのタイプ、および開口部、用途により、それぞれ適切なアンテナ があります。

- パラボラ
- ・ コーン
- スチルパイプアレイ
- LPG/LNG
- 1 インチ/2 インチ スティルパイプ

A.5.5 トランスミッタヘッド

同じトランスミッタヘッドがすべての Rosemount 5900C アンテナタイプに使用され、スペアパ ーツの必要性を最小限に抑えます。

- デュアルコンパートメントのトランスミッタハウジングでは、電子部と配線が分離されており、タンクを開くことなく交換できます。
- 雷や湿気/雨から保護されており、表面は硫黄や塩が吹き付ける空気から保護されています。
- 電子部は、カプセル化した1つのユニットで構成されます。
- 再校正の必要はありません。

A.6 環境

A.6.1 周囲動作温度

-40 ~ +70 °C (-40 ~ +158 °F)最低起動温度は -50 °C (-58 °F)

A.6.2 保管温度

-50~+ 85 °C (-58~+185 °F)

A.6.3 湿度

0~100% の相対湿度

A.6.4 保護等級

IP 66/67 および NEMA[®] 4X

A.6.5 耐振動性

IEC 60770-1 レベル 1 と IACS UR E10 テスト 7

A.6.6 遠距離通信

以下に準拠:

- FCC 15B クラス A、および 15C
- RED (EU 指令 2014/53/EU) ETSI EN 302372; EN 50371
- IC (RSS210-5)

A.6.7 電磁適合性

- EMC (EU 指令 2014/30/EU) EN 61326-1; EN 61326-3-1
- OIML R85:2008

A.6.8 過渡保護/避雷器機能搭載

IEC 61000-4-5 を順守し、 2 kV ラインを倒す。IEEE 587 カテゴリ B の過渡過電圧保護および IEEE 472 サージ保護に準拠しています。

A.6.9 低電圧指令 (LVD)

LVD (EU 指令 2014/35/EU) EN/IEC 61010-1

A.7 Rosemount 5900C パラボラアンテナ付

タンク内の運転温度

FEP O リング で最高 +180 ℃ (+356 °F)、または Kalrez[®] O リングで +230 ℃ (+445 °F)

測定範囲

フランジ下で 0.8 ~ 40 m (2.6 ~ 130 ft)

0.5 ~ 50 m (1.6 ~ 164 フィート) を測定する可能性。精度が低下する可能性があります。より 長い測定範囲については、お近くの代理店にご相談ください。

圧力レンジ

クランプ/ねじ止め: -0.2 ~ 0.2 bar (-2.9 ~ 2.9 psig)

溶接: -0.2 ~ 10 bar (-2.9 ~ 145 psig)

タンクの空気に露出される材質

アンテナ:AISI 316/316L と EN 1.4401 /1.4404 に対応した素材

シーリング:PTFE

Oリング:FEP,または Kalrez[®]

アンテナの寸法

440 mm (17 インチ)

通路のサイズと設置

500 mm (20 インチ) の開口部。

パラボラアンテナは、フランジボールを使って通路のカバー上に設置します。これはアンテナの 傾斜と方角を指定した限界内で、簡単に調整するよう設計されています。

柔軟性の高いフランジボールは、横向きでも傾斜した通路でも特別な準備をせずに取り付けるこ とができます。

タンク接続

ゲージは直径 96-mm (3.78 インチ) の穴にクランプするか、直径 117-mm (4.61 インチ) の穴に 溶接します。

A.8 Rosemount 5900C コーンアンテナ付

タンク内の運転温度

最高 +180 ℃ (+356 °F) Viton[®] O リング付、または+230 ℃ (+445 °F) Kalrez[®] O リング付

計測範囲、精度、そしてコーンの寸法

コーンアンテナの寸法を選択する場合、基本的に可能な限り大きなアンテナ直径を使うよう推奨 します。

標準のコーンアンテナはタンク開口部で4インチと6インチと8インチです。4インチと6イ ンチのコーンは長いタンクノズルに合わせて延長できます。

レベルの精度は 8 インチのコーンアンテナで最大 ±2 mm (0.08 インチ) です。4 インチと 6 インチのコーンの精度は設置条件により変わります。

測定範囲

8 インチコーン:フランジ下で 0.8 ~ 20 m (2.6 ~ 65 フィート)。(0.4 ~ 30 m (1.3 ~ 100 フィート) を測定する可能性。精度が低下する可能性あり)

6 インチコーン:フランジ下で 0.8 ~ 20 m (2.6 ~ 65 フィート)。(0.3 ~ 25 m (1 ~ 80 フィート) を測定する可能性。精度が低下する可能性あり)

4 インチコーン:フランジ下で 0.8 ~ 15 m (2.6 ~ 50 フィート)。(0.2 ~ 20 m (0.7 ~ 65 フィート) を測定する可能性。精度が低下する可能性あり)

タンクの空気に露出される材質

アンテナ:SST AISI 316L/EN 1.4436

シーリング:PTFE、または石英

O リング:Viton[®]、または Kalrez[®]

圧力/温度の比率

A.9 Rosemount 5900C スティルパイプ・アレイ・アンテ ナ付

タンク内の運転温度

-40 \sim 120 °C (-40 \sim 248 °F)

測定範囲

フランジ下で 0.8 ~ 40 m (2.6 ~ 130 ft)

精度はわずかに落ちますが、最小範囲は 0.5 m (1.6 ft) まで拡張できます。より長い測定範囲については、お近くの代理店にご相談ください。

圧力レンジ

固定バージョン: 20 °C (68 °F) で -0.2 ~ 2 bar (-2.9 ~ 29 psig)。 ヒンジドハッチバージョン:5 インチから 8 インチのパイプで -0.2 ~ 0.5 bar (-2.9 ~ 7.2 psig)。 10 インチから 12 インチのパイプで -0.2 ~ 0.25 bar (-2.9 ~ 3.6 psig)。

タンクの空気に露出される材質

アンテナ:ポリフェニレンサルフィド (PPS)

シーリング:PTFE

O リング:FMVQ

フランジ: AISI 316/316L と EN 1.4401 /1.4404 に対応した素材

スティルパイプの寸法

5-, 6-, 8-, 10- または 12 インチ

タンク接続

ANSI 5 インチクラス 150 に準拠した 5 インチのホールパターン ANSI 6 インチクラス 150 / DN 150 PN 16 に準拠した 6 インチのホールパターン ANSI 8 インチクラス 150 / DN 200 PN 10 に準拠した 8 インチのホールパターン ANSI 10 インチクラス 150 / DN 250 PN 16 に準拠した 10 インチのホールパターン ANSI 12 インチクラス 150 に準拠した 12 インチのホールパターン

A.10 Rosemount 5900C LPG/LNG アンテナ付属

ボールバルブでの動作温度

-55 ~ 90 °C (-67 ~ 194 °F)

タンク内の運転温度

-170 ~ 90 °C (-274 ~ 194 °F)

測定範囲

フランジ下で 1.2 ~ 40 m (3.9 ~ 130 ft)

0.8 ~ 60 m (2.6 ~ 200 フィート) を測定する可能性。精度が低下する可能性があります。より 長い測定範囲については、お近くの代理店にご相談ください。

圧力レンジ

 $-1 \sim 25$ bar (-14.5 \sim 365 psig)_o

注意!フランジが 25 bar を越える高い圧力定格になることがありますが、最大タンク圧力は 25 bar のままです。

圧力センサー (オプション)

Rosemount 2051、圧力センサー範囲 0-55 bar。その他の圧力レンジについては、工場に連絡し てください。Rosemount 2051 は、様々な危険区域認証に使用できます。 製品認証 を参照して ください。

詳しくは、Rosemount 2051 製品データシートを参照してください。

タンクの空気に露出される材質

アンテナとフランジ: AISI 316/316L と EN 1.4401 /1.4404 に対応した素材

シーリング:PTFE

スティルパイプの寸法互換性

4 インチのためのアンテナ選択 sch 10, 4 インチ sch 40, または 100 mm (内径 99 mm) のスティルパイプの寸法

フランジのサイズとレーティング

1.5 インチクラス 300 2 インチクラス 150/300 3 インチクラス 150/300 4 インチクラス 150/300 6 インチクラス 150/300 8 インチクラス 150/300 DN 100 PN40 DN 150 PN40 DN 200 PN25 DN 200 PN40

圧力シール

圧力シールにはダブルブロックの機能が含まれ、PTFE シーリングと防火ボールバルブで構成されます。圧力センサーを使用する場合、蒸気によるものが補正でき、最高の計測精度が可能になります。

検証の可能性

特許取得の基準機器の機能により、計測の検証をタンクがサービス中の場合でも可能となりま す。スティルパイプの穴に設置された検証ピンと、低いスティルパイプの端にある検証リングの ついた偏向板が固定されたあらかじめ決めた距離で基準エコーを提供します。

A.11 Rosemount 1 インチと 2 インチのスチルパイプアン テナ付き

タンク内の運転温度

最高 +180 °C (+356 °F) Viton[®] O リング付き、または +230 °C (+445 °F) Kalrez[®] O リング付き

測定範囲

1 インチ スティルパイプアンテナ:フランジの下 0.2 ~ 3 m (0.7 ~ 9.8 フィート)。 2 インチ スティルパイプアンテナ:フランジの下 0.2 ~ 12 m (0.7 ~ 39 フィート)。 (これより長いレンジを計測する可能性。詳しくは最寄りの弊社代理店にご相談ください)

タンクの空気に露出される材質

アンテナ:SST 316L

シーリング:PTFE、または石英

O リング:Viton[®]、または Kalrez[®]

圧力/温度の比率

図 A-3:温度と最大圧力の関係

A.12 寸法図

図 A-4 : Rosemount 5900C パラボラアンテナ付の寸法

図 A-5 : Rosemount 5900C コーンアンテナ付の寸法

寸法単位は mm (インチ) です。

表 A-4: コーンアンテナの使用可能サイズ

アンテナのサイズ	D	В
4 インチ / DN100	93 (3.7)	150 (5.9)
6 インチ / DN150	141 (5.6)	250 (10.2)
8 インチ / DN200	189 (7.4)	370 (14.6)

図 A-6 : Rosemount 5900C スチルパイプ・アレイ・アンテナ付の寸法

寸法単位は mm (インチ) です。

表 A-5: スチルパイプ・アレイ・アンテナの使用可能サイズ

アンテナのサイズ	D	В	Α
5 インチ / DN125	120 (4.7)	56 (2.2)	431 (17.0)
6 インチ / DN150	145 (5.7)	59 (2.3)	431 (17.0)
8 インチ / DN200	189 (7.4)	65 (2.6)	441 (17.4)
10 インチ / DN250	243 (9.6)	73 (2.9)	450 (17.7)
12 インチ / DN300	293 (11.5)	79 (3.1)	450 (17.7)

図 A-7 : Rosemount 5900C LPG/LNG スチルパイプ・アレイ・アンテナ付の寸法

A. 約452 (17.8)、フランジのタイプによる
 圧力送信器を含めて 1. 302 (11.9)
 寸法単位は mm (インチ) です。

表 A-6 : LPG/LNG スチルパイプ・アレイ・アンテナの使用可能サイズ

アンテナのサイズ	D	B (mm)
4 インチ Sch10	107 (4.2)	752 (29.6)
4 インチ Sch40	101 (4.0)	534 (21.0)
DN100	99 (3.9)	502 (19.8)

図 A-8 : Rosemount 5900C 1 インチおよび 2 インチアンテナ

- A. 標準長さ 3000 (118.1)
 B. 1 インチスティルパイプアンテナ
 C. 2 インチスティルパイプアンテナ
- 寸法単位は mm (インチ) です。

A.13 ご注文方法

A.13.1 Rosemount 5900C パラボラアンテナ付レーダー・レベル・ゲ ージ

必須構成機器 モデル

コード	説明
5900C	レーダーレベルゲージ

性能クラス

コード	説明
1	±1 mm (0.04 インチ) 機器の精度
2	±2 mm (0.08 インチ) 機器の精度

安全性認証 (SIS)

コード	説明
S ⁽¹⁾	IEC 61508 SIL 2 認証に対応
F	なし。安全性証明 (SIS) にアップグレードする準備
0	なし

(1) Rosemount 2410 には、アナログ出力 4-20 mA またはリレー出力 コード 1 か 2 が必要です。

冗長性

コード	說明
1	なし。単一レーダー レベル ゲージ機器

タンクバス:電力と通信

コード	説明
F	バスパワー 2 線 FOUNDATION [™] Fieldbus フィールドバス (IEC 61158)

危険区域認証

コード	説明
I1	ATEX /UKEX 本質安全防爆
I7	IECEx 本質安全防爆
15	FM-米国 本質安全防爆
I6	FM-カナダ 本質安全防爆
I2	INMETRO 本質安全防爆 (ブラジル)
IP	KC 本質安全防爆 (韓国)
IW	CCOE/PESO 本質安全防爆 (インド)

コード	説明
I4 ⁽¹⁾	日本 本質安全防爆
IM	技術規則関税同盟 (EAC) 本質安全防爆
NA	なし

(1) ケーブル入口/コンジット接続コード E または M は使用不可。

管理輸送タイプの承認

コード	説明
0	なし

液面測定方法

コード	説明
1	10 GHz FMCW レーダー技術
2	米国/ロシアの設置用の 10GHz FMCW レーダー技術

ハウジング

コード	説明
А	標準筐体ー ポリウレタンに覆われたアルミ。IP 66/67

ケーブル入口/コンジット接続部

コード	説明
1	½ - 14 NPT, メスネジ。(1 個のプラグが付属)
2	M20 x 1.5 アダプター メスネジ)(2 個のアダプタと 1 個のプラグが付属)
G	メタルケーブルグランド (½ - 14 NPT)最低温度 -20 ℃ (-4 °F)ATEX/IECEx Exe 推奨 (2 個のグランドと 1 個のプラグが付属)
E	eurofast [®] オスコネクタ (1 個のプラグが付属)
М	minifast [®] オスコネクタ (1 個のプラグが付属)

アンテナ

コード	説明
1P	パラボラアンテナ

アンテナのサイズ

コード	説明
F	20 インチ/DN 500, Ø=440 mm (17.3 インチ)

アンテナの材質

コード	説明
S	SST AISI 316L/EN 1.4436

タンク シール

コード	説明
PF	FEP フルオロポリマー O リング付 PTFE
РК	Kalrez [®] パーフルオロエラストマー O リング付 PTFE

タンク接続

コード	説明
WE	溶接設置
CL	クランプ/ねじ止め設置

アンテナのオプション

コード	説明
0	なし
V ⁽¹⁾	最終検査認証リフレクター

(1) オプションコード U1 では用意されません。

その他のオプション 安全性認証

安全性認証 (SIS) コード S が必要です。

コード	説明
QT	IEC 61508 認証と FMEDA データ (印刷コピー)

校正証明書

コード	説明
Q4	校正証明書 (タンクの高さ最大 30 m (100 フィート)、印刷コピー)
QL	校正証明書 (タンクの高さ最大 40 m (130 フィート)、印刷コピー)

トレーサビリティ認証

トランスミッタヘッドのスペアパーツには非対応。

コード	説明
Q8	EN 10204 3.1 によるアンテナ材質のトレーサビリティ認証

過充填保護認証

コード	説明
U1 ⁽¹⁾	TÜV/DIBt WHG 過充填保護認証
U2	SVTI 過充填保護認証 (スイス)

(1) ひとつ以上のリレー出力が Rosemount 2410 のタンクハブに必要です。
タグ プレート

コード	説明
ST	刻印済み SST タグプレート(タグは注文時に提出する必要があります)

製品の延長保証

Rosemountの延長保証には、出荷日から3年または5年の限定保証があります。

コード	説明
WR3	3 年限定保証
WR5	5 年の限定保証

A.13.2 Rosemount 5900C コーンアンテナ付きレーダー・レベル・ゲ ージ

必須構成機器 モデル

コード	説明
5900C	レーダーレベルゲージ

性能クラス

コード	説明
2	±2 mm (0.08 インチ) 機器の精度

安全性認証 (SIS)

コード	説明
S ⁽¹⁾	IEC 61508 SIL 2 認証に対応
F	なし。安全性証明 (SIS) にアップグレードする準備
0	なし

(1) Rosemount 2410 には、アナログ出力 4-20 mA またはリレー出力 コード 1 か 2 が必要です。

冗長性

コード	説明
1	なし。単一レーダー レベル ゲージ機器

タンクバス:電力と通信

コード	説明
F	バスパワー 2 線 Foundation [™] Fieldbus フィールドバス (IEC 61158)

危険区域認証

コード	説明
I1	ATEX /UKEX 本質安全防爆
I7	IECEx 本質安全防爆
I5	FM-米国 本質安全防爆
I6	FM-カナダ 本質安全防爆
I2	INMETRO 本質安全防爆 (ブラジル)
IP	KC 本質安全防爆 (韓国)
IW	CCOE/PESO 本質安全防爆 (インド)

コード	説明
I4 ⁽¹⁾	日本 本質安全防爆
IM	技術規則関税同盟 (EAC) 本質安全防爆
NA	なし

(1) ケーブル入口/コンジット接続コード E または M は使用不可。

管理輸送タイプの承認

コード	説明
0	なし

液面測定方法

コード	説明
1	10 GHz FMCW レーダー技術
2	米国/ロシアの設置用の 10GHz FMCW レーダー技術

ハウジング

コード	説明
А	標準筐体ー ポリウレタンに覆われたアルミ。IP 66/67

ケーブル入口/コンジット接続部

コード	説明
1	½ - 14 NPT, メスネジ。(1 個のプラグが付属)
2	M20 x 1.5 アダプター メスネジ)(2 個のアダプタと 1 個のプラグが付属)
G	メタルケーブルグランド (½ - 14 NPT)最低温度 -20 ℃ (-4 °F)ATEX/IECEx Exe 推奨 (2 個のグランドと 1 個のプラグが付属)
E	eurofast [®] オスコネクタ (1 個のプラグが付属)
М	minifast [®] オスコネクタ (1 個のプラグが付属)

アンテナ

コード	説明
1C	コーンアンテナ

アンテナのサイズ

コード	説明
4	4 インチ / DN 100, Ø=93 mm (3.7 インチ)
6 ⁽¹⁾	6 インチ/DN 150, Ø=141 mm (5.6 インチ)
8 ⁽¹⁾	8 インチ/DN 200, Ø=189 mm (7.4 インチ)
Х	顧客指定、工場に相談

(1) 自由伝搬する設置環境の場合のみ。

アンテナの材質

コード	説明
S	SST AISI 316/316L および SST EN 1.4401/1.4404
Х	お客様が指定します。工場にご相談ください

タンク シール

コード	説明
PV	Viton [®] フッ素エラストマ O リング付き PTFE
PK	Kalrez [®] パーフルオロエラストマー O リング付き PTFE
QV	Viton [®] フッ素エラストマ O リング付き石英
QK	Kalrez [®] パーフルオロエラストマ O リング付き石英

タンク接続

コード	説明	
ANSI 穴パタ	?ーン (SST AISI /316 L) – 全面座 ⁽¹⁾	
6Т	6 インチクラス 150	
8T	8 インチクラス 150	
EN 穴パター	EN 穴パターン (SST EN 1.4404) – 全面座 ⁽¹⁾	
кт	DN 150/PN 16	
МТ	DN 200/PN 10	
ANSI フランジ (SST AISI 316 L) – 平面座		
4A	4 インチクラス 150	
4B	4 インチクラス 300	
6A	6 インチクラス 150	
6B	8 インチクラス 150	
EN フランジ (SST EN 1.4404) – 平面座		
JA	DN 100 PN 16	
JB	DN 100 PN 40	
КА	DN 150 PN 16	
LA	DN 200 PN 16	

コード	説明
その他	
00	なし
XX	お客様が指定します。工場にご相談ください

(1) 非加圧装置用薄型フランジ、最大圧力 0,2 bar (2.9 psi)

アンテナのオプション

コード	説明
0	なし
1 ⁽¹⁾	拡張コーンアンテナ、全長 20 インチ(500 mm)。
X	お客様が指定します。工場にご相談ください

(1) アンテナサイズコード4 または6 が必要です。

その他のオプション 安全性認証

安全性認証 (SIS) コード S が必要です。

コード	説明
QT	IEC 61508 認証と FMEDA データ (印刷コピー)

校正証明書

コード	説明
Q4	校正認定書 (印刷コピー)

トレーサビリティ認証

トランスミッタヘッドのスペアパーツには非対応。

コード	説明
Q8	EN 10204 3.1 によるアンテナ材質のトレーサビリティ認証

過充填保護認証

コード	説明
U1 ⁽¹⁾	TÜV/DIBt WHG 過充填保護認証
U2	SVTI 過充填保護認証 (スイス)

(1) ひとつ以上のリレー出力がRosemount 2410 のタンクハブに必要です。

タグ プレート

コード	説明
ST	刻印済み SST タグプレート(タグは注文時に提出する必要があります)

製品の延長保証

Rosemountの延長保証には、出荷日から3年または5年の限定保証があります。

コード	説明
WR3	3 年限定保証
WR5	5 年の限定保証

A.13.3 Rosemount 5900C スチルパイプ・アレイ・アンテナ付きレー ダー・レベル・ゲージ

必須構成機器

モデル

コード	説明
5900C	レーダーレベルゲージ

性能クラス

コード	説明
1	±1 mm (0.04 インチ) 機器の精度
2	±2 mm (0.08 インチ) 機器の精度

安全性認証 (SIS)

コード	説明
S ⁽¹⁾	IEC 61508 SIL 2 認証に対応
F	なし。安全性証明 (SIS) にアップグレードする準備
0	なし

(1) Rosemount 2410 には、アナログ出力 4-20 mA またはリレー出力 コード 1 か 2 が必要です。

冗長性

コード	說明
1	なし。単一レーダー レベル ゲージ機器

タンクバス:電力と通信

コード	説明
F	バスパワー 2 線 FOUNDATION [™] Fieldbus フィールドバス (IEC 61158)

危険区域認証

コード	説明
I1	ATEX /UKEX 本質安全防爆
I7	IECEx 本質安全防爆
15	FM-米国 本質安全防爆
I6	FM-カナダ 本質安全防爆
I2	INMETRO 本質安全防爆 (ブラジル)
IP	KC 本質安全防爆 (韓国)
IW	CCOE/PESO 本質安全防爆 (インド)

コード	説明
I4 ⁽¹⁾	日本 本質安全防爆
IM	技術規則関税同盟 (EAC) 本質安全防爆
NA	なし

(1) ケーブル入口/コンジット接続コード E または M は使用不可。

管理輸送タイプの承認

コード	説明
0	なし

液面測定方法

コード	説明
1	10 GHz FMCW レーダー技術
2	米国/ロシアの設置用の 10GHz FMCW レーダー技術

ハウジング

コード	説明
А	標準筐体ー ポリウレタンに覆われたアルミ。IP 66/67

ケーブル入口/コンジット接続部

コード	説明
1	½ - 14 NPT, メスネジ。(1 個のプラグが付属)
2	M20 x 1.5 アダプター メスネジ)(2 個のアダプタと 1 個のプラグが付属)
G	メタルケーブルグランド (½ - 14 NPT)最低温度 -20 ℃ (-4 °F)ATEX/IECEx Exe 推奨 (2 個のグランドと 1 個のプラグが付属)
E	eurofast [®] オスコネクタ (1 個のプラグが付属)
М	minifast [®] オスコネクタ (1 個のプラグが付属)

アンテナ

コード	説明
1A	スチルパイプ・アレイ・アンテナ

アンテナのサイズ

コード	説明
5	5 インチ/DN 125, Ø=120 mm (4.7 インチ)
6	6 インチ/DN 150, Ø=145 mm (5.7 インチ)
8	8 インチ/DN 200, Ø=189 mm (7.4 インチ)
A	10 インチ/DN 250, Ø=243 mm (9.8 インチ)
В	12 インチ/DN 300, Ø=293 mm (11.8 インチ)

アンテナの材質

コード	説明
S	SST (AISI 316L / EN 1.4404) と PPS (ポリフェニレンサルフィド)

タンク シール

コード	説明
FF	フッ素シリコーン O リング付き固定フランジ設置
нн	フッ素シリコーン O リング付き一体型ハッチ設置 (ハンドゲージでパイプに直接アクセス)

タンク接続

コード	説明	
ANSI 穴パ	ANSI 穴パターン (SST AISI 316/316 L) – 平面座	
5A	5 インチクラス 150	
6A	6 インチクラス 150	
8A	8 インチクラス 150	
AA	10 インチクラス 150	
BA	12 インチクラス 150	
EN 穴パターン (SST EN 1.4404) – 平面座		
КА	DN 150 PN 16	
LA	DN 200 PN 10	
MB	DN 250 PN 16	

アンテナのオプション

コード	説明
0	なし
С	フランジを亜鉛メッキ鋼にクランプ (フランジなしのスティルパイプ用)。6, 8 , 10, および 12 インチ のタンク接続に 可能。
V ⁽¹⁾⁽²⁾	最終試験検証用リフレクタ (サイズはタンク接続と同じ)

(1) アンテナサイズコード 6、8、A または B が必要です。

(2) オプションコード U1 では用意されません。

その他のオプション 安全性認証

安全性認証 (SIS) コード S が必要です。

コード	説明
QT	IEC 61508 認証と FMEDA データ (印刷コピー)

校正証明書

コード	説明
Q4	校正証明書 (タンクの高さ最大 30 m (100 フィート)、印刷コピー)
QL	校正証明書 (タンクの高さ最大 40 m (130 フィート)、印刷コピー)

トレーサビリティ認証

トランスミッタヘッドのスペアパーツには非対応。

コード	説明
Q8	EN 10204 3.1 によるアンテナ材質のトレーサビリティ認証

過充填保護認証

コード	説明
U1 ⁽¹⁾	TÜV/DIBt WHG 過充填保護認証
U2	SVTI 過充填保護認証 (スイス)

(1) ひとつ以上のリレー出力がRosemount 2410 のタンクハブに必要です。

タグ プレート

コード	説明
ST	刻印済み SST タグプレート(タグは注文時に提出する必要があります)

製品の延長保証

Rosemountの延長保証には、出荷日から3年または5年の限定保証があります。

コード	説明
WR3	3 年限定保証
WR5	5 年の限定保証

A.13.4 Rosemount 5900C LPG/LNG アンテナ付レーダー・レベル・ ゲージ

必須構成機器 モデル

コード	説明
5900C	レーダーレベルゲージ

性能クラス

コード	説明
1	±1 mm (0.04 インチ) 機器の精度
2	±2 mm (0.08 インチ) 機器の精度

安全性認証 (SIS)

コード	説明
S ⁽¹⁾	IEC 61508 SIL 2 認証に対応
F	なし。安全性証明 (SIS) にアップグレードする準備
0	なし

(1) Rosemount 2410 には、アナログ出力 4-20 mA またはリレー出力 コード 1 か 2 が必要です。

冗長性

コード	説明
1	なし。単一レーダー レベル ゲージ機器

タンクバス:電力と通信

コード	説明
F	バスパワー 2 線 FOUNDATION [™] Fieldbus フィールドバス (IEC 61158)

危険区域認証

コード	説明
I1	ATEX /UKEX 本質安全防爆
17	IECEx 本質安全防爆
15	FM-米国 本質安全防爆
I6	FM-カナダ 本質安全防爆
I2	INMETRO 本質安全防爆 (ブラジル)
IP	KC 本質安全防爆 (韓国)
IW	CCOE/PESO 本質安全防爆 (インド)

コード	説明
I4 ⁽¹⁾	日本 本質安全防爆
IM	技術規則関税同盟 (EAC) 本質安全防爆
NA	なし

(1) ケーブル入口/コンジット接続コード E または M は使用不可。

管理輸送タイプの承認

コード	説明
0	なし

液面測定方法

コード	説明
1	10 GHz FMCW レーダー技術
2	米国/ロシアの設置用の 10GHz FMCW レーダー技術

ハウジング

コード	説明
А	標準筐体ー ポリウレタンに覆われたアルミ。IP 66/67

ケーブル入口/コンジット接続部

コード	説明
1	½ - 14 NPT, メスネジ。(1 個のプラグが付属)
2	M20 x 1.5 アダプター メスネジ)(2 個のアダプタと 1 個のプラグが付属)
G	メタルケーブルグランド (½ - 14 NPT)最低温度 -20 ℃ (-4 °F)ATEX/IECEx Exe 推奨 (2 個のグランドと 1 個のプラグが付属)
E	eurofast [®] オスコネクタ (1 個のプラグが付属)
М	minifast [®] オスコネクタ (1 個のプラグが付属)

アンテナ

コード	説明
G1	LPG/LNG (極低温液化ガス) スチルパイプアンテナ (ボール弁内蔵、圧力トランスミッタなし)
G2 ⁽¹⁾	LPG/LNG (極低温液化ガス) スチルパイプアンテナ (一体型ボール弁と圧力トランスミッタあり)

(1) 危険区域認証コード I1、I2、I5、I6、I7、IP、I4 または IM が必要です。

関連情報

Rosemount 5900C LPG/LNG アンテナ付属

アンテナのサイズ

コード	説明
A	4 インチスケジュール 10, Ø=107 mm (4.2 インチ)
В	4 インチスケジュール 40、 Ø=101 mm (4.0 インチ)
D	DN 100, Ø=99 mm (3.9 インチ)

アンテナの材質

コード	説明
s	SST AISI 316/316L および SST EN1.4401/1.4404

タンク シール

コード	説明
РТ	PTFE シール

タンク接続

コード	説明
ANSI フラン	√ジ (SST AISI 316/316 L) – 平面座
1B ⁽¹⁾	1.5 インチクラス 300
2A ⁽¹⁾	2 インチクラス 150
2B ⁽¹⁾	2 インチクラス 300
3A ⁽¹⁾	3 インチクラス 150
3B ⁽¹⁾	3 インチクラス 300
4A	4 インチクラス 150
4B	4 インチクラス 300
6A	6 インチクラス 150
6B	6 インチクラス 300
8A	8 インチクラス 150
8B	8 インチクラス 300
EN ホールパターン (SST EN 1.4404) – 平面座 B1	
NA	DN 100 PN40
OA	DN 150 PN40
PA	DN 200 PN25
РВ	DN 200 PN40

(1) アンテナサイズコードA が必要です。

アンテナのオプション

コード	説明
V	測定検証キット リファレンスピン 1 本とパイプエンド デフレクターキット 1 式

その他のオプション 安全性認証

安全性認証 (SIS) コード S が必要です。

コード	説明
QT	IEC 61508 認証と FMEDA データ (印刷コピー)

校正証明書

コード	説明
Q4	校正証明書 (タンクの高さ最大 30 m (100 フィート)、印刷コピー)
QL	校正証明書 (タンクの高さ最大 40 m (130 フィート)、印刷コピー)

トレーサビリティ認証

トランスミッタヘッドのスペアパーツには非対応。

コード	説明
Q8	EN 10204 3.1 によるアンテナ材質のトレーサビリティ認証

過充填保護認証

コード	説明
U1 ⁽¹⁾	TÜV/DIBt WHG 過充填保護認証
U2	SVTI 過充填保護認証 (スイス)

(1) ひとつ以上のリレー出力がRosemount 2410 のタンクハブに必要です。

タグ プレート

コード	説明
ST	刻印済み SST タグプレート(タグは注文時に提出する必要があります)

耐圧試験

コード	説明
P1	アンテナ耐圧試験

製品の延長保証

Rosemountの延長保証には、出荷日から3年または5年の限定保証があります。

コード	説明
WR3	3 年限定保証
WR5	5年の限定保証

A.13.5 Rosemount 5900C 1 インチと 2 インチのスチルパイプアン テナ付きレーダー・レベル・ゲージ

必須構成機器

モデル

コード	説明
5900C	レーダーレベルゲージ

性能クラス

コード	説明
2	±2 mm (0.08 インチ) 機器の精度

安全性認証 (SIS)

コード	説明
S ⁽¹⁾	IEC 61508 SIL 2 認証に対応
F	なし。安全性証明 (SIS) にアップグレードする準備
0	なし

(1) Rosemount 2410 には、アナログ出力 4-20 mA またはリレー出力 コード 1 か 2 が必要です。

冗長性

コード	説明
1	なし。単一レーダー レベル ゲージ機器

タンクバス:電力と通信

コード	説明
F	バスパワー 2 線 Foundation [™] Fieldbus フィールドバス (IEC 61158)

危険区域認証

コード	説明
I1	ATEX /UKEX 本質安全防爆
I7	IECEx 本質安全防爆
I5	FM-米国 本質安全防爆
I6	FM-カナダ 本質安全防爆
I2	INMETRO 本質安全防爆 (ブラジル)
IP	KC 本質安全防爆 (韓国)
IW	CCOE/PESO 本質安全防爆 (インド)

コード	説明
I4 ⁽¹⁾	日本 本質安全防爆
IM	技術規則関税同盟 (EAC) 本質安全防爆
NA	なし

(1) ケーブル入口/コンジット接続コード E または M は使用不可。

管理輸送タイプの承認

コード	説明
0	なし

液面測定方法

コード	説明
1	10 GHz FMCW レーダー技術
2	米国/ロシアの設置用の 10GHz FMCW レーダー技術

ハウジング

コード	説明
А	標準筐体ー ポリウレタンに覆われたアルミ。IP 66/67

ケーブル入口/コンジット接続部

コード	説明
1	½ - 14 NPT, メスネジ。(1 個のプラグが付属)
2	M20 x 1.5 アダプター メスネジ)(2 個のアダプタと 1 個のプラグが付属)
G	メタルケーブルグランド (½ - 14 NPT)最低温度 -20 ℃ (-4 °F)ATEX/IECEx Exe 推奨 (2 個のグランドと 1 個のプラグが付属)
E	eurofast [®] オスコネクタ (1 個のプラグが付属)
М	minifast [®] オスコネクタ (1 個のプラグが付属)

アンテナ

コード	説明
11 ⁽¹⁾	スティルパイプ 1 インチアンテナ (デフレクタープレートを含む)
12	スティルパイプ 2 インチアンテナ (デフレクタープレートを含む)

(1) アンテナとスティルパイプ3000 mm を含みます。

アンテナプレート

コード	説明	アンテナ
2	2 インチ/DN 50 プレート	1 インチ
0	2 ½ インチ/DN 65 プレート	1 インチ

コード	説明	アンテナ
3	3 インチ/DN 80 プレート	1 インチ、2 インチ
4	4 インチ/DN 100 プレート	1 インチ、2 インチ
6	6 インチ/DN 150 プレート	2 インチ
8	6 インチ/DN 200 プレート	2インチ

アンテナの材質

コード	説明	アンテナ
S	SST AISI 316L/EN 1.4436	1インチ、2インチ
Х	顧客指定、工場に相談	1インチ

タンク シール

コード	説明
PV	Viton フッ素エラストマ O リング付き PTFE
РК	Kalrez パーフルオロエラストマー O リング付き PTFE
QV	Viton フッ素エラストマ O リング付き石英
QK	Kalrez パーフルオロエラストマ O リング付き石英

タンク接続

コード	説明	
ANSIフラ	ANSI フランジ (SST AISI 316/316 L) - 全面座 アンテナ	
2A	2 インチクラス 150	1インチ
2B	2 インチクラス 300	1インチ
ЗA	3 インチクラス 150	1 インチ、2 インチ
3B	3 インチクラス 300	1 インチ、2 インチ
4A	4 インチクラス 150	1 インチ、2 インチ
4B	4 インチクラス 300	1インチ、2インチ
6A	6 インチクラス 150	2インチ
8A	8 インチクラス 150	2インチ
EN フランジ (SST EN 1.4404) - 全面座		アンテナ
НВ	DN 50 PN40	1インチ
IA	DN 80 PN16	1 インチ、2 インチ
IB	DN 80 PN40	1 インチ、2 インチ
JA	DN 100 PN16	1 インチ、2 インチ
JB	DN 100 PN40	1インチ、2インチ
KA	DN 150 PN16	2インチ
LA	DN 200 PN16	2インチ
その他		アンテナ

コード	説明	
00	なし	1インチ、2インチ
XX	お客様が指定します。工場にご相談ください	2インチ

アンテナのオプション

コード	説明	アンテナ
0	なし (スチルパイプを除く)	2インチ
1	スチルパイプ、長さ 3.0 m (9.8 フィート)	1 インチ、2 インチ
2	スチルパイプ、長さ 6.0 m (19.7 フィート)	2インチ
3	スチルパイプ、長さ 9.0 m (29.5 フィート)	2インチ
4	スチルパイプ、長さ 12 m (39.4 フィート)	2インチ
Х	お客様が指定します。工場にご相談ください	1インチ

その他のオプション 安全性認証

安全性認証 (SIS) コード S が必要です。

コード	説明
QT	IEC 61508 認証と FMEDA データ (印刷コピー)

校正証明書

コード	説明
Q4	校正認定書 (印刷コピー)

トレーサビリティ認証

トランスミッタヘッドのスペアパーツには非対応。

コード	説明
Q8	EN 10204 3.1 によるアンテナ材質のトレーサビリティ認証

過充填保護認証

コード	説明
U1 ⁽¹⁾	TÜV/DIBt WHG 過充填保護認証
U2	SVTI 過充填保護認証 (スイス)

(1) ひとつ以上のリレー出力がRosemount 2410 のタンクハブに必要です。

タグ プレート

コード	説明
ST	刻印済み SST タグプレート(タグは注文時に提出する必要があります)

製品の延長保証

Rosemountの延長保証には、出荷日から3年または5年の限定保証があります。

コード	説明
WR3	3 年限定保証
WR5	5 年の限定保証

B 製品証明書

改訂 8.6 版

B.1 欧州指令および UKCA 規制情報

EU/UK 適合宣言の写しは、Rosemount 5900C 製品認証文書の最後にあります。EU/UK 適合宣言 の最新の改訂版については、Emerson.com/Rosemount をご覧ください。

B.2 通常使用区域に関する認証

トランスミッタは標準として、連邦労働安全衛生局 (OSHA) の認定を受けた国家認定試験機関 (NRTL) によって、設計が基本的な電気的、機械的、および防火要件を確実に満たしていることを 示すための検査と試験が実施されています。FM 3810:2021 および CSA に準拠:C22.2 No. 61010-1:2012.

B.3 環境条件

表 B-1:環境条件(通常使用区域および低電圧指令 (LVD))

タイプ	説明
場所	室内または室外での使用、湿度
最大高度	6562 ft.(2000 m)
周囲温度	-40 ~ 158 °F (-40 ~ 70 °C)
電気供給	9–32 Vdc、51 mA
主電源電圧の変動	±10% での安全性
過電圧カテゴリ	Ι
汚染度	2

B.4 電気通信規格への準拠

測定原理

周波数変調連続波 (FMCW)、10 GHz

最大出力電力

-18 dBm (0.02 mW)

周波数範囲

8.905~10.599 GHz

TLPR (タンクレベルプロービングレーダー) は、閉鎖空間限定 (金属製、コンクリートまたは強化 ガラス繊維製のタンク、または同等の減衰材料で製造された同様の筐体構造体) での液位測定用 機器です。

B.5 FCC

このデバイスは FCC 規制のパート 15C に適合しています。運用は次の 2 つの条件に従って行う 必要があります。(1) このデバイスが干渉の原因になってはならず、かつ (2) このデバイスが好ま しくない動作を引き起こす可能性のある干渉を含め、受信したすべての干渉を受信しなければな りません。

証明書:K8C5900

B.6 IC

このデバイスは RSS210-7 に適合しています。

証明書:2827A-5900

本機器は、カナダ政府産業省のライセンス適用免除 RSS 基準に準拠してます。運用は次の条件に 基づいて行う必要があります。

- 1. このデバイスは干渉を引き起こしません。
- 2. 本機器は、望ましくない動作を引き起こす可能性がある干渉など、受信したすべての干渉 を許容すること。
- 3. 設置は、メーカーの指示に厳密に従って、訓練を受けた設置者が行う必要があります。
- 4.本機器の使用は、「干渉なし、保護なし」に基づいています。つまり、ユーザーは、本機 器を妨害または損傷する可能性のある同じ周波数帯の高出力レーダーの影響を受け入れ るものとします。ただし、プライマリライセンス運用を妨げていることが判明した機器 は、ユーザーの負担で取り除く必要があります。
- 5. 本機器は、高周波放出を避けるために完全密封されたコンテナ内に設置し運用するものと します。そうしないと、飛行機の航行に干渉するおそれがあります。

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux conditions suivantes:

- 1. L'appareil ne doit pas produire de brouillage.
- 2. L'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
- 3. L'installation doit être effectuée par des installateurs qualifiés, en pleine conformité avec les instructions du fabricant.
- 4. Ce dispositif ne peut être exploité qu'en régime de non-brouillage et de non-protection, c'est-à-dire que l'utilisateur doit accepter que des radars de haute puissance de la même bande de fréquences puissent brouiller ce dispositif ou même l'endommager. D'autre part, les capteurs de niveau qui perturbent une exploitation autorisée par licence de fonctionnement principal doivent être enlevés aux frais de leur utilisateur.
- 5. L'appareil doit être installé et exploité dans un réservoir entièrement fermé afin de prévenir les rayonnements RF qui pourraient autrement perturber la navigation aéronautique.

B.7 無線機器指令 (RED) 2014/53/EU および無線機器規則 S.I. 2017/1206

このデバイスは ETSI EN 302 372 および EN 62479 に適合しています。このデバイスは ETSI EN 302372 の要件に従ってインストールする必要があります。

B.8 北米での装置の設置

National Electrical Code[®] (米国電気工事規程 - NEC) および Canadian Electrical Code (カナダ 電気工事規定 - CEC) は、Division のマークが付いた機器を Zone で使用すること、および Zone の マークが付いた機器を Division で使用することを許可しています。

これらのマークは領域分類、ガス、温度クラスに適している必要があります。この情報はそれぞれの規程で明確に定義されています。

B.9 北米

B.9.1 I5 米国本質的安全性

- 証明書 FM 17US0030X
- 規格 FM Class 3600:2018, FM Class 3610:2021, FM Class 3810:2021, ANSI/ISA 61010-1:2012, ANSI/NEMA 250:2003, ANSI/IEC 60529:2004, ANSI/UL 60079-0:2020, ANSI/UL 60079-11:2014 Ed 6.3, ANSI/UL 60079-26:2017 Ed 3

マーク IS/I,II,III/1/ABCDEFG/T4

DIP/II,III/1/EFG/T5

CL 1 ZN 0 AEx ia IIC T4 Ga

CL 1 ZN 0/1 AEx ib IIC T4 Ga/Gb

Ta = -50 °C ~ 80 °C - 9240040-917;

Type 4X; IP66; IP67

	Ui (Vmax)	Ii (lmax)	Pi	Ci	Li
エンティティパラメータ	30 V	300 mA	1.3 W	1.1 nF	1.5 µH
FISCO パラメータ	17.5V	380 mA	5.32 W	1.1 nF	1.5 µH

安全に使用するための特定条件(X):

- 筐体ーにはアルミが含まれ、衝撃や摩擦により発火する潜在的リスクが存在すると考えられます。EPL Ga として設置する場合、設置と使用の際には衝撃や摩擦を防止するよう注意を払う必要があります。
- 非金属の表面と塗装されたハウジングの表面は、一定の過酷な条件では発火するレベルの 静電気を発生することがあります。静電放電を防止するため適切な手段を取る必要があ ります。
- 3. 銘板上のボックスを使用して、ユーザーは特定の設置用に選択された保護の種類を恒久的 に記録します。保護の種類を記録した後は、変更してはなりません。
- 4. Ex ib Ga/Gb として設置したら, EPL Ga を EPL Gb から分離するパーティションウォールの素材はアンテナのオプションに応じて個別の素材で建造されます。各アンテナの素材のタイプについては制御図面 D9240040-917 を参照してください。素材はパーティションウォールに有害な影響を及ぼす可能性のある環境条件では使えません。

オプション n=タンクシールの場 合	0 リングタイプ	最低/最高処理温度範囲
PV または QV	Viton [®]	−15 °C ~ +180 °C
PK, FK, HK または QK	Kalrez [®]	-20 °C ~ +230 °C
PE または QE	EPDM	-40 °C ~ +110 °C
PB または QB	BUNA-N	-35°C ~ +90°C
PM、FF、HH または QM	FVMQ	-60 °C ~ +155 °C
PF または QF	FEP	-60 °C ~ +180 °C

5. 最大処理温度は以下の通りです。

B.9.2 I6 カナダ 本質安全防爆

証明書	FM17CA0016X
規格	CSA-C22.2 No. 25-2017
	CSA-C22.2 No. 94-M91:1991 (R2011)
	CSA-C22.2 No. 61010-1:2012
	CSA-C22.2 No. 60529:2016
	CSA-C22.2 No. 60079-0:2019
	CSA-C22.2 No. 60079-11:2014
	CSA-C22.2 No. 60079-26:2016
マーク	IS/I,II,III/1/ABCDEFG/T4
	Ex ia IIC T4 Ga
	Ex ib IIC T4 Ga/Gb
	DIP/II,III/1/EFG/T5
	Ta = -50°C ~ 80°C
	9240040-917
	Туре 4Х; ІР66; ІР67

	Ui (Vmax)	Ii (lmax)	Pi	Ci	Li
エンティティパラメータ	30 V	300 mA	1.3 W	1.1 nF	1.5 µH
FISCO パラメータ	17.5V	380 mA	5.32 W	1.1 nF	1.5 µH

安全に使用するための特定条件 (X):

- 筐体ーにはアルミが含まれ、衝撃や摩擦により発火する潜在的リスクが存在すると考えられます。EPL Ga として設置する場合、設置と使用の際には衝撃や摩擦を防止するよう注意を払う必要があります。
- 非金属の表面と塗装されたハウジングの表面は、一定の過酷な条件では発火するレベルの 静電気を発生することがあります。静電放電を防止するため適切な手段を取る必要があ ります。
- 3. 銘板上のボックスを使用して、ユーザーは特定の設置用に選択された保護の種類を恒久的 に記録します。保護の種類を記録した後は、変更してはなりません。
- 4. Ex ib Ga/Gb として設置したら, EPL Ga を EPL Gb から分離するパーティションウォールの素材はアンテナのオプションに応じて個別の素材で建造されます。各アンテナの素材のタイプについては制御図面 D9240040-917 を参照してください。素材はパーティションウォールに有害な影響を及ぼす可能性のある環境条件では使えません。

オプション n=タンクシールの場 合	0 リングタイプ	最低/最高処理温度範囲
PV または QV	Viton	−15 °C ~ +180 °C
PK, FK, HK または QK	Kalrez	-20 °C ~ +230 °C
PE または QE	EPDM	-40 °C ~ +110 °C
PB または QB	BUNA-N	-35°C ~ +90°C
PM、FF、HH または QM	FVMQ	-60 °C ~ +155 °C
PF または QF	FEP	-60 °C ~ +180 °C

5. 最大処理温度は以下の通りです。

B.10 欧州

B.10.1 I1 ATEX/UKEX 本質安全

証明書	FM09ATEX0057X、	M21UKEX0110X

規格 EN IEC 60079-0:2018, EN 60079-11:2012, EN 60079-26:2015, EN 60529:1991+A1:2000+A2:2013

マーク ⁽¹⁾ II 1G Ex ia IIC T4 Ga II 1/2 G Ex ib IIC T4 Ga/Gb Ta = -50°C ~ 80°C; IP66, IP67

	Ui (Vmax)	Ii (lmax)	Pi	Ci	Li
エンティティパラメータ	30 V	300 mA	1.3 W	1.1 nF	1.5 µH
FISCO パラメータ	17.5V	380 mA	5.32 W	1.1 nF	1.5 µH

安全に使用するための特定条件 (X):

- 筐体ーにはアルミが含まれ、衝撃や摩擦により発火する潜在的リスクが存在すると考えられます。EPL Ga として設置する場合、設置と使用の際には衝撃や摩擦を防止するよう注意を払う必要があります。
- 非金属の表面と塗装されたハウジングの表面は、一定の過酷な条件では発火するレベルの 静電気を発生することがあります。静電放電を防止するため適切な手段を取る必要があ ります。
- 3. 銘板上のボックスを使用して、ユーザーは特定の設置用に選択された保護の種類を恒久的 に記録します。保護の種類を記録した後は、変更してはなりません。
- 4. Ex ib Ga/Gb として設置したら, EPL Ga を EPL Gb から分離するパーティションウォールの素材はアンテナのオプションに応じて個別の素材で建造されます。各アンテナの素材のタイプについては制御図面 D9240040-917 を参照してください。素材はパーティションウォールに有害な影響を及ぼす可能性のある環境条件では使えません。
- 5. 最大処理温度は以下の通りです。

オプション n=タンクシールの場 合	0 リングタイプ	最低/最高処理温度範囲
PV または QV	Viton	−15 °C ~ +180 °C
PK, FK, HK または QK	Kalrez	-20 °C ~ +230 °C
PE または QE	EPDM	-40 °C ~ +110 °C
PB または QB	BUNA-N	-35°C ~ +90°C
PM、FF、HH または QM	FVMQ	-60 °C ~ +155 °C
PF または QF	FEP	-60 °C ∼ +180 °C

B.11 国際

B.11.1 I7 IECEx 本質安全防爆

証明書 IECEx FMG 09.0009X

規格 IEC 60079-0:2017, IEC 60079-11:2011, IEC 60079-26:2014-10

- マーク
 - Ex ia IIC T4 Ga Ex ib IIC T4 Ga/Gb Tamb = -50°C ~ +80°C; IP66, IP67

	Ui (Vmax)	Ii (lmax)	Pi	Ci	Li
エンティティパラメータ	30 V	300 mA	1.3 W	1.1 nF	1.5 µH
FISCO パラメータ	17.5V	380 mA	5.32 W	1.1 nF	1.5 µH

安全に使用するための特定条件 (X):

- 筐体ーにはアルミが含まれ、衝撃や摩擦により発火する潜在的リスクが存在すると考えられます。EPL Ga として設置する場合、設置と使用の際には衝撃や摩擦を防止するよう注意を払う必要があります。
- 非金属の表面と塗装されたハウジングの表面は、一定の過酷な条件では発火するレベルの 静電気を発生することがあります。静電放電を防止するため適切な手段を取る必要があ ります。
- 3. 銘板上のボックスを使用して、ユーザーは特定の設置用に選択された保護の種類を恒久的 に記録します。保護の種類を記録した後は、変更してはなりません。
- 4. Ex ib Ga/Gb として設置したら, EPL Ga を EPL Gb から分離するパーティションウォールの素材はアンテナのオプションに応じて個別の素材で建造されます。各アンテナの素材のタイプについては制御図面 D9240040-917 を参照してください。素材はパーティションウォールに有害な影響を及ぼす可能性のある環境条件では使えません。
- 5. 最大処理温度は以下の通りです。

オプション n=タンクシールの場 合	0 リングタイプ	最低/最高処理温度範囲
PV または QV	Viton	−15 °C ~ +180 °C
PK, FK, HK または QK	Kalrez	-20 °C ~ +230 °C
PE または QE	EPDM	-40 °C ~ +110 °C
PB または QB	BUNA-N	-35°C ~ +90°C
PM、FF、HH または QM	FVMQ	-60 °C ~ +155 °C
PF または QF	FEP	-60 °C ~ +180 °C

B.12 ブラジル

B.12.1 I2 INMETRO 本質安全防爆

証明書 UL-BR 17.0982X

規格 ABNT NBR IEC 60079-0:2020, 60079-11:2013, 60079-26:2016

マーク

Ex ia IIC T4 Ga Ex ib IIC T4 Ga/Gb Tamb: -50 °C ~ + 80 °C

IP66/IP67

	Ui (Vmax)	Ii (lmax)	Pi	Ci	Li
エンティティパラメータ	30 V	300 mA	1.3 W	1.1 nF	1.5 µH
FISCO パラメータ	17.5V	380 mA	5.32 W	1.1 nF	1.5 µH

安全な使用のための特別条件(X):

1. 特別な条件については証明書を参照してください。

B.13 中国

B.13.1 I3 中国本質安全防爆

証明書	GYJ21.1117X
規格	GB 3836.1-2010、GB 3836.4-2010、GB 3836.20-2010
マーク	Ex ia IIC T4 Ga
	Ex ib IIC T4 Ga/Gb

		Ui (Vmax)	Ii (lmax)	Pi	Ci	Li
Е	ニンティティパラメータ	30 V	300 mA	1.3 W	1.1 nF	1.5 µH
F	ISCO パラメータ	17.5V	380 mA	5.32 W	1.1 nF	1.5 µH

安全な使用のための特別条件(X):

1. 特別な条件については証明書を参照してください。

B.14 技術規則関税同盟 (EAC)

証明書	ЕАЭС RU C-US. АД07. В.00770/19
TR CU 032/2013	「加圧下の機器と容器の安全性」
TR CU 020/2011	「技術製品の電磁両立性」

B.14.1 IM EAC 本質安全防爆

証明書 EAЭC RU C-SE.AA87.B.00528/20

マーク 0 Ex ia IIC T4 Ga X Ga/Gb Ex ib IIC T4 X Tamb: -50 °C ~ + 80 °C IP66/IP67

	Ui (Vmax)	Ii (lmax)	Pi	Ci	Li
エンティティパラメータ	30 V	300 mA	1.3 W	1.1 nF	1.5 µH
FISCO パラメータ	17.5V	380 mA	5.32 W	1.1 nF	1.5 µH

安全な使用のための特別条件 (X):

1. 特別な条件については証明書を参照してください。

B.14.2 Ex

TR CU 012/2011 「爆発性雰囲気での使用を予定する機器の安全性」

B.15 日本

B.15.1 I4 日本 本質安全防爆

証明書 CI	ML 17JPN2301X
--------	---------------

マーク Ex ia IIC T4 Ga

Ex ib IIC T4 Ga/Gb

-50 °C ≤ Ta ≤ +80 °C

	Ui (Vmax)	Ii (lmax)	Pi	Ci	Li
FISCO パラメータ	17.5V	380 mA	5.32 W	1.1 nF	1.5 µH
エンティティパラメータ	30 V	300 mA	1.3 W	1.1 nF	1.5 µH

安全な使用のための特別条件(X):

1. 特別な条件については証明書を参照してください。

B.16 韓国

B.16.1 IP 韓国 本質安全防爆

証明書	14-KB4BO-0573X
マーク	Ex ia IIC T4 Ga
	Ex ib IIC T4 Ga/Gb

(-50 °C ≤ Ta ≤ +80 °C)

	Ui (Vmax)	Ii (lmax)	Pi	Ci	Li
エンティティパラメータ	30 V	300 mA	1.3 W	1.1 nF	1.5 µH
FISCO パラメータ	17.5V	380 mA	5.32 W	1.1 nF	1.5 µH

安全な使用のための特別条件 (X):

1. 特別な条件については証明書を参照してください。

B.17 インド

B.17.1 India Ex 認証

証明書 P463068/1

マーク IECEx (I7) と同じ

	Ui (Vmax)	Ii (lmax)	Pi	Ci	Li
エンティティパラメータ	30 V	300 mA	1.3 W	1.1 nF	1.5 µH
FISCO パラメータ	17.5V	380 mA	5.32 W	1.1 nF	1.5 µH

安全な使用のための特別条件(X):

1. 特別な条件については証明書を参照してください。

B.18 アラブ首長国連邦

B.18.1 本質安全

証明書	20-11-28736/Q20-11-001012
マーク	IECEV (IZ) と同じ

マーク IECEx (I7) と同じ

B.19 その他の認証

B.19.1 機能安全性認証 (SIS)

S 機能的安全性

証明書	ROS 1312032 C004
	SIL 2 1-in-1 (1001) オプション、4-20mA または K1/K2 リレー付属
規格	IEC 61508:2010 Parts 1-7

B.19.2 ドイツ WHG 認証 (DIBt)

証明書	Z-65.16-500

B.19.3 ベルギーオーバーフィル認定 (Vlarem) 証明書 99/H031/13072201

B.20 パターンの承認

B.20.1 中国のパターン承認

CPA パターン承認

証明書 2015-L206 (5900C)

B.20.2 カザフスタンのパターン承認

GOST パターン承認

証明書 KZ.02.02.06177-2018 No.14983 (5900) KZ.02.02.04018-2014 No.10790 (システム)

B.20.3 ロシアのパターン承認

GOST パターン承認

証明書 68312-17

B.21 製品認証 Rosemount 2051

Rosemount 2051 製品認証からの抜粋 Rev:1.22

B.21.1 北米

IE 米国 FISCO

証明書	FM16US0231X
規格	FM クラス 3600 – 2011, FM クラス 3610 – 2010, FM クラス 3611 – 2004, FM クラス 3810 – 2005

マーク IS CL I, DIV 1, GP A, B, C, D Rosemount 02051-1009 図面に従って接続した 場合 (-50°C ≤ Ta ≤ +60°C); タイプ 4x

安全な使用のための特別条件(X):

 モデル 2051 送信器のハウジングにはアルミが含まれ、衝撃や摩擦により発火する潜在的 リスクが存在すると考えられます。設置および使用の際には衝撃や摩擦を避けるよう注 意してください。

IF カナダ FISCO

証明書	2041384
規格	CSA Std.C22.2 No. 142 - M1987, CSA Std.C22.2 No. 213 - M1987, CSA Std.C22.2 No. 157 - 92, CSA Std.C22.2 No. 213 - M1987, ANSI/ISA 12.27.01 – 2003, CAN/CSA-E60079-0:07, CAN/CSA-E60079-11:02
マーク	Rosemount 図面 02051-1008 に従って接続された場合の Class I, Division 1, Groups A, B, C, および D に対する本質安全防爆。Ex ia IIC T3C.シングル シール筐体タイプ 4X

B.21.2 欧州

IA ATEX FISCO

- 証明書 Baseefa08ATEX0129X
- 規格 EN60079-0:2012+A11:2013, EN60079-11:2012

	Ui	Ii	Pi	Ci	Li
FISCO パラメータ	17.5V	380 mA	5.32 W	0 µF	0 mH

安全な使用のための特別条件(X):

- 機器にオプションの 90 V 過渡サプレッサが取り付けられている場合、接地試験から 500 V の絶縁に耐えることができないため、設置時にこれを考慮する必要があります。
- 2. T 筐体はアルミ合金製で保護用のポリウレタン塗装仕上げが施されている場合がありま すが、装置がゾーン0にある場合、衝撃と摩耗から保護するよう注意してください。

B.21.3 国際

IG IECEx FISCO

証明書 IECExBAS08.0045X	
----------------------	--

規格 IEC 60079-0:2011、IEC 60079-11:2011

 $\mathbf{7-7}$ Ex ia IIC T4 Ga (-60°C \leq Ta \leq +60°C)

	Ui	Ii	Pi	Ci	Li
FISCO パラメータ	17.5V	380 mA	5.32 W	0 nF	0µH

安全な使用のための特別条件(X):

- 1. 機器にオプションの 90 V 過渡サプレッサが取り付けられている場合、接地試験から 500 V の絶縁に耐えることができないため、設置時にこれを考慮する必要があります。
- 2. T 筐体はアルミ合金製で保護用のポリウレタン塗装仕上げが施されている場合がありま すが、装置がゾーン0にある場合、衝撃と摩耗から保護するよう注意してください。
- 機器には薄い仕切りのダイアフラムが含まれています。設置とメンテナンスおよび利用 の際にはダイアフラムが接触することになる環境条件に注意する必要があります。想定 された耐用期間を通して安全を保証するため、設置およびメンテナンスのための指示を細 部まで遵守してください。

B.22 承認図面

設置するデバイスが認証済み評価を保つために、Factory Mutual システム制御図面に提示された 設置ガイドラインに従います。

以下の図面は Rosemount 5900C レーダーレベルゲージの書類に含まれています:

本質的に安全な FM ATEX や FM IECEx、FM-US、それに FM-C を危険な場所に設置するための 9240040-917 システム制御図面。

システム制御図面の電子コピーについては、Rosemount 5900C レーダーレベルゲージに同梱さ れている 「マニュアルと図面」の CD-ROM をご覧ください。

図面はエマソンのウェブサイト www.Emerson.com でも入手できます。

C FOUNDATION[™] Fieldbus フィールドバス ブロック情報

C.1 リソースブロックパラメータ

このセクションでは、Rosemount 5900C のリソースブロックに関する情報を示します。 リソースブロックは、機器の物理リソースを定義します。リソースブロックは、複数のブロック に共通する機能も処理します。このブロックにはリンク可能な入出力はありません。

表 C-1: リソースブロックパラメータ

インデックス 番号	パラメータ	説明	
01	ST_REV	ファンクションブロックに関連する静的データのリビジョンレベル。	
02	TAG_DESC	ブロックの使用目的についてのユーザー説明。	
03	STRATEGY	ストラテジフィールドは、ブロックのグループ分けを識別するために使用でき ます。	
04	ALERT_KEY	プラントユニットの識別番号。	
05	MODE_BLK	ブロックの実際モード、目標モード、許可モード、通常モード。 対象:切り替わるモード 実際:"現在のブロック" モード 許可:対象が取ることができるモード 標準:実際の最も一般的なモード	
06	BLOCK_ERR	このパラメータは、ブロックに関連するハードウェアまたはソフトウェアコン ポーネントに関連するエラーステータスを反映します。ビット列であるため、 複数のエラーが表示される可能性があります。	
07	RS_STATE	ファンクションブロックのアプリケーションステートマシンの状態。	
08	TEST_RW	読み書きテストパラメータ - 適合性テストにのみ使用されます。	
09	DD_RESOURCE	このリソースの機器説明を含むリソースのタグを識別する文字列。	
10	MANUFAC_ID	メーカー識別番号 – インターフェース機器によって、リソースの DD ファイル を検索するために使用されます。	
11	DEV_TYPE	リソースに関連するメーカーモデル番号。インターフェース機器がリソースの DD ファイルを検索するために使用します。	
12	DEV_REV	リソースに関連するメーカーリビジョン番号。インターフェース機器がリソー スの DD ファイルを検索するために使用します。	
13	DD_REV	リソースに関連する DD のリビジョン番号。インターフェース機器がリソース の DD ファイルを検索するために使用します。DD_REV は、機器と互換性のあ る最低 DD リビジョンを指定します (同じ機器リビジョン内)。ベンダーは、 DD_REVISION が DD_REV より高い更新された DD をリリースすることができ ます。これによりベンダーは、既存の機器リビジョンと互換性のある更新され た DD ファイルセットを現場でリリースすることができます。ホストは常に、 指定された DEV_REV/DEV_REVISION に対してより高い DD_REVISION を読み 込むことができます。 Foundation の要件に従い、DD_REV は常に 01 となります。	
14	GRANT_DENY	ホストコンピュータやローカルコントロールパネルからブロックの操作、調整、 アラームパラメータへのアクセスを制御するためのオプション。機器では使用 されていません。	

表 C-1 : リソースブロックパラメータ (続き)

インデックス 番号	パラメータ	説明
15	HARD_TYPES	チャンネル番号として利用可能なハードウェアの種類。
16	RESTART	手動による再起動を許可します。複数の段階の再起動が可能です。以下のとお りです。 1 実行 - はパラメータの受動状態です。 2 リソースの再起動 - 未使用 3 デフォルトで再起動 - パラメータをデフォルト値 (構成が行われる前の値) に リセットします 4 プロセッサの再起動 - CPU のウォームスタートを実行します
17	機能	 サポートされているリソースブロックオプションを表示するために使用されます。サポートされている機能は次のとおりです。 HARD_WRITE_LOCK_SUPPORT SOFT_WRITE_LOCK_SUPPORT REPORT_SUPPORT UNICODE_SUPPORT MULTI_BIT ALARM FAULT_STATE_SUPPORT
18	FEATURES_SEL	リソースブロックオプションを選択するために使用されます。
19	CYCLE_TYPE	このリソースで利用可能なブロック実行方法を指定します。
20	CYCLE_SEL	このリソースのブロック実行方法を選択するために使用されます。 Rosemount 5900C は以下をサポートしています。 予定:ブロックはファンクションブロックスケジュールに基づいてのみ実行さ れます。 ブロック実行:ブロックは、他のブロックの完了にリンクすることで実行される ことがあります。
21	MIN_CYCLE_T	リソースが可能な最短サイクル間隔の時間。
22	MEMORY_SIZE	空のリソースで利用可能な構成メモリ。ダウンロードを試みる前に確認するこ と。
23	NV_CYCLE_T	NV パラメータのコピーを不揮発性メモリに書き込むための、メーカー指定の 最小時間間隔。ゼロは自動的にコピーされないことを意味します。 NV_CYCLE_T の終わりには、変更されたパラメータだけを NVRAM で更新する 必要があります。
24	FREE_SPACE	さらなる構成に利用可能なメモリの割合。構成済みの機器をゼロにします。
25	FREE_TIME	ブロック処理時間のうち、追加ブロックの処理に使える時間の割合。
26	SHED_RCAS	ファンクションブロックの RCas 位置へのコンピュータの書き込みをあきらめ るまでの時間。SHED_ROUT = 0 のときに RCas からの Shed は発生しません
27	SHED_ROUT	ファンクションブロックの ROut 位置へのコンピュータの書き込みをあきらめ るまでの時間。SHED_ROUT = 0 のときに ROut からの Shed は発生しません
28	FAULT_STATE	出力ブロックへの通信の喪失、出力ブロックに生じた障害、または物理的な接触によって設定される状態。FAIL_SAFE 条件が設定されると、出力ファンクションブロックは FAIL_SAFE アクションを実行します。
29	SET_FSTATE	Set を選択することで、FAIL_SAFE 条件を手動で開始できるようにします。
30	CLR_FSTATE	このパラメータに Clear を書き込むと、フィールド条件がクリアされた場合、 機器の FAIL_SAFE がクリアさ れます。
表 C-1 : リソースブロックパラメータ (続き)

インデックス 番号	パラメータ	説明
31	MAX_NOTIFY	未確認の通知メッセージの最大可能数。
32	LIM_NOTIFY	未確認のアラート通知メッセージの最大許容数。
33	CONFIRM_TIME	再試行する前に、リソースがレポートの受信確認を待つ時間。 CONFIRM_TIME=0 の場合、リトライは行われません。
34	WRITE_LOCK	ハードウェア書き込み保護が選択されている場合、WRITE_LOCK はジャンパ設 定のインジケータとなり、ソフトウェア書き込み保護では利用できません。 ソフトウェア書き込みロックが選択され、WRITE_LOCK が設定されている場 合、WRITE_LOCK をクリアしない限り、他の場所からの書き込みは許可されま せん。ブロック入力は更新され続けます。
35	UPDATE_EVT	このアラートは、静的データに変更があった場合に発生します。
36	BLOCK_ALM	ブロックアラームは、ブロック内のすべての設定、ハードウェア、接続障害、 システム問題に使用されます。アラームの原因はサブコードフィールドに入力 されます。最初にアクティブになったアラームは、Status パラメータに Active ステータスを設定します。アラート報告タスクによって未報告ステータスがク リアされるとすぐに、サブコードが変更されていれば、アクティブステータス をクリアすることなく、別のブロックアラートを報告することができます。
37	ALARM_SUM	ファンクションブロックに関連するアラームの現在のアラームステータス、未 確認状態、未報告状態、無効状態。
38	ACK_OPTION	ファンクションブロックに関連するアラームを自動的に確認するかどうかを選 択します。
39	WRITE_PRI	書き込みロックのクリアにより発生するアラームの優先度。
40	WRITE_ALM	このアラートは、書き込みロックパラメーターがクリアされた場合に発生しま す。
41	ITK_VER	この機器を相互運用可能であると認証する際に使用した相互運用性テストケー スのメジャーリビジョン番号。フォーマットと範囲は Fieldbus Foundation に よって制御されます。
42	FD_VER	この機器が設計されたフィールド診断仕様のメジャーバージョンの値に等しい パラメータ。
43	FD_FAIL_ACTIVE	このパラメータは、このカテゴリで選択され、アクティブとして検出されてい
44	FD_OFFSPEC_ACTIVE	るエラー状態を反映します。ヒット列であるため、複数の状態が表示される可 」能性があります。
45	FD_MAINT_ACTIVE	
46	FD_CHECK_ACTIVE	
47	FD_FAIL_MAP	このパラメータは、このアラームカテゴリのアクティブとして検出される条件
48	FD_OFFSPEC_MAP	をマッピングします。したかって、同じ状態が4つのアラームカテコリのすべ て、一部、またはいずれでもアクティブになる可能性があります。
49	FD_MAINT_MAP	
50	FD_CHECK_MAP	
51	FD_FAIL_MASK	このパラメータを使用すると、このカテゴリのアクティブな単一または複数の
52	FD_OFFSPEC_MASK	状態を、アラームハラメーダを通じてホストにフロートキャストされないよう にすることができます。ビットが「1」に等しいと、条件のブロードキャストを
53	FD_MAINT_MASK	マスク(抑制)し、ビットが「0」に等しいと、条件のブロードキャストのマス 」クを解除(許可)します。
54	FD_CHECK_MASK	
55	FD_FAIL_ALM	このパラメータは、主に、このアラームカテゴリの、マスクされていない関連
56	FD_OFFSPEC_ALM	アクティノ

表 C-1 : リソースブロックパラメータ (続き)

インデックス 番号	パラメータ	説明
57	FD_MAINT_ALM	
58	FD_CHECK_ALM	
59	FD_FAIL_PRI	このパラメータでは、このアラームカテゴリの優先順位を指定することができ
60	FD_OFFSPEC_PRI	「ます。
61	FD_MAINT_PRI	
62	FD_CHECK_PRI	
63	FD_SIMULATE	このパラメータでは、シミュレーションが有効になっているときに、条件を手動で指定することができます。シミュレーションを無効にすると、診断シミュレーション値と診断値の両方が実際の状態を追跡します。シミュレーションを 有効にするには、シミュレートジャンパが必要です。シミュレーションが有効 になっている間は、推奨動作にシミュレーションが有効であることが表示され ます。 エレメント:表 C-2を参照してください。
64	FD_RECOMMEN_ACT	このパラメータは、検出された最も深刻なコンディションを列挙した要約です。 DD ヘルプは、状況や条件を緩和するために何をすべきかを、列挙された行動 によって説明する必要があります。0 は「未初期化」、1 は「アクション不要」、 その他はメーカー定義。
65	FD_EXTENDED_ACTIVE	FD_*_ACTIVE パラメータでアクティブ状態を引き起こす条件について、より詳 細な情報をユーザーに提供するためのオプションのパラメータ。
66	FD_EXTENDED_MAP	FD_*_ACTIVE パラメータに寄与する条件を有効にするための、より細かい制御 を可能にするオプションのパラメータ。
67	COMPATIBILITY_REV	このパラメータは、フィールド機器を交換するときに使用されます。このパラ メータの正しい値は、交換された機器の DEV_REV 値です。
68	HARDWARE_REVISION	ハードウェアリビジョン。
69	SOFTWARE_REV	リソースブロックを使用したソースコードのソフトウェアリビジョン。
70	PD_TAG	機器の PD タグの説明。
71	DEV_STRING	これは、新しいライセンスを機器に読み込むために使用されます。値を書き込 むことは可能ですが、常に値 0 で読み返されます。
72	DEV_OPTIONS	有効なその他の機器ライセンスオプションを示します。
73	OUTPUT_BOARD_SN	出力ボードのシリアル番号。Rosemount 5900C の場合、これはメインラベル 機器 ID と同じで、ハウジングに取り付けられているメインラベルに記載されて います。
74	FINAL_ASSY_NUM	メーカーによる最終組立番号。
75	DOWNLOAD_MODE	無線ダウンロードのブートブロックコードへのアクセスを付与します。 0 = 未初期化 1 = 実行モード 2 = ダウンロードモード
76	HEALTH_INDEX	機器の全体的な健康状態を表すパラメータで、100 が完全、1 が機能していな いことを表します。この値は、有効な PWA アラームに基づいています。
77	FAILED_PRI	FAILED_ALM のアラームの優先度を指定し、FD とレガシー PWA の切り替えに も使用されます。値が 1 以上であれば、PWA アラートが機器でアクティブにな り、そうでなければ FD アラートになります。
78	RECOMMENDED_ACTION	機器警告とともに表示される推奨アクションの列挙リスト。

表 C-1: リソースブロックパラメータ (続き)

インデックス 番号	パラメータ	説明
79	FAILED_ALM	機器が動作不能になるような機器内の障害を示すアラーム。
80	MAINT_ALM	まもなく機器の保守が必要であることを示すアラーム。この状態を無視してい ると、やがてデバイスに障害が発生します。
81	ADVISE_ALM	アドバイザリ アラームを示すアラーム。これらの条件はプロセスやデバイスの完全性に直接影 響しません。
82	FAILED_ENABLE	FAILED_ALM アラーム条件を有効にしました。FAILED_ACTIVE にビット単位 で対応。ビットがオンの場合、対応するアラーム状態が有効であり、検出され ることを意味します。ビットオフとは、対応するアラーム状態が無効であり、 検出されないことを意味します。
		このパラメータは FD_FAIL_MAP の読み取り専用コピーです。
83	FAILED_MASK	FAILED_ALM のマスク。FAILED_ACTIVE にビット単位で対応。ビット オンは、条件がアラーム発生からマスク アウトされることを意味します。
		このパラメータは FD_FAIL_MASK の読み取り専用コピーです。
84	FAILED_ACTIVE	機器内の障害状態の列挙リスト。すべてのオープンビットは、各機器に応じて 自由に使用することができます。
		このバラメータは FD_FAIL_ACTIVE の読み取り専用コピーです。
85	MAINT_PRI	MAINT_ALM のアラーム優先度を指定します。
86	MAINT_ENABLE	MAINT_ALM アラーム条件を有効にしました。MAINT_ACTIVE にビット単位 で対応。ビットがオンの場合、対応するアラーム状態が有効であり、検出され ることを意味します。ビットオフとは、対応するアラーム状態が無効であり、 検出されないことを意味します。
		このパラメータは FD_OFFSPEC_MAP の読み取り専用コピーです。
87	MAINT_MASK	MAINT_ALM のマスク。MAINT_ACTIVE にビット単位で対応。ビット オンは、条件 がアラーム発生からマスク アウトされることを意味します。
		このパラメータは FD_OFFSPEC_MASK の読み取り専用コピーです。
88	MAINT_ACTIVE	機器内の保守状態の列挙リスト。
		このパラメータは FD_OFFSPEC_ACTIVE の読み取り専用コピーです。
89	ADVISE_PRI	ADVISE_ALM のアラームの優先度を指定します。
90	ADVISE_ENABLE	ADVISE_ALM アラーム条件を有効にしました。ADVISE_ACTIVE にビット単位 で対応。ビットがオンの場合、対応するアラーム状態が有効であり、検出され ることを意味します。ビットオフとは、対応するアラーム状態が無効であり、 検出されないことを意味します。 このパラメータは FD_MAINT_MASK & FD_CHECK_MASK.の読み取り専用コ ピーです。
91	ADVISE_MASK	ADVISE_ALM のマスク。ADVISE_ACTIVE にビット単位で対応。ビット オンは、条 件がアラーム発生からマスク アウトされることを意味します。このパラメータは FD_MAINT_MASK & FD_CHECK_MASK. の読み取り専用コピーです。
92	ADVISE_ACTIVE	機器内の推奨状態の列挙リスト。すべてのオープンビットは、各機器に応じて 自由に使用することができます。 このパラメータは FD_MAINT_ACTIVE & FD_CHECK_ACTIVE の読み取り専用コ ピーです。

表 C-2: FD_SIMULATE 要素

インデッ クス	パラメータ	データの種類	サイズ	説明
1	診断シミュレート値	ビット列	4	書き込み可能。シミュレーションが有効な場合に診断で使用 されます。
2	診断値	ビット列	4	機器によって検出された現在の診断。
3	有効	符号なし 8	1	シミュレーションを有効/無効にします。動的。機器の再起動 後は常にシミュレーションが無効になります。

C.2 アナログ入力ブロックシステムパラメータ

図 C-1:アナログ入力ブロック

A. OUT_D = 選択されたアラーム状態を通知するディスクリート出力
 B. OUT = ブロック出力値とステータス

アナログ入力 (AI) ファンクションブロックは、フィールド機器の測定値を処理し、他のファンク ションブロックで使用できるようにします。AI ブロックの出力値は、エンジニアリング単位で、 測定の質を示すステータスを含みます。測定機器は、異なるチャンネルで利用可能な複数の測定 値または導出値をもつ場合があります。AI ブロックが処理する変数を定義するにはチャンネル 番号を使用します。

AI ブロックは、アラーム、信号スケーリング、信号フィルタリング、信号ステータス計算、モード制御、シミュレーションをサポートします。自動モードでは、ブロックの出力パラメータ (OUT) にプロセス変数 (PV) の値とステータスが反映されます。手動モードでは、OUT を手動で 設定することができます。手動モードは出力状態に反映されます。ディスクリート出力 (OUT_D) は、選択されたアラーム状態がアクティブかどうかを示すために提供されます。アラー ム検出は、OUT 値とユーザー指定のアラームリミットに基づいて行われます。

表 C-3 には、AI ブロックのパラメータとその単位、説明、インデックス番号が一覧で示されています。

インデックス番号 パラメータ 単位 説明 01 ST_REV なし ファンクションブロックに関連する静的データのリビジョンレベル。リ ビジョン値は、ブロック内の静的パラメータ値が変更されるたびにインク リメントされます。 02 TAG_DESC なし ブロックの使用目的についてのユーザー説明。

表 C-3: アナログ入力ファンクションブロックシステムパラメータの定義(続き)

インデックス番 号	パラメータ	単位	説明
03	STRATEGY	なし	ストラテジフィールドは、ブロックのグループ分けを識別するために使用 できます。このデータはブロックではチェックも処理もされません。
04	ALERT_KEY	なし	プラントユニットの識別番号。この情報は、ホストでアラームの選別など に使用されることがあります。
05	MODE_BLK	なし	ブロックの実際モード、目標モード、許可モード、通常モード。 対象:切り替わるモード 実際:"現在のブロック" モード 許可:対象が取ることができるモード 標準:対象の最も一般的なモード
06	BLOCK_ERR	なし	このパラメータは、ブロックに関連するハードウェアまたはソフトウェア コンポーネントに関連するエラーステータスを反映します。ビット列で あるため、複数のエラーが表示される可能性があります。
07	PV	XD_SCALE の EU	ブロック実行で使用されるプロセス変数。
08	OUT	OUT_SCALE の EU	ブロック出力値とステータス。
09	SIMULATE	なし	現在のトランスデューサの値とステータス、シミュレートされたトランス デューサの値とステータス、および有効/無効ビットを含むデータグルー プ。
10	XD_SCALE	なし	チャンネル入力値に関連するハイスケール値とロースケール値、工学単位 コード、および小数点以下の桁数。
11	OUT_SCALE	なし	OUT に関連するハイスケール値とロースケール値、工学単位コード、お よび小数点以下の桁数。
12	GRANT_DENY	なし	ホストコンピュータやローカルコントロールパネルからブロックの操作、 調整、アラームパラメータへのアクセスを制御するためのオプション。機 器では使用されていません。
13	IO_OPTS	なし	PV を変更するための入出力オプションを選択できます。選択可能なオプ ションは低カットオフ有効のみ。
14	STATUS_OPTS	なし	ステータスの処理方法を選択できます。
15	CHANNEL	なし	CHANNEL 値は測定値の選択に使用されます。
			XD_SCALE パラメータを設定する前に、CHANNEL パラメータを設定する 必要があります。
16	L_TYPE	なし	線形化タイプ。フィールド値を直接使用するか (Direct)、線形変換するか (Indirect) を決定します。
17	LOW_CUT	%	変換器入力のパーセント値がこれを下回ると、PV = 0 となります。
18	PV_FTIME	秒	1 次 PV フィルタの時間定数。IN 値が 63% 変化するのに要する時間で す。
19	FIELD_VAL	割合	トランスデューサブロックからの値とステータス、またはシミュレーショ ンが有効な場合はシミュレーションされた入力からの値とステータス。
20	UPDATE_EVT	なし	このアラートは、静的データに変更があった場合に発生します。
21	BLOCK_ALM	なし	ブロックアラームは、ブロック内のすべての設定、ハードウェア、接続障 害、システム問題に使用されます。アラートの原因はサブコードフィール ドに入力されます。最初にアクティブになるアラートは、ステータスパラ メータにアクティブステータスを設定します。アラート報告タスクによ って未報告ステータスがクリアされるとすぐに、サブコードが変更されて いれば、アクティブステータスをクリアすることなく、別のブロックアラ ートを報告することができます。

表 C-3: アナログ入力ファンクションブロックシステムパラメータの定義(続き)

インデックス番 号	パラメータ	単位	説明
22	ALARM_SUM	なし	サマリアラームは、ブロック内のすべてのプロセスアラームに使用されま す。アラートの原因はサブコードフィールドに入力されます。最初にア クティブになるアラートは、ステータスパラメータにアクティブステータ スを設定します。アラート報告タスクによって未報告ステータスがクリ アされるとすぐに、サブコードが変更されていれば、アクティブステータ スをクリアすることなく、別のブロックアラートを報告することができま す。
23	ACK_OPTION	なし	アラームの自動確認を設定します。
24	ALARM_HYS	割合	アラーム値がアラームリミット内に戻った場合に、関連するアクティブな アラーム状態が解除される量。
25	HI_HI_PRI	なし	HI HI アラームの優先度。
26	HI_HI_LIM	PV_SCALE の EU	HI HI アラーム状態を検出するために使用されるアラームリミットの設 定。
27	HI_PRI	なし	HI アラームの優先度。
28	HI_LIM	PV_SCALE の EU	HI アラーム状態を検出するために使用されるアラームリミットの設定。
29	LO_PRI	なし	LO アラームの優先度。
30	LO_LIM	PV_SCALE の EU	LO アラーム状態を検出するために使用されるアラームリミットの設定。
31	LO_LO_PRI	なし	LO LO アラームの優先度。
32	LO_LO_LIM	PV_SCALE の EU	LO LO アラーム状態を検出するために使用されるアラームリミットの設 定。
33	HI_HI_ALM	なし	HI HI アラームデータ。アラームの値、発生時のタイムスタンプ、アラームの状態が含まれます。
34	HI_ALM	なし	HI アラームデータ。アラームの値、発生時のタイムスタンプ、アラーム の状態が含まれます。
35	LO_ALM	なし	LO アラームデータ。アラームの値、発生時のタイムスタンプ、アラーム の状態が含まれます。
36	LO_LO_ALM	なし	LO LO アラームデータ。アラームの値、発生時のタイムスタンプ、アラ ームの状態が含まれます。
37	OUT_D	なし	選択されたアラーム状態を示すディスクリート出力。
38	ALARM_SEL	なし	OUT_D パラメータを設定するプロセスアラーム条件を選択するために使 用されます。
39	STDDEV	割合	測定値の標準偏差。
40	CAP_STDDEV	秒	能力標準偏差、達成可能な最高の偏差。

C.3

アナログ出力ブロックシステムパラメータ

表 C-4 には、システムパラメータの定義の一覧があります。

表 C-4: アナログ出力ファンクションブロックシステムパラメータ

パラメータ	単位	説明
BKCAL_OUT	PV_SCALE の EU	他のブロックの BKCAL_IN 入力が、リセットの巻き上がりを防止 し、閉ループ制御へのバンプレス転送を提供するために必要とする 値とステータス。

表 C-4: アナログ出力ファンクションブロックシステムパラメータ (続き)

パラメータ	単位	説明
BLOCK_ERR	なし	ブロックに関連するアクティブなエラー状態の概要。アナログ出 カブロックのブロックエラーは、Simulate Active (シミュレーショ ン有効)、Input Failure/Process Variable has Bad Status (入力失 敗/プロセス変数のステータスが異常)、Output Failure (出力失敗)、 Readback Check Failed (リードバックチェック失敗)、Out of Service (サービス停止) です。
CAS_IN	PV_SCALE の EU	他のファンクションブロックからのリモート設定値。
IO_OPTS	なし	I/O 信号の処理方法を選択できます。AO ファンクションブロック でサポートされている I/O オプションは、SP_PV Track in Man、 Increase to Close、Use PV for BKCAL_OUT です。
CHANNEL	なし	フィールド機器を駆動する出力を定義します。
MODE	なし	ブロックが使用する設定点および出力のソースを要求し、表示する ために使用される列挙属性。
OUT	XD_SCALE の EU	Auto モードでブロックが計算したプライマリ値とステータス。 OUT は、Man モードで手動で設定できます。
PV	PV_SCALE の EU	ブロック実行で使用されるプロセス変数。この値は、READBACK か ら変換され、設定点値と同じ単位でアクチュエータ位置を示しま す。
PV_SCALE	なし	PV に関連するハイスケール値とロースケール値、工学単位コード、 および小数点以下の桁数。
READBACK	XD_SCALE の EU	OUT 値に関連するアクチュエータ位置の測定値または暗黙値。
SIMULATE	XD_SCALE の EU	シミュレーションを有効にし、入力値とステータスを入力します。
SP	PV_SCALE の EU	ターゲットブロックの出力値 (設定点)。
SP_HI_LIM	PV_SCALE の EU	許容される最高設定点。
SP_LO_LIM	PV_SCALE の EU	許容される最低設定点。
SP_RATE_DN	1 秒あたりの PV_SCALE の EU	設定点を下方向に変更する際のランプレート。ランプレートがゼ ロに設定されると、設定点がただちに使用さ れます。
SP_RATE_UP	1 秒あたりの PV_SCALE の EU	設定点を上方向に変更する際のランプレート。ランプレートがゼ ロに設定されると、設定点がただちに使用さ れます。
SP_WRK	PV_SCALE の EU	ブロックの動作設定点。これは設定点の変化率制限の結果です。 この値はパーセントに変換され、ブロックの OUT 値となります。

関連情報

アナログ出力ブロック アナログ出力ブロック

C.3.1 出力の設定

AO ブロックの出力を設定するには、まず、ブロックがその設定点を決定する方法を定義するモードを設定する必要があります。手動モードでは、出力属性 (OUT) の値はユーザーが手動で設定する必要があり、設定点とは無関係です。自動モードでは、工学単位での設定点 (SP) と I/O オプション属性 (IO_OPTS) で指定された値に基づいて OUT が自動的に設定されます。さらに、SP の値と、SP の変化が OUT に渡される速度を制限できます。

カスケードモードでは、カスケード入力接続 (CAS_IN) が SP の更新に使用されます。逆算出力 (BKCAL_OUT) は、CAS_IN を供給する上流ブロックの逆算入力 (BKCAL_IN) に配線されます。こ れにより、モード変更時のバンプレス転送と、上流ブロックのワインドアップ保護が実現しま す。OUT 属性またはバルブ位置のようなアナログリードバック値は、工学単位でプロセス値 (PV) 属性によって示されます。

テストをサポートするために、チャンネルフィードバックを手動で設定できるシミュレーション を有効にすることができます。AO ファンクションブロックにはアラーム検出機能はありませ ん。

SP とチャンネル出力値の処理方法を選択するために、設定点制限オプション、追跡オプション、 および変換とステータス計算を設定します。

C.4 測定トランデューサブロック

測定トランスデューサブロックには、レベルや距離の読み取り値など、実際の測定データが含ま れます。トランスデューサブロックには、センサタイプ、工学単位、およびトランスミッタの設 定に必要なすべてのパラメータに関する情報が含まれています。

表 C-5: 測定トランスデューサブロックパラメータ

インデック ス番号	パラメータ	説明
1	ST_REV	ファンクションブロックに関連する静的データのリビジョ ンレベル。リビジョン値は、ブロック内の静的パラメータ値 が変更されるたびにインクリメントされます。
2	TAG_DESC	ブロックの使用目的についてのユーザー説明。
3	STRATEGY	ストラテジフィールドは、ブロックのグループ分けを識別す るために使用できます。このデータはブロックではチェッ クも処理もされません。
4	ALERT_KEY	プラントユニットの識別番号。この情報は、ホストでアラー ムの選別などに使用されることがあります。
5	MODE_BLK	ブロックの実際モード、目標モード、許可モード、通常モー ド。対象:実際に切り替わるモード:"現在のブロック" が許可 されるモード:通常時に対象が取ることができるモード:対 象の最も一般的なモード
6	BLOCK_ERR	このパラメータは、ブロックに関連するハードウェアまたは ソフトウェアコンポーネントに関連するエラーステータス を反映します。ビット列であるため、複数のエラーが表示さ れる可能性があります。
7	UPDATE_EVT	このアラートは、静的データに変更があった場合に発生しま す。
8	BLOCK_ALM	ブロックアラームは、ブロック内のすべての設定、ハードウ ェア、接続障害、システム問題に使用されます。アラートの 原因はサブコードフィールドに入力されます。最初にアク ティブになるアラートは、ステータスパラメータにアクティ ブステータスを設定します。アラート報告タスクによって 未報告ステータスがクリアされるとすぐに、サブコードが変 更されていれば、アクティブステータスをクリアすることな く、別のブロックアラートを報告することができます。
9	TRANSDUCER_DIRECTORY	トランスデューサブロック内のトランスデューサの数と開 始インデックスを指定するディレクトリ。
10	TRANSDUCER_TYPE	トランスデューサを識別します。
11	TRANSDUCER_TYPE_VER	
12	XD_ERROR	トランスデ゛ューサ フ゛ロック アラーム サフ゛コート゛。

表 C-5 : 測定トランスデューサブロックパラメータ (続き)

インデック ス番号	パラメータ	説明
13	COLLECTION_DIRECTORY	トランスデューサブロック内の各トランスデューサのデー タコレクションの番号、開始インデックス、DD 項目 ID を 指定するディレクトリ。
14	RADAR_LEVEL_TYPE	
15	HOUSING_TEMPERATURE	レベルゲージ電子機器の内部温度
16	TEMPERATURE_UNIT	温度の測定単位
17	レベル	ゼロレベル(タンク底部)から製品表面までの距離
18	LENGTH_UNIT	長さ単位
19	LEVEL_RATE	製品表面の移動速度
20	LEVEL_RATE_UNIT	レベルレート単位
21	ENV_DEVICE_MODE	サービスモード (表 C-6 を参照)
22	DIAGN_DEVICE_ALERT	2410 タンクハブ使用に関するエラーと警告。表 C-15 を参 照してください。
23	DEVICE_VERSION_NUMBER	PM カード SW バージョン番号
24	DIAGN_REVISION	PM リビジョン
25	SERIAL_NO	メインラベル機器 ID
26	STATS_ATTEMPTS	PM に送信されたメッセージの総数
27	STATS_FAILURES	PM への失敗メッセージの総数
28	STATS_TIMEOUTS	PM へのタイムアウトしたメッセージの総数
29	FF_DEVICE_NUMBER	CM ボードシリアル番号
30	FF_WRITE_PROTECT	CM ボード書き込み保護ステータス
31	P1451_SLAVE_STATS	通信統計情報
32	P1451_HOST_STATS	通信統計情報
33	距離	タンクの基準点(通常はフランジの下側)から製品表面まで の距離
34	SIGNAL_STRENGTH	製品表面からのエコーの振幅。高い値は、表面による反射が 良好であることを示します。
35	SIGNAL_STRENGTH_UNI	信号強度単位
36	ANTENNA_TYPE	機器のアンテナタイプ (表 C-7 を参照)
37	TCL	タンク接続部長さ。トランスミッタの基準点からマイクロ 波ユニットまでの電気的距離。ユーザー定義アンテナ専用。
38	PIPE_DIAMETER	スティルパイプ内径。タンク形状 を参照してください。
39	HOLD_OFF_DIST	引き離す長さは、ゲージの基準点にどれだけ近づいてレベル 測定を許可するかを定義します。タンク形状を参照してく ださい。
40	ANTENNA_SIZE	スティルパイプアレイアンテナサイズ
41	OFFSET_DIST_G	ゲージ基準距離 (G)。タンク形状を参照してください。機器 フランジの下側以外の基準点が必要な場合は、距離オフセッ ト (G) を使用してください。

表 C-5: 測定トランスデューサブロックパラメータ (続き)

インデック ス番号	パラメータ	説明
42	TANK_HEIGHT_R	タンク基準高さ (R) は、上部基準点と下部基準点 (ゼロレベ ル) の間の距離として定義されます。タンク形状を参照して ください。
43	BOTTOM_OFFSET_DIST_C	最低レベルオフセット (C) は、ゼロレベル基準点を超えてタ ンク底部まで測定範囲を拡張する下側のヌルゾーンを定義 します。タンク形状を参照してください。
44	CALIBRATION_DIST	校正距離はデフォルトでゼロに設定されています。測定し たレベルが手で浸したレベルと一致するように、レベル測定 を調整するために使用します。タンク形状を参照してくだ さい。
45	TANK_SHAPE	タンクタイプ (表 C-9 およびタンクの形状を参照)。さまざ まなタンク形状に合わせて 5900C を最適化します。
46	TANK_BOTTOM_TYPE	タンク底面タイプ。タンク底面近くでの測定向けに Rosemount 5900C を最適化します。表 C-10 を参照してく ださい。
47	TANK_ENVIRONMENT	タンク環境。環境を参照してください。タンクの状態に該 当するチェックボックスをオンにしてください。最高のパ フォーマンスを得るために、2 つ以上の選択肢を選ばないで ください。表 C-11 を参照してください。
48	TANK_PRESENTATION	タンク表示。表 C-12 を参照してください。
49	PRODUCT_DC	製品の比誘電率
50	ENV_WRITE_PROTECT	書込禁止
51	RM_VERSION_NUMBER	RM カードバージョン番号
52	DEVICE_MODEL	機器モデル
53	TANK_EXPANSION_COEFF	タンク膨張係数
54	TANK_CALIB_AVG_TEMP	タンク校正平均温度
55	DAMPING_VALUE	減衰値
56	HEART_BEAT_COUNT	この数字は増加し続けます。機器が動作していることを示 します。
57	DEVICE_STATUS	機器ステータス。「機器ステータス」も参照してください。
58	DEVICE_COMMAND	אלצר "א
59	体積	タンクの製品量。値 0 は、体積計算が有効でないことを示し ます。
60	VOLUME_UNIT	すべての体積パラメーターの単位コード
61	MODEL_CODE	モデルコード
62	FF_SUPPORT_INFO	FF サポート情報
63	FF_APPL_VERSION_NUMBER	CM バージョン番号
64	SENSOR_DIAGNOSTICS	センサ診断
65	VAPOR_PRESSURE	タンク蒸気圧。AO ブロックから提供されたデータ。
66	VAPOR_TEMPERATURE	タンク蒸気温度。AO ブロックから提供されたデータ。
67	USER_DEFINED	ユーザが定義した値

表 C-5 : 測定トランスデューサブロックパラメータ (続き)

インデック ス番号	パラメータ	説明
68	TANK_TEMPERATURE	タンク温度
69	PRESSURE_UNIT	圧力単位
70	USED_HOLD_OFF	使用されている引き離す長さ

表 C-6 : 機器モード

値	ENV_DEVICE_MODE
0	正常な動作
2	機器の再起動
3	機器を工場出荷時の設定に戻す

表 C-7:アンテナタイプ

値	ANTENNA_TYPE
5001	スティルパイプアレイ固定
5002	スティルパイプアレイハッチ
3002	パラボラ
2001	ホーン
6001	LPG/LNG 150 psi バルブ
6002	LPG/LNG 150 psi
6011	LPG/LNG 300 psi バルブ
6012	LPG/LNG 300 psi
6021	LPG/LNG 600 psi バルブ
6022	LPG/LNG 600 psi
7041	コーン 4 インチ PTFE
7042	コーン 4 インチクォーツ
7061	コーン 6 インチ PTFE
7062	コーン 6 インチクォーツ
7081	コーン 8 インチ PTFE
7082	コーン 8 インチクォーツ
3001	パラボラ 2930
4001	スチルパイプ 2940/3940
4501	スチルパイプ 2945/3945
1000	ユーザー定義の自由伝播
1001	ユーザー定義スチルパイプ
1003	ユーザー定義スティルパイプアレイ

表 C-8:アンテナのサイズ

値	ANTENNA_SIZE
0	パイプ5インチ
1	パイプ6インチ
2	パイプ8インチ
3	パイプ 10 インチ
4	パイプ 12 インチ

表 C-9: タンクの形状

値	TANK_SHAPE
0	不明
1	縦型筒
2	水平シリンダー
3	球形
4	立方
5	フローティングルーフ

表 C-10:タンク底面タイプ

値	TANK_BOTTOM_TYPE
0	不明
1	全面座
2	ドーム
3	レーン
4	平面傾斜

表 C-11 : 環境

値	TANK_ENVIRONMENT
2	高速レベル変化 (>0.1 m/s, >4in/s)
8	乱流面
10	泡
20	固形材料

表 C-12:タンク表示

値	TANK_PRESENTATION
0	
0x0000001	可能な最小距離を超えたレベル
0x0000002	予測許可
0x0000004	タンクが空になると、底部エコーが常に見える
0x0000008	タンクには二重バウンドが含まれる

表 C-12:タンク表示 (続き)

値	TANK_PRESENTATION
0x0000010	低速検索を使用
0x0000020	二重表面機能を有効にする
0x00000040	下面を選択
0x0000080	予備
0x00000100	負のレベルをゼロとして表示
0x00000200	モノトーンのレベルアレッジ表示を使用
0x00000400	底面投影を使用
0x00000800	予備
0x00001000	タンクが空または満杯の場合、無効レベルは設定されません。
0x00002000	空のときに無効なレベルを設定しない
0x00004000	満杯のときに無効レベルを設定しない
0x00008000	予備
0x00010000	余分なエコー機能を使用
0x00020000	常に最初のエコーを追跡
0x00040000	ビーム周辺では、よりハードなレベルレートフィルタリングを使用
0x00080000	予備

表 C-13 : 製品の比誘電率

値	PRODUCT_DC
0	不明
1	範囲 (<2.5)
2	範囲 (<2.5-4)
3	範囲 (< 4 -10)
4	範囲 (>10)

表 C-14:機器ステータス

値	DEVICE_STATUS
0x0000001	予備
0x0000002	実行中のブート SW
0x0000004	機器警告
0x00000100	機器エラー
0x0000800	使用されている BOOT ベータバージョン
0x00001000	使用されている APPL ベータバージョン
0x00008000	レベル補正エラー
0x00010000	無効な測定
0x00020000	書き込み保護
0x00040000	デフォルトデータベース

表 C-14 : 機器ステータス (続き)

値	DEVICE_STATUS
0x00800000	シミュレーション有効
0x02000000	SIL 有効
0x20000000	RM 再プログラミング中

C.4.1 診断機器アラート

表 C-15 は、DIAGN_DEVICE_ALERT パラメータで報告された条件の一覧を示します。

表 C-15:機器アラート

値	説明
	アクティブなアラートなし
0x0008 0000	データベースエラー
0x0010 0000	ハードウェアエラー
0x0020 0000	設定エラー
0x0040 0000	ソフトウェアエラー
0x1000 0000	シミュレーション モート゛
0x2000 0000	ソフトウェア書込禁止

C.5 体積トランスデューサブロック

表 C-16 : 体積トランスデューサブロックパラメータ

インデック ス番号	パラメータ	説明
1	ST_REV	ファンクションブロックに関連する静的データのリビジ ョンレベル。リビジョン値は、ブロック内の静的パラメー タ値が変更されるたびにインクリメントされます。
2	TAG_DESC	ブロックの使用目的についてのユーザー説明。
3	STRATEGY	ストラテジフィールドは、ブロックのグループ分けを識別 するために使用できます。このデータはブロックではチ ェックも処理もされません。
4	ALERT_KEY	プラントユニットの識別番号。この情報は、ホストでアラ ームの選別などに使用されることがあります。
5	MODE_BLK	ブロックの実際モード、目標モード、許可モード、通常モ ード。対象:実際に切り替わるモード:"現在のブロック" が 許可されるモード:通常時に対象が取ることができるモー ド:対象の最も一般的なモード
6	BLOCK_ERR	このパラメータは、ブロックに関連するハードウェアまた はソフトウェアコンポーネントに関連するエラーステー タスを反映します。ビット列であるため、複数のエラーが 表示される可能性があります。
7	UPDATE_EVT	このアラートは、静的データに変更があった場合に発生し ます。

表 C-16:体積トランスデューサブロックパラメータ(続き)

インデック ス番号	パラメータ	説明
8	BLOCK_ALM	ブロックアラームは、ブロック内のすべての設定、ハード ウェア、接続障害、システム問題に使用されます。アラー トの原因はサブコードフィールドに入力されます。最初 にアクティブになるアラートは、ステータスパラメータに アクティブステータスを設定します。アラート報告タス クによって未報告ステータスがクリアされるとすぐに、サ ブコードが変更されていれば、アクティブステータスをク リアすることなく、別のブロックアラートを報告すること ができます。
9	TRANSDUCER_DIRECTORY	トランスデューサブロック内のトランスデューサの数と 開始インデックスを指定するディレクトリ。
10	TRANSDUCER_TYPE	トランスデューサを識別します。
11	TRANSDUCER_TYPE_VER	
12	XD_ERROR	トランスデューサブロックアラームサブコード。
13	COLLECTION_DIRECTORY	トランスデューサブロック内の各トランスデューサのデ ータコレクションの番号、開始インデックス、DD 項目 ID を指定するディレクトリ。
14	LENGTH_UNIT	測定トランスデューサブロックと同じ
15	VOLUME_UNIT	測定トランスデューサブロックと同じ
16	体積	計算された体積と状態
17	VOLUME_STATUS	詳細ステータス
18	レベル	使用されたレベル値
19	VOLUME_CALC_METHOD	使用された体積計算方法
20	VOLUME_IDEAL_DIAMETER	あらかじめ定義された標準タンクタイプの直径
21	VOLUME_IDEAL_LENGTH	あらかじめ定義された標準タンクタイプの長さ
22	VOLUME_OFFSET	ゼロレベルにゼロ以外の体積を使用できるようにします。 ゼロレベル以下の製品量を含めたい場合に使用できます。
23	VOLUME_INTERPOLATE_METH OD	ストラッピングテーブルポイント間のレベル補間法
24	VOLUME_ STRAP_TABLE_LENGTH	ストラッピングテーブルのポイント数
25	STRAP_LEVEL_1_30	ストラッピングポイント 1~30 のレベル値
26	STRAP_VOLUME_1_30	ストラッピングポイント 1~30 の体積値

C.6

レジスタトランスデューサブロックパラメータ

レジスタトランスデューサブロックは、データベースレジスタと入力レジスタへのアクセスを可 能にします。これにより、メモリの場所にアクセスすることで、選択されたレジスタのセットを 直接読み出すことができます。

レジスタトランスデューサブロックは、アドバンスサービスでのみ使用できます。

▲ 注意

レジスタトランスデューサブロックは、ほとんどのレジスタにアクセスできるため、取り扱いに 注意し、訓練を受けた認定サービス担当者、または Emerson Automation Solutions のサポート 担当者の指示に従ってのみ交換してください。

表 C-17: レジスタトランスデューサブロックパラメータ

インデックス 番号	パラメータ	説明
1	ST_REV	ファンクションブロックに関連する静的データのリビジョンレベル。 リビジョン値は、ブロック内の静的パラメータ値が変更されるたびに インクリメントされます。
2	TAG_DESC	ブロックの使用目的についてのユーザー説明。
3	STRATEGY	ストラテジフィールドは、ブロックのグループ分けを識別するために 使用できます。このデータはブロックではチェックも処理もされませ ん。
4	ALERT_KEY	プラントユニットの識別番号。この情報は、ホストでアラームの選別 などに使用されることがあります。
5	MODE_BLK	ブロックの実際モード、目標モード、許可モード、通常モード。 対象:切り替わるモード 実際:"現在のブロック" モード 許可:対象が取ることができるモード 標準:対象の最も一般的なモード
6	BLOCK_ERR	このパラメータは、ブロックに関連するハードウェアまたはソフトウ ェアコンポーネントに関連するエラーステータスを反映します。ビッ ト列であるため、複数のエラーが表示される可能性があります。
7	UPDATE_EVT	このアラートは、静的データに変更があった場合に発生します。
8	BLOCK_ALM	ブロックアラームは、ブロック内のすべての設定、ハードウェア、接 続障害、システム問題に使用されます。アラートの原因はサブコード フィールドに入力されます。最初にアクティブになるアラートは、ス テータスパラメータにアクティブステータスを設定します。アラート 報告タスクによって未報告ステータスがクリアされるとすぐに、サブ コードが変更されていれば、アクティブステータスをクリアすること なく、別のブロックアラートを報告することができます。
9	TRANSDUCER_DIRECTORY	トランスデューサブロック内のトランスデューサの数と開始インデッ クスを指定するディレクトリ。
10	TRANSDUCER_TYPE	トランスデューサを識別します。
11	TRANSDUCER_TYPE_VER	トランスデューサタイプバージョン
12	XD_ERROR	トランスデューサブロックアラームサブコード。
13	COLLECTION_DIRECTORY	トランスデューサブロック内の各トランスデューサのデータコレクシ ョンの番号、開始インデックス、DD 項目 ID を指定するディレクトリ。
14	RB_PARAMETER	
15-44	INP_REG_n_TYPE	入力レジスタ n の特性を記述します。 要求された値が浮動小数点 (/ 10 進) 数として表示されることを示しま す。
	INP_REG_n_FLOAT	入力レジスタ n の値、浮動小数点数で表示
	INP_REG_n_INT_DEC	入力レジスタ n の値、10 進数で表示

表(C-17	: レ	・ジス	タト	・ラン	ノス	デュ	ーサフ	ブロッ	クノ	パラ	メータ	! (続き)
----	------	-----	-----	----	-----	----	----	-----	-----	----	----	-----	--------

インデックス 番号	パラメータ	説明
45-74	DB_REG_n_TYPE	保持レジスタ n の特性を記述します。 要求された値が浮動小数点 (/ 10 進) 数として表示されることを示しま す。
	DB_REG_n_FLOAT	保持レジスタ n の値、浮動小数点数で表示。
	DB_REG_n_INT_DEC	入力レジスタ n の値、10 進数で表示。
75	RM_COMMAND	実行するアクションを定義します。入力/保持レジスタの読み取り、機 器の再起動、プログラム完了のポーリングなど。
76	RM_DATA	
77	RM_STATUS	
78	INP_SEARCH_START_NBR	入力レジスタ検索開始番号
79	DB_SEARCH_START_NBR	保持レジスタ検索開始番号

C.7 高度な構成トランデューサブロック

表 C-18 : 高度な構成トランデューサブロックパラメータ

インデッ クス番号	パラメータ	説明
1	ST_REV	ファンクションブロックに関連する静的データのリビ ジョンレベル。リビジョン値は、ブロック内の静的パ ラメータ値が変更されるたびにインクリメントされま す。
2	TAG_DESC	ブロックの使用目的についてのユーザー説明。
3	STRATEGY	ストラテジフィールドは、ブロックのグループ分けを 識別するために使用できます。このデータはブロック ではチェックも処理もされません。
4	ALERT_KEY	プラントユニットの識別番号。この情報は、ホストで アラームの選別などに使用されることがあります。
5	MODE_BLK	ブロックの実際モード、目標モード、許可モード、通 常モード。対象:実際に切り替わるモード:"現在のブロ ック" が許可されるモード:通常時に対象が取ることが できるモード:対象の最も一般的なモード
6	BLOCK_ERR	このパラメータは、ブロックに関連するハードウェア またはソフトウェアコンポーネントに関連するエラー ステータスを反映します。ビット列であるため、複数 のエラーが表示される可能性があります。
7	UPDATE_EVT	このアラートは、静的データに変更があった場合に発 生します。
8	BLOCK_ALM	ブロックアラームは、ブロック内のすべての設定、ハ ードウェア、接続障害、システム問題に使用されます。 アラートの原因はサブコードフィールドに入力されま す。最初にアクティブになるアラートは、ステータス パラメータにアクティブステータスを設定します。ア ラート報告タスクによって未報告ステータスがクリア されるとすぐに、サブコードが変更されていれば、ア クティブステータスをクリアすることなく、別のブロ ックアラートを報告することができます。

インデッ クス番号	パラメータ	説明
9	TRANSDUCER_DIRECTORY	トランスデューサブロック内のトランスデューサの数 と開始インデックスを指定するディレクトリ。
10	TRANSDUCER_TYPE	トランスデューサを識別します。
11	TRANSDUCER_TYPE_VER	
12	XD_ERROR	トランスデューサブロックアラームサブコード。
13	COLLECTION_DIRECTORY	トランスデューサブロック内の各トランスデューサの データコレクションの番号、開始インデックス、DD 項目 ID を指定するディレクトリ。
14	AUTO_CONF_MEAS_FUNC	影響を受けるパラメータの手動設定を有効にするチェ ックボックス
15	USED_EXTRA_ECHO_MIN_ULLAGE	空タンク処理のパラメータと機能。
16	USED_EXTRA_ECHO_MAX_ULLAGE	】詳細については、空タンクの取り扱い を参照してくだ さい。
17	USED_EXTRA_ECHO_MIN_AMPL	
18	EXTRA_ECHO_MIN_ULLAGE	
19	EXTRA_ECHO_MAX_ULLAGE	
20	EXTRA_ECHO_MIN_AMPL	
21	USED_EMPTY_TANK_DETECTION_ AREA	
22	EMPTY_TANK_DETECTION_AREA	
23	USED_ECHO_TIMEOUT	エコー追跡のパラメータと機能。
24	USED_CLOSE_DIST	│詳細については、表面エコー追跡 を参照してくださ 」い。
25	USED_SLOW_SEARCH_SPEED	
26	USED_FFT_MATCH_THRESH	
27	USED_MULT_MATCH_THRESH	
28	USED_MED_FILTER_SIZE	
29	USED_MIN_UPDATE_RELATION	
30	ECHO_TIMEOUT	
31	CLOSE_DIST	
32	SEARCH_SPEED	
33	FFT_MATCH_THRESHOLD	
34	MULT_MATCH_THRESHOLD	
35	MED_FILTER_SIZE	
36	MIN_UPDATE_RELATION	
37	USED_DIST_FILTER_FACTOR	フィルタ設定のパラメータ。
38	DIST_FILTER_FACTOR	詳細については、フィルタ設定 を参照してください。

表 C-18:高度な構成トランデューサブロックパラメータ (続き)

表 C-18 : 高度な構成トランデューサブロックパラメータ (続き)

インデッ クス番号	パラメータ	説明
39	USE_LEVEL_MONITORING	タンク内の上部ゾーンを連続的にスキャンして新しい エコーを探す機能。エコーが見つかり、そのエコーが 現在追跡している面でない場合、このファンクション は即座に上のエコーへのジャンプを開始します。表 C-22 を参照してください。
40	DOUBLE_BOUNCE_OFFSET	球形タンクや水平シリンダータンクの高度な構成に使 用され、多重反射によって製品表面レベルが正しく解 釈されない場合に使用されます。
41	UPPER_PRODUCT_DC	上部製品の比誘電率
42	TANK_PRESENTATION_2	表 C-12 を参照してください。
43	AMPLITUDE_THRESHOLD	ー般振幅しきい値以下の振幅を持つエコーは無視され ます。ノイズを除去するためにこのパラメーターを使 用します。
44	ATP_LENGTH	振幅しきい値ポイント (ATP) テーブルのポイント数。
45	LENGTH_UNIT	製品レベルなどの長さパラメータの測定単位
46	LEVEL_RATE_UNIT	レベルレートパラメータの測定単位。
47	SIGNAL_STRENGTH_UNIT	測定信号の振幅の測定単位。
48	ECHO_UPDATE	パラメータ 49~51 のエコー情報を更新します。表 C-20 を参照してください。
49	ECHO_COMMAND	見つかったエコーを登録された偽エコーとして保存し ます。登録されている偽エコーリストからエコーを削 除します。 表 C-21 を参照してください。
50	ECHO_DISTANCE	見つかったエコーまでの距離。
51	ECHO_AMPLITUDE	見つかったエコーの信号振幅。
52	ECHO_CLASS	検出されたエコーの分類。表 C-19 を参照してください。
53	ECHO_FALSE	登録された偽エコーまでの距離
54	ATP_DISTANCE	ATP Distance と ATP Threshold ポイントで定義され たノイズしきい値テーブルを作成することで、弱い妨 害エコーをフィルタリングすることができます。
55	ATP_THRESHOLD	振幅しきい値。ATP_DISTANCE を参照。

表 C-19:エコー分類

値	説明
0	不明
1	無関係
2	表面
3	偽エコー
4	二重バウンド
5	2 次表面
6	タンク底面エコー

表 C-19:エコー分類(続き)

值	説明
7	表面の下のビーム
8	表面の上のビーム
9	LPGピン

表 C-20:エコー更新

値	説明
0	未初期化
1	正常な動作
2	見つかったエコーのスナップショットを読み取る

表 C-21:エコーコマンド

値	説明
0	未初期化
1	偽エコーを追加
2	偽エコーを削除

表 C-22 : レベル監視を使用

値	説明
0	未初期化
1	なし
2	対応

C.8

LPG トランスデューサブロック

LPG トランスデューサブロックには、LPG 計算のセットアップと設定のためのパラメータが含ま れています。また、LPG 補正の確認とステータスのパラメータも含まれています。

使用するためには、主変換器ブロックにガス圧力とガス温度測定用の適切なソース機器を含める 必要があります。

LPG を測定用に Rosemount 5900C を構成する方法の詳細については、LPG 構成および DeltaV / AMS Device Manager を使用した LPG 設定を参照してください。用途の例の用途の例 も参照してください。

表 C-23: LPG ハイブリッドトランスデューサブロックパラメータ

インデッ クス番号	パラメータ	説明
1	ST_REV	ファンクションブロックに関連する静的データのリビ ジョンレベル。リビジョン値は、ブロック内の静的パ ラメータ値が変更されるたびにインクリメントされま す。
2	TAG_DESC	ブロックの使用目的についてのユーザー説明。

表 C-23 : LPG ハイブリッドトランスデューサブロックパラメータ (続き)

インデッ クス番号	パラメータ	説明
3	STRATEGY	ストラテジフィールドは、ブロックのグループ分けを 識別するために使用できます。このデータはブロック ではチェックも処理もされません。
4	ALERT_KEY	プラントユニットの識別番号。この情報は、ホストで アラームの選別などに使用されることがあります。
5	MODE_BLK	ブロックの実際モード、目標モード、許可モード、通 常モード。対象:実際に切り替わるモード:"現在のブロ ック" が許可されるモード:通常時に対象が取ることが できるモード:対象の最も一般的なモード
6	BLOCK_ERR	このパラメータは、ブロックに関連するハードウェア またはソフトウェアコンポーネントに関連するエラー ステータスを反映します。ビット列であるため、複数 のエラーが表示される可能性があります。
7	UPDATE_EVT	このアラートは、静的データに変更があった場合に発 生します。
8	BLOCK_ALM	ブロックアラームは、ブロック内のすべての設定、ハ ードウェア、接続障害、システム問題に使用されます。 アラートの原因はサブコードフィールドに入力されま す。最初にアクティブになるアラートは、ステータス パラメータにアクティブステータスを設定します。ア ラート報告タスクによって未報告ステータスがクリア されるとすぐに、サブコードが変更されていれば、ア クティブステータスをクリアすることなく、別のブロ ックアラートを報告することができます。
9	TRANSDUCER_DIRECTORY	トランスデューサブロック内のトランスデューサの数 と開始インデックスを指定するディレクトリ。
10	TRANSDUCER_TYPE	トランスデューサを識別します。
11	TRANSDUCER_TYPE_VER	
12	XD_ERROR	トランスデューサブロックアラームサブコード。
13	COLLECTION_DIRECTORY	トランスデューサブロック内の各トランスデューサの データコレクションの番号、開始インデックス、DD 項目 ID を指定するディレクトリ。
14	LPG_SPECIAL_CONTROL	特殊制御
15	LPG_CORRECTION_METHOD	補正方法
16	LPG_NUMBER_OF_GASSES	ガス数
17	LPG_GAS_TYPE1	ガスのタイプ 1
18	LPG_GAS_PERC1	混合ガス中のタイプ 1 のガスの割合
19	LPG_GAS_TYPE2	ガスのタイプ 2
20	LPG_GAS_PERC2	混合ガス中のタイプ 2 のガスの割合
21	LPG_GAS_TYPE3	ガスのタイプ 3
22	LPG_GAS_PERC3	混合ガス中のタイプ3のガスの割合
23	LPG_GAS_TYPE4	ガスのタイプ 4
24	LPG_NUMBER_OF_PINS	スチルパイプの検証ピン数
25	LPG_PIN1_CONFIGURATION	検証ピンの公称位置 1

インデッ	パラメータ	説明
クス奋亏		
26	LPG_PIN2_CONFIGURATION	検証ビンの公林位置 2
27	LPG_PIN3_CONFIGURATION	検証ピンの公称位置 3
28	LPG_PIN_TEMPERATURE	検証ピンの公称位置を入力したときの周囲温度。
29	LPG_PIN_TEMP_EXP_PPM	検証ピン付きスチルパイプの膨張係数
30	LPG_CORRECTION_ERROR	補正エラー
31	LPG_CORRECTION_STATUS	補正ステータス
32	LPG_USED_GAS_PRESSURE	ガス圧
33	LPG_USED_GAS_PRESSURE_STATUS	ガス圧ステータス
34	LPG_USED_GAS_TEMP	ガス温度
35	LPG_USED_GAS_TEMP_STATUS	ガス温度測定ステータス
36	LPG_VERIFICATION_STATE	
37	LPG_VERIFICATION_FAILURES	
38	LPG_VERIFICATION_WARNINGS	
39	LPG_VER_PIN1_MEAS	検証ピン1の測定位置
40	LPG_VER_PIN2_MEAS	検証ピン2の測定位置
41	LPG_VER_PIN3_MEAS	検証ピン3の測定位置
42	LPG_USER_GASPRESS_VALUE	
43	LPG_USER_GASTEMP_VALUE	
44	LPG_VERPIN_CORRPOS_1	検証ピンの公称位置 1
45	LPG_VERPIN_CORRPOS_2	検証ピンの公称位置 2
46	LPG_VERPIN_CORRPOS_3	検証ピンの公称位置 3
47	LPG_CORR_PPM	配管膨張係数
48	DEVICE_COMMAND	אַלאַב
49	LENGTH_UNIT	長さの測定単位。サポートされている単位を参照して ください。
50	PRESSURE_UNIT	圧力の測定単位。サポートされている単位を参照して ください。
51	TEMPERATURE_UNIT	温度の測定単位。サポートされている単位を参照して ください。
52	SIGNAL_STRENGTH_UNIT	信号強度の測定単位。サポートされている単位を参照 してください。

表 C-23 : LPG ハイブリッドトランスデューサブロックパラメータ (続き)

補正方法

表 C-24 : 各種 LPG 補正方法の識別番号

値	説明
0	空気補正
1	1 種類の既知のガス

表 C-24 : 各種 LPG 補正方法の識別番号 (続き)

値	説明
2	1 種類以上の不明なガス
3	2 種類のガス、混合比不明
4	安定した組成
100	補正方法 100
101	補正方法 101

ガスタイプ

表 C-25 : 各種ガスの識別番号

値	説明
0	ユーザーガス 0
1	ユーザーガス 1
2	デフォルトガス
3	アンモニア
4	N-ブタン
5	イソブタン
6	エチレン
7	プロパジエン
8	プロピレン
9	プロパン
10	空気
11	ペンタン
12	イソブチレン
13	クロロエチレン
14	窒素
100	LPG ガス 100
101	LPG ガス 101
102	LPG ガス 102

C.9 サポートされている単位

単位コード

表 C-26 : 長さ単位

ID	ディスプレイ	説明
1010	m	メートル
1012	cm	センチメートル
1013	mm	ミリメートル
1018	ft	フィート
1019	in	インチ

表 C-27: レベルレート単位

ID	ディスプレイ	説明
1061	m/s	メートル/秒
1063	m/h	メートル/時間
1067	ft/s	フィート/秒
1069	in/m	インチ/分
1073	フィート/時間	フィート/時間

表 C-28 : 温度単位

ID	ディスプレイ	説明
1000	К	ケルビン
1001	°C	摂氏
1002	°F	華氏

表 C-29 : 信号強度単位

ID	ディスプレイ	説明
1243	mV	millivolt

表 C-30: 体積単位

ID	ディスプレイ	説明
1034	m ³	立方メートル
1043	ft ³	立方フィート
1048	ガロン	US ガロン
1051	Bbl	バレル

表 C-31 : 圧力単位

ID	ディスプレイ	説明
1130	Ра	パスカル
1133	kPa	キロパスカル
1137	Bar	Bar
1138	mBar	ミリバール
1140	atm	大気
1141	psi	ポンド/平方インチ
1590	bar G	bar ゲージ相対
1597	bar A	bar 絶対

00809-0104-5901 Rev. DC 2023

詳細は、 Emerson.com をご覧ください。

[©]2023 Emerson 無断複写・転載を禁じます。

Emerson の販売条件は、ご要望に応じて提供させていただき ます。Emerson のロゴは、Emerson Electric Co.の商標お よびサービスマークです。Rosemount は、Emerson 系列企 業である一社のマークです。他のすべてのマークは、それぞ れの所有者に帰属します。

ROSEMOUNT