
C ommercially available technologies are
almost always applied at a quicker pace
in the consumer and information tech-
nology (IT) space than their industrial
counterparts. For instance, virtualiza-

tion technologies have been commonplace within IT
environments, most often in server-based applica-
tions, for many years. On the other hand, industrial
automation operations technology (OT) applications
lagged by several years in adopting virtualization.

Today, virtualization has become mainstream for
almost all OT products, practices, and applications,
though it is still often used in computer-room envi-
ronments. It is now common for OT system servers
to host multiple virtual machines (VMs) for visual-
ization, historian, redundancy and other uses.

Automation engineers use desktop-based virtu-
alization to quickly create instances of development
and testing systems. Virtualization provides benefits
for quickly deploying systems, optimizing resource
usage and backing up configurations.

The concepts and advantages of virtualization are
commonly associated with PCs and servers, but they
can be employed elsewhere. Recently, virtualization
capability has been extended into more specialized
and robust industrial programmable logic controllers
(PLCs) and programmable automation controllers
(PACs) used for process and machine automation.

This creates more options for end users, such as
enabling analytics closer to the source of data. It also
provides other benefits including enhanced produc-
tivity, efficiency and security.

Virtualization concepts
A basic definition of virtualization is providing the

ability to run more than one VM software operating
system (OS) on one hardware platform, allowing one
physical computer to be more utilized as many virtu-
al computers. Each VM must operate independently.

There are two types of virtualization, Type 1 and
Type 2, depending on where the hypervisor is locat-
ed. A hypervisor is the combination of hardware,
firmware, and software running on the host machine
and managing guest VMs.

Type 2 virtualization, which may be called “host-
ed,” is used for desktop and server PCs, with the

hypervisor running on top of a traditional host OS
already operating on the hardware. This creates vir-
tual “sandboxes” where multiple OSs can run simulta-
neously, but it adds latency due to the underlying OS.

Type 1 virtualization, sometimes called “native,”
utilizes a hypervisor running directly on the bare
metal hardware without an underlying OS. The
hypervisor partitions the hardware itself to each OS.
This results in very low latency and jitter, which is
ideal for real-time deterministic or time-sensitive
applications. Type 1 offers greater performance than
Type 2 because it has direct access to the hardware
without delays due to a host OS system.

Until recently, virtualization has not been practi-
cal or possible at the plant floor level. Now, the devel-
opment of a new class of PLCs and PACs leveraging
multiple processor cores and virtualization offers the
ability to extend the same virtualization concepts
down into the industrial controller, providing an
integrated approach.

A common class of industrial controller for typ-
ical automation applications is the PLC, which has
used a dedicated processor and specific real-time OS
(RTOS) to provide high-speed deterministic control.
The challenge to virtualizing PLC functions is main-
taining high-speed determinism.

Today there are hardware advances common to
the commercial PC world such as multicore proces-
sors and large memory. By using multicore technol-
ogy and Type 1 virtualization, industrial controller
platforms can run multiple OSs on the same proces-

End users are comfortable with virtualization in information technology server
rooms and desktops, and many similar benefits now can be realized with
programmable logic controllers and programmable automation controllers.

Vibhoosh Gupta, Emerson

VIRTUALIZATION

Virtualization for the plant floor

ANSWERS

Figure 1: This fig-
ure depicts how a
single Type 1 hyper-
visor manages two
virtual OSs on an
industrial controller,
a RTOS for real-
time control and a
guest OS for edge
processing. Images
courtesy: Emerson

Figure 2: Industrial
controllers capable of
virtualization, such as
Emerson’s Outcome
Optimizing Controller
(OOC), include mul-
tiple processing cores,
digital communication
ports, and support for
parallel operation of
a control RTOS and a
general-purpose OS.

ELECTRONICALLY REPRINTED FROM DECEMBER 2019

ANSWERS
VIRTUALIZATION

Figure 3: Using vir-
tualization, Emer-
son’s OOC uses a
real-time “inner”
loop for direct
control, which can
be advised by a
general purpose
“outer” loop where
advanced optimiza-
tion can be per-
formed.

sor, including a RTOS for control which will experi-
ence little to no effect on the determinism and speed
(Figure 1). A second Linux guest OS can be used for
other edge processing. As the number of available
cores increases, even more OSs can be deployed.

For edge-located controllers, the possibility of
running multiple OSs is a dramatic shift (Figure 2).
The primary concern is maintaining a robust RTOS
for control functionality, as with PLCs, so the auto-
mation functionality is not compromised. A sec-
ondary OS, operating as supplemental to the RTOS,
provides more computing options. The two OSs
must be independent and maintain ability to interact.

The concept of running two OSs in an edge-locat-
ed industrial controller can be further explained in
terms of an “inner” and an “outer” loop, which may be
familiar to users of cascaded process control loops. In
this case, the inner loop is the RTOS VM for control,
while the outer loop is a standard OS VM for added
functions. The inner loop could monitor a process
flow input, perform the proportional-integral-deriv-
ative (PID) calculations, and command the control
valve output. The outer loop can advise the inner loop
regarding the optimal flow rate, but it will not impact
inner loop operation otherwise.

Another way of explaining the inner and outer
loop concept is an analogy related to navigating a car.
The inner loop is represented by the driver’s direct
attention to drive the vehicle to its destination, while
the outer loop could be the car’s dashboard naviga-
tion system providing supplementary information.

The inner loop is mission critical and must carry
on operations without fail, even if the outer loop has
a problem. On the other hand, the outer loop is valu-
able, but not essential, to basic system operation.

Control remains the inner loop
PLCs provide the specialized functionality, robust

packaging, and input/output (I/O) connectivity nec-
essary to automate equipment and processes. These
devices have gained processing power and network-
ing capabilities to interact better with higher-level
systems, with more advanced versions often called
PACs. PLCs and PACs still have dedicated roles.

PLCs and PACs use many types of programming
languages; ladder logic is the most popular. A basic
measurement of PLC performance is how fast the
controller can scan through the ladder logic, typical-
ly measured in milliseconds. All other overhead tasks
must be handled so a deterministic scan time is pre-
served. The OS from a PC is not a good candidate
for millisecond control because it must handle many
overhead tasks such as graphics and user interface.

A controller-based VM with PLC or PAC func-
tionality requires using an RTOS to provide features
needed for inner-loop PLC functions without perfor-
mance-sapping features.

In the outer loop
Since control functionality remains essentially the

same, the real advantage to controller virtualization
is the addition of an outer-loop Linux VM careful-
ly integrated in a cooperative manner. This VM can
do anything a dedicated PC could, but at a lower cost,
and packaged in a more compact form factor, with no
need to integrate a PC to the controller. It is unneces-
sary for industrial users to take advantage of the extra
OS right away, as they could use a virtualized control-
ler for the basic PLC functionality. Many users are
finding a general-purpose Linux OS at the edge can
enhance applications by running machine learn-
ing elements; performing analytics; communicat-
ing to the cloud; using messaging queuing telemetry
transport (MQTT) or some other publish-subscribe
model to exchange information; executing optimiza-
tion calculations to inform the controller VM; driv-
ing a local display; and serving web pages.

These functions have required upstream comput-
ing resources. Users benefit from the efficiency of
implementing these functions out at an edge-locat-
ed OS, because they are taking advantage of local-
ly available processing power and acting on the data
as close to the source as possible. This removes lay-
ers of computing and streamlines networking usage.
The ability to drive a local display or directly serve
web pages out of the controller are examples of this.

When implemented properly, an outer loop VM
lets users safely perform processing at the edge closer
to the source of data, which unloads upstream net-
working and processing requirements. ce

Vibhoosh Gupta is a portfolio leader, Emerson’s
Machine Automation Solutions business unit. Edited by
Chris Vavra, production editor, Control Engineering,
CFE Media and Technology, cvavra@cfemedia.com.

Posted with permission from December 2019. Control Engineering, www.controleng.com CFE Media. Copyright 2019. All rights reserved.
For more information on the use of this content, contact Wright’s Media at 877-652-5295

2138458

