Manuel de configuration et d'utilisation P/N MMI-20008812, Rev. AA Septembre 2009

# Transmetteur Micro Motion<sup>®</sup> Modèle 2400S pour bus de terrain PROFIBUS-DP

Manuel de configuration et d'utilisation





©2009 Micro Motion, Inc. Micro Motion, Inc. Tous droits réservés. Les logos Micro Motion et Emerson sont des marques commerciales et des marques de service d'Emerson Electric Co. Micro Motion, ELITE, MVD, ProLink, MVD Direct Connect et PlantWeb sont des marques appartenant à l'une des filiales d'Emerson Process Management. Toutes les autres marques appartiennent à leurs propriétaires respectifs.

# Table des matières

| Chapitre 1  | Avan       | t de commencer                                                 | . 1        |
|-------------|------------|----------------------------------------------------------------|------------|
| •           | 1.1        | Sommaire                                                       | 1          |
|             | 1.2        | Sécurité                                                       | 1          |
|             | 1.3        | Détermination du type de transmetteur                          | 1          |
|             | 1.4        | Fonctionnalités PROFIBUS-DP.                                   | 2          |
|             | 1.5        | Détermination de la version des différents éléments            | 2          |
|             | 1.6        | Outils de communication                                        | 3          |
|             | 1./<br>1.9 | Framilication de la configuration                              | 5          |
|             | 1.0        |                                                                | 5          |
|             | 1.10       | Service après-vente de Micro Motion                            | 6          |
| Chanitro 2  | Mico       | an corviac du débitmètre                                       | 7          |
| Gliapilie Z | INIISC     |                                                                | . /        |
|             | 2.1        |                                                                | /          |
|             | 2.2        | Reglage de l'adresse de nœud PROFIBUS-DP                       | /          |
|             | 2.3        |                                                                | /          |
| Chapitre 3  | Mod        | e d'emploi de l'interface utilisateur                          | . 9        |
| •           | 3.1        | Sommaire                                                       | 9          |
|             | 3.2        | Interface utilisateur avec et sans indicateur                  | 9          |
|             | 3.3        | Ouverture et fermeture du couvercle du transmetteur            | . 11       |
|             | 3.4        | Mode d'emploi des touches optiques                             | . 11       |
|             | 3.5        | Mode d'emploi de l'indicateur                                  | . 12       |
|             |            | 3.5.1 Langue d'attichage                                       | . 12       |
|             |            | 3.5.2 VISUAIISATION des grandeurs mesurees                     | . 12       |
|             |            | 3.5.7 Met de passe de l'indicateur                             | . IO<br>13 |
|             |            | 3.5.5 Saisie de valeurs à virgule flottante avec l'indicateur. | . 13       |
|             |            |                                                                |            |
| Chapitre 4  | Conn       | exion avec le logiciel ProLink II ou Pocket ProLink            | 17         |
|             | 4.1        |                                                                | . 17       |
|             | 4.2        | Materiel necessaire                                            | . 1/       |
|             | 4.3<br>1 1 | Connevien de l'ordinateur au transmetteur Medèle 24005 DP      | . 18       |
|             | 4.4        | 4 4 1 Ontions de connexion                                     | . 10<br>18 |
|             |            | 4 4 2 Paramètres de communication du port service              | 18         |
|             |            | 4.4.3 Connexion au port service                                | . 19       |
|             | 4.5        | Langue de ProLink II                                           | . 20       |

| Chapitre 5 | Utilis | sation a   | vec un hôte PROFIBUS                                                | 21 |
|------------|--------|------------|---------------------------------------------------------------------|----|
|            | 5.1    | Somma      | ire                                                                 | 21 |
|            | 5.2    | Fichiers   | d'exploitation                                                      | 21 |
|            | 5.3    | Connex     | ion au transmetteur Modèle 2400S DP                                 | 22 |
|            | 5.4    | Utilisatio | on du fichier GSD                                                   | 22 |
|            | 5.5    | Utilisatio | on de la description EDD de l'appareil                              | 23 |
|            | 5.6    | Utilisatio | on des paramètres de bus PROFIBUS                                   | 24 |
| •••••      |        |            |                                                                     |    |
| Chapitre 6 | Conf   | iguratio   | n essentielle du transmetteur                                       | 25 |
|            | 6.1    | Somma      | ire                                                                 | 25 |
|            | 6.2    | Caracté    | risation du débitmètre                                              | 25 |
|            |        | 6.2.1      | Quand caractériser le débitmètre                                    | 25 |
|            |        | 6.2.2      | Paramètres de caractérisation                                       | 25 |
|            |        | 6.2.3      | Comment caractériser le débitmètre                                  | 27 |
|            | 6.3    | Configu    | ration des unités de mesure                                         | 28 |
|            |        | 6.3.1      | Unité de débit massique                                             | 30 |
|            |        | 6.3.2      | Unité de débit volumique                                            | 30 |
|            |        | 6.3.3      | Unité de masse volumique                                            | 32 |
|            |        | 6.3.4      | Unité de température                                                | 33 |
|            |        | 6.3.5      | Unité de pression                                                   | 33 |
| Chanitro 7 | Evol   | nitation   | du transmottour                                                     | 32 |
| Unaprile I |        |            |                                                                     |    |
|            | 7.1    | Somma      |                                                                     |    |
|            | 7.2    | Usage o    |                                                                     |    |
|            | 7.3    | Releve     | des grandeurs mesurees                                              |    |
|            | 7.4    | Visualis   | ation des grandeurs mesurees                                        |    |
|            |        | 7.4.1      |                                                                     |    |
|            |        | 7.4.2      |                                                                     | 37 |
|            |        | 7.4.3      | Avec un hote PROFIBUS et la description EDD de l'appareil           |    |
|            |        | 7.4.4      | Avec un hote PROFIBUS et le fichier GSD de l'appareil               | 37 |
|            |        | 7.4.5      | Avec les parametres de bus PROFIBUS                                 | 38 |
|            | 7.5    | Interpre   | tation de l'état des voyants LED                                    | 38 |
|            |        | 7.5.1      | Voyant NETWORK                                                      | 38 |
|            |        | 7.5.2      | Voyant S/W ADDR                                                     | 38 |
|            | 7.6    | Visualis   | ation de l'état de fonctionnement du transmetteur                   | 39 |
|            |        | 7.6.1      | Avec le voyant STATUS du transmetteur                               | 39 |
|            |        | 7.6.2      | Avec ProLink II.                                                    | 39 |
|            |        | 7.6.3      | Avec un hôte PROFIBUS et la description EDD de l'appareil           | 39 |
|            |        | 7.6.4      | Avec les paramètres de bus PROFIBUS                                 | 39 |
|            | 7.7    | Gestion    | des alarmes                                                         | 40 |
|            |        | 7.7.1      | Avec l'indicateur                                                   | 41 |
|            |        | 7.7.2      | Avec ProLink II                                                     | 42 |
|            |        | 7.7.3      | Avec un hôte PROFIBUS et la description EDD de l'appareil           | 43 |
|            |        | 7.7.4      | Avec les paramètres de bus PROFIBUS                                 | 44 |
|            | 7.8    | Utilisatio | on des totalisateurs partiels et généraux                           | 45 |
|            |        | 7.8.1      | Visualisation de la valeur actuelle des totaux partiels et généraux | 45 |
|            |        | 7.8.2      | Contrôle des totalisateurs partiels et généraux                     | 47 |

| Chapitre 8 | Confi      | iguration          | optionnelle                                                              | 51         |
|------------|------------|--------------------|--------------------------------------------------------------------------|------------|
|            | 8.1        | Sommaire           | )                                                                        | . 51       |
|            | 8.2        | Configura          | tion pour le mesurage du volume de gaz.                                  | . 52       |
|            |            | 8.2.1              |                                                                          | . 53       |
|            |            | 8.2.2              | Avec un noie PROFIBUS et la description EDD de l'appareil                | . 54       |
|            | 0.0        | 8.2.3<br>Covila da |                                                                          | . 54       |
|            | 8.3        |                    | Coupure                                                                  | . 54       |
|            | 0.4        | 8.3.1              | Relation entre les seulis de coupure et l'indication de debit volumique. | . 55       |
|            | 8.4        | Amortisse          | ement des grandeurs mesurees                                             | . 55       |
|            | 0 5        | 8.4.1              | Impact de l'amortissement sur les mesures de volume                      | . 56       |
|            | 8.5        | Sens d'ec          |                                                                          | . 56       |
|            | 8.6        | Configura          |                                                                          | . 58       |
|            |            | 8.6.1              |                                                                          | . 58       |
|            |            | 8.6.2              |                                                                          | . 60       |
|            |            | 8.6.3              | Modification de la valeur de seuil d'un événement avec l'indicateur      | . 61       |
|            | 8.7        | Limites et         | durée autorisée d'écoulement biphasique                                  | . 61       |
|            | 8.8        | Configura          | tion du niveau de gravité des alarmes                                    | . 62       |
|            | 8.9        | Configura          | tion de l'indicateur                                                     | . 65       |
|            |            | 8.9.1              | Période de rafraîchissement                                              | . 66       |
|            |            | 8.9.2              | Langue                                                                   | . 66       |
|            |            | 8.9.3              | Sélection et résolution des grandeurs à afficher                         | . 66       |
|            |            | 8.9.4              | Rétro-éclairage de l'indicateur                                          | . 68       |
|            |            | 8.9.5              | Mise en/hors fonction des fonctionnalités de l'indicateur                | . 68       |
|            | 8.10       | Configura          | tion de la communication numérique                                       | . 69       |
|            |            | 8.10.1             | Adresse de nœud PROFIBUS                                                 | . 69       |
|            |            | 8.10.2             | Verrouillage du port infrarouge                                          | . 71       |
|            |            | 8.10.3             | Adresse Modbus                                                           | . 71       |
|            |            | 8.10.4             | support Modbus ASCII.                                                    | . 72       |
|            |            | 8.10.5             | Ordre des octets à virgule flottante                                     | . 72       |
|            |            | 8.10.6             | Délai supplémentaire de réponse numérique                                | . 72       |
|            |            | 8.10.7             | Forcage sur défaut des valeurs transmises par voie numérique             | . 73       |
|            |            | 8.10.8             | Temporisation du forcage sur défaut                                      | . 74       |
|            | 8.11       | Informatio         | ons sur le transmetteur                                                  | . 74       |
|            | 8.12       | Configura          | tion des valeurs de la fonction I&M PROFIBUS.                            | 75         |
|            | 8.13       | Informatio         | ons sur le capteur                                                       | . 75       |
|            | 8 14       | Configura          | tion de la fonctionnalité de mesurage de produits pétroliers             | 75         |
|            | 0.11       | 8 14 1             | Présentation de la fonctionnalité de mesurage des produits nétroliers    | 75         |
|            |            | 8 14 2             | Procédure de configuration                                               | 78         |
|            | 8 15       | Configura          | tion de la fonctionnalité Densimétrie avancée                            | . 70       |
|            | 0.15       | 8 15 1             | Présentation de la fonctionnalité de densimétrie avancée                 | . 70       |
|            |            | 0.15.1<br>9.15.2   | Procóduro do configuration                                               | . 73<br>Q1 |
|            |            | 0.15.2             |                                                                          | . 01       |
| Chapitre 9 | Corre      | ection en          | pression et en température                                               | 83         |
|            | 0.1        | Sommair            |                                                                          | 22         |
|            | ອ.1<br>ດູງ | Corroction         | 5                                                                        | . 03<br>02 |
|            | 9.2        |                    | Ontione                                                                  | . 03       |
|            |            | 3.2.1              | Eastoure de correction en pression                                       | . 03       |
|            |            | 9.2.2              |                                                                          | . 04       |

9.2.3

| Chapitre 10 | Perfo | rmance métrologique                                                        | 91    |
|-------------|-------|----------------------------------------------------------------------------|-------|
| •           | 10.1  | Sommaire                                                                   | 91    |
|             | 10.2  | Validation du débitmètre, vérification de l'étalonnage et étalonnage       | 91    |
|             |       | 10.2.1 Validation du débitmètre                                            | 92    |
|             |       | 10.2.2 Vérification de l'étalonnage et facteurs d'ajustage de l'étalonnage | 93    |
|             |       | 10.2.3 Etalonnage                                                          | 94    |
|             |       | 10.2.4 Comparaison et recommandations                                      | 94    |
|             | 10.3  | Procédure de validation du débitmètre                                      | 95    |
|             |       | 10.3.1 Préparation au test de validation du débitmètre                     | 95    |
|             |       | 10.3.2 Lancement d'un test de validation de débitmètre, version d'origine  | 96    |
|             |       | 10.3.3 Lancement d'un test de validation, version évoluée                  | . 101 |
|             |       | 10.3.4 Lecture et interprétation des résultats du test de validation du    |       |
|             |       | débitmètre                                                                 | . 107 |
|             |       | 10.3.5 Programmation de l'exécution automatique ou à distance d'un test    |       |
|             |       | de validation.                                                             | . 114 |
|             | 10.4  | Vérification de l'étalonnage                                               | . 117 |
|             | 10.5  | Ajustage du zéro                                                           | . 117 |
|             |       | 10.5.1 Préparation pour l'ajustage du zéro                                 | . 118 |
|             |       | 10.5.2 Procédure d'ajustage du zéro                                        | . 119 |
|             | 10.6  | Etalonnage en masse volumique                                              | . 122 |
|             |       | 10.6.1 Préparation pour l'étalonnage en masse volumique                    | . 122 |
|             |       | 10.6.2 Procédures d'étalonnage en masse volumique                          | . 123 |
|             | 10.7  | Etalonnage en température                                                  | . 127 |
|             |       |                                                                            |       |
| Chanitre 11 | Dianr | nostic des nannes                                                          | 129   |
|             | 11.1  | Sommaira                                                                   | 120   |
|             | 11.1  | Liste des sujets de diagnostic abordés dans ce chanitre                    | 129   |
|             | 11.2  | Service après-vente de Micro Motion                                        | 130   |
|             | 11.0  | Le transmetteur ne fonctionne nas                                          | 130   |
|             | 11.5  | Panne de communication                                                     | 130   |
|             | 11.6  | Vérification de l'appareil de communication                                | 130   |
|             | 11.7  | Diagnostic des problèmes de câblage                                        | . 131 |
|             |       | 11.7.1 Vérification du câblage de l'alimentation                           | . 131 |
|             |       | 11.7.2 Vérification du câblage au réseau PROFIBUS                          | . 132 |
|             |       | 11.7.3 Vérification de la mise à la terre                                  | . 132 |
|             | 11.8  | Echec de l'aiustage du zéro ou de l'étalonnage                             | . 132 |
|             | 11.9  | Défauts de fonctionnement                                                  | . 132 |
|             | 11.10 | Mode de simulation des grandeurs mesurées                                  | . 133 |
|             | 11.11 | Vovants du transmetteur                                                    | . 134 |
|             | 11.12 | Codes d'alarme                                                             | . 134 |
|             | 11.13 | Vérifier la valeur des grandeurs mesurées                                  | . 138 |
|             | 11.14 | Ecoulement biphasique.                                                     | . 142 |
|             | 11.15 | Vérification de l'intégrité des tubes de mesure du capteur                 | . 142 |
|             | 11.16 | Vérification de la configuration pour la mesure du débit                   | . 143 |
|             | 11.17 | Vérification de la caractérisation                                         | . 143 |
|             | 11.18 | Vérification de l'étalonnage                                               | . 143 |
|             | 11.19 | Rétablissement de la configuration                                         | . 143 |
|             | 11.20 | Vérification des points de test                                            | . 143 |
|             |       | 11.20.1 Accès aux points de test                                           | . 144 |
|             |       | 11.20.2 Interprétation des niveaux mesurés aux points de test              | . 144 |
|             |       | 11.20.3 Problèmes avec le niveau d'excitation                              | . 144 |
|             |       | 11.20.4 Tension de détection trop faible                                   | . 145 |
|             | 11.21 | Vérification des circuits du capteur                                       | . 145 |

| Annexe A   |                   | urs par défaut et plages de réglage                                         | . <b>151</b>      |
|------------|-------------------|-----------------------------------------------------------------------------|-------------------|
|            | A.2               | Valeur par défaut et plage de réglage des paramètres les plus usités        | 151               |
| Annexe B   | Illus             | trations des éléments du transmetteur                                       | . 155             |
|            | B.1<br>B.2<br>B.3 | Sommaire<br>Eléments constitutifs du transmetteur<br>Bornes du transmetteur | 155<br>155<br>156 |
| Annexe C   | Arbo              | rescences des menus du transmetteur Modèle 2400S DP                         | . 157             |
|            | C.1               | Sommaire                                                                    | 157               |
|            | C.2               | Informations sur les versions logicielles                                   | 157               |
|            | C.3               | Arborescences des menus de ProLink II                                       | 158               |
|            | C.4               | Arborescences des menus de la description EDD                               | 169               |
|            | 0.5               |                                                                             | 100               |
| Annexe D   | Para              | mètres de bus PROFIBUS                                                      | . 173             |
|            | D.1<br>D.2        | Sommaire                                                                    | 173               |
|            | D3                | Bloc Mesurage (Slot 1)                                                      | 174               |
|            | D.4               | Bloc Etalonnage (Slot 2)                                                    | 176               |
|            | D.5               | Bloc Diagnostics (Slot 3)                                                   | 178               |
|            | D.6               | Bloc Informations sur l'appareil (Slot 4)                                   | 186               |
|            | D.7               | Bloc Indicateur local (Slot 5)                                              | 188               |
|            | D.8               | Bloc API (Slot 6)                                                           | 190               |
|            | D.9<br>D 10       | Bloc Densimetrie avancee (Slot 7)                                           | 10/               |
|            | D.10              | Codes des unités de mesure des totalisateurs partiels et généraux.          | 194               |
|            | D.12              | Codes des grandeurs mesurées                                                | 195               |
|            | D.13              | Codes d'indexage des alarmes                                                | 196               |
| Anneve F   | Glae              | saire des codes et abréviations de l'indicateur                             | 100               |
| AIIIIGAG L |                   |                                                                             | 100               |
|            | E.1<br>E.2        | Codes et abréviations                                                       | 199               |
|            |                   |                                                                             |                   |
| index      |                   |                                                                             | . 203             |

# Chapitre 1 Avant de commencer

#### 1.1 Sommaire

Ce chapitre explique comment utiliser ce manuel ; il contient également un organigramme de configuration et un formulaire de préconfiguration. Ce manuel décrit les procédures de mise en service, de configuration, d'exploitation, d'entretien et de diagnostic du transmetteur Micro Motion<sup>®</sup> Modèle 2400S pour bus de terrain PROFIBUS-DP (Modèle 2400S DP).

La section 1.3 indique comment déterminer le type de transmetteur à partir du numéro de modèle qui est inscrit sur la plaque signalétique d'identification du transmetteur.

Remarque : Ce manuel ne contient aucunes informations concernant la configuration et l'utilisation des transmetteurs Modèle 2400S avec autres options d'E/S. Pour les autres options d'E/S, voir le manuel d'instructions qui a été livré avec le transmetteur.

## 1.2 Sécurité

Les messages de sécurité qui apparaissent dans ce manuel sont destinés à garantir la sécurité du personnel d'exploitation et du matériel. Lire attentivement chaque message de sécurité avant d'effectuer les procédures qui les suivent.

#### 1.3 Détermination du type de transmetteur

Le numéro de modèle qui est inscrit sur la plaque signalétique du transmetteur indique le type du transmetteur, le type d'interface utilisateur et le type d'E/S. Le numéro de modèle est une chaîne de caractères ayant la forme suivante :

#### 2400S\*X\*X\*\*\*\*\*

Dans cette chaîne :

- **2400S** indique la famille du transmetteur.
- Le premier **X** (le septième caractère) indique l'option d'E/S du transmetteur : **D** = bus de terrain PROFIBUS DP
- Le second **X** (le neuvième caractère) indique l'option d'interface utilisateur du transmetteur :
  - **1** = indicateur avec vitre en verre
  - $\mathbf{3} = \text{sans indicateur}$
  - **4** = indicateur avec vitre en plastique

#### 1.4 Fonctionnalités PROFIBUS-DP

Le transmetteur Modèle 2400S DP dispose des fonctionnalités PROFIBUS-DP suivantes :

- Débits de transmission : le transmetteur détecte automatiquement tout débit standard compris entre 9,6 kbit/s et 12,0 Mbit/s
- Communication maître-esclave :
  - Echange de données
  - Acyclique
- Méthodes de configuration :
  - Adresse de nœud : sélecteurs manuels ou adressage par voie logicielle
  - Description d'appareil (EDD) conforme au document intitulé *Specification for PROFIBUS Device Description and Device Integration: Volume 2: EDDL V1.1, January 2001*
  - Services de lecture et d'écriture DP-V1 avec paramètres de bus PROFIBUS
- Méthodes d'exploitation :
  - GSD conforme au document intitulé *Specification for PROFIBUS Device Description and Device Integration: Volume 1: GSD V5.0, May 2003*
  - Services cycliques DP-V0
  - Description d'appareil (EDD) décrite ci-dessus
  - Services de lecture et d'écriture DP-V1
- Fonctions d'identification et de maintenance (I&M) :
  - I&M 0
  - I&M 1

telles que spécifiées par le document *Profile Guidelines Part 1: Identification & Maintenance Functions Version 1.1.1, March 2005.* 

#### 1.5 Détermination de la version des différents éléments

Le tableau 1-1 indique comment vérifier les numéros de version de différents éléments (des informations supplémentaires sont disponibles via les fonctions I&M. Voir la section 7.2).

#### Tableau 1-1Détermination des numéros de version

| Elément                  | Outil             | Méthode                                                                 |
|--------------------------|-------------------|-------------------------------------------------------------------------|
| Logiciel du transmetteur | Avec ProLink II   | Visualisation > Options installées > Version logiciel                   |
|                          | Avec EDD          | MMI Coriolis Flow > Configuration Parameters > Device                   |
|                          | Avec l'indicateur | OFF-LINE MAINT > VER                                                    |
| ProLink II               | Avec ProLink II   | Aide > A propos de ProLink II                                           |
| Version GSD              | Editeur de texte  | Ouvrir le fichier MMI0A60.GSD<br>Vérifier le paramètre GSD_Revision     |
| Version EDD              | Editeur de texte  | Ouvrir le fichier MMICorFlowDP.ddl<br>Vérifier le paramètre DD_Revision |

#### **1.6** Outils de communication

La plupart des procédures décrites dans ce manuel nécessitent l'emploi d'un outil de communication. Le tableau 1-2 indique les outils de communication qui peuvent être utilisés, leur niveau de fonctionnalité respectif, ainsi que le matériel ou le niveau de version requis.

Remarque : La configuration et la maintenance du transmetteur peut se faire au choix avec le logiciel ProLink II, les fichiers EDD ou les paramètres de bus PROFIBUS. Un seul de ces outils est nécessaire.

.. .

### Tableau 1-2 Outils de communication pour le transmetteur Modèle 2400S DP

|                                       | F                            | onctionnalité               | Matériel ou niveau de version requis                                 |  |
|---------------------------------------|------------------------------|-----------------------------|----------------------------------------------------------------------|--|
| Outil                                 | Visualisation / exploitation | Configuration / maintenance |                                                                      |  |
| Indicateur du<br>transmetteur         | Partielle                    | Partielle                   | Transmetteur avec indicateur                                         |  |
| ProLink <sup>®</sup> II               | Complète                     | Complète <sup>(1)</sup>     | v2.5 (implémentation préliminaire)<br>v2.6 (implémentation complète) |  |
| Pocket ProLink <sup>®</sup>           | Complète                     | Complète <sup>(1)</sup>     | v1.3 (implémentation préliminaire)<br>v1.4 (implémentation complète) |  |
| Hôte PROFIBUS                         |                              |                             |                                                                      |  |
| • GSD                                 | Partielle                    | Aucune                      | Fichier GSD (MMI0A60.GSD)                                            |  |
| • EDD                                 | Complète                     | Complète <sup>(1)</sup>     | Description d'appareil EDD                                           |  |
| <ul> <li>Paramètres de bus</li> </ul> | Complète                     | Complète <sup>(1)</sup>     | Aucun                                                                |  |

(1) Sauf pour l'adresse de nœud.

Les fichiers EDD et GSD sont disponibles pour téléchargement sur le site web de Micro Motion : **www.micromotion.com**.

Dans ce manuel :

- Les informations de base concernant l'utilisation de l'indicateur du transmetteur sont données au chapitre 3.
- Les informations de base concernant la connexion et l'utilisation de ProLink II et de Pocket ProLink sont données au chapitre 4. Pour plus d'informations, consulter le manuel d'instructions de ProLink II ou de Pocket ProLink, disponible sur le site Internet de Micro Motion (www.micromotion.com).
- Les informations de base concernant l'utilisation du transmetteur avec un hôte PROFIBUS sont données au chapitre 5.

#### **1.7** Planification de la configuration

Consulter l'organigramme de configuration à la figure 1-1 pour planifier la configuration du transmetteur. Il est recommandé d'effectuer les étapes de configuration dans l'ordre décrit.

Remarque : Selon l'installation et l'application, certaines de ces étapes peuvent être facultatives.

Remarque : Ce manuel contient des informations sur des sujets qui ne sont pas décrits dans l'organigramme de configuration (exploitation du transmetteur, diagnostic des pannes, procédures d'étalonnage, etc.). Consulter ces sections séparément si nécessaire.







#### Avant de commencer

#### **1.8** Formulaire de préconfiguration

Le formulaire de préconfiguration permet de noter certaines informations pouvant être utiles lors de la configuration du transmetteur. Au besoin, consulter le responsable de l'installation pour obtenir les informations requises.

Si plusieurs transmetteurs doivent être configurés, photocopier ce formulaire et remplir un exemplaire pour chaque transmetteur.

| Formulaire de préconfiguration  |                 | Transmetteur                                                                                                                                                                                                     |
|---------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Paramètre                       |                 | Configuration                                                                                                                                                                                                    |
| Numéro de modèle du trar        | nsmetteur       |                                                                                                                                                                                                                  |
| Numéro de série du transmetteur |                 |                                                                                                                                                                                                                  |
| Version logicielle du transr    | netteur         |                                                                                                                                                                                                                  |
| Numéro de modèle du cap         | oteur           |                                                                                                                                                                                                                  |
| Numéro de série du capte        | ur              |                                                                                                                                                                                                                  |
| Adresse de nœud PROFIE          | BUS-DP          |                                                                                                                                                                                                                  |
| Unités de mesure                | Débit massique  |                                                                                                                                                                                                                  |
|                                 | Débit volumique |                                                                                                                                                                                                                  |
|                                 | Masse volumique |                                                                                                                                                                                                                  |
| Pression<br>Température         |                 |                                                                                                                                                                                                                  |
|                                 |                 |                                                                                                                                                                                                                  |
| Fonctionnalités installées      |                 | <ul> <li>Logiciel de validation du débitmètre, version évoluée</li> <li>Logiciel de validation du débitmètre, version originale</li> <li>Mesurage de produits pétroliers</li> <li>Densimétrie avancée</li> </ul> |

## 1.9 Documentation

Le tableau 1-3 indique les autres documents à consulter pour plus de renseignements.

#### Tableau 1-3 Autres sources de documentation du débitmètre

| Sujet                              | Document                                                                                                                                                            |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Installation du capteur            | Manuel d'instructions du capteur                                                                                                                                    |
| Installation du transmetteur       | Manuel d'installation du transmetteur Micro Motion <sup>®</sup> Modèle 2400S                                                                                        |
| Installation en zone<br>dangereuse | Voir la documentation de certification livrée avec le transmetteur, ou télécharger le document approprié sur le site Internet de Micro Motion (www.micromotion.com) |

#### Avant de commencer

#### 1.10 Service après-vente de Micro Motion

Pour toute assistance, appeler le service après-vente de Micro Motion :

- En France, appeler le (00) (+31) 318-495-630 ou, gratuitement, le 0800-917-901
- En Suisse, appeler le 041-768-6111
- En Belgique, appeler le 02-716-77-11 ou, gratuitement, le 0800-75-345
- Aux Etats-Unis, appeler gratuitement le 1-800-522-6277
- Au Canada et en Amérique Latine, appeler le +1 303-527-5200
- En Asie :
  - Au Japon, appeler le 3 5769-6803
  - Autres pays, appeler le +65 6777-8211 (Singapour)

Les clients situés en dehors des Etats-Unis peuvent aussi contacter le service après-vente de Micro Motion par email à *flow.support@emerson.com*.

# Chapitre 2 Mise en service du débitmètre

## 2.1 Sommaire

Ce chapitre explique comment :

- régler l'adresse de nœud PROFIBUS-DP voir la section 2.2
- mettre le débitmètre en ligne voir la section 2.3

# 2.2 Réglage de l'adresse de nœud PROFIBUS-DP

Le module de l'interface utilisateur est équipé de trois sélecteurs (voir la figure 3-1 ou 3-2) qui permettent de régler l'adresse de nœud à trois digits du transmetteur :

- Le sélecteur de gauche sélectionne le premier digit
- Le sélecteur central sélectionne le deuxième digit
- Le sélecteur de droite sélectionne le troisième digit

L'adresse de nœud par défaut du débitmètre est 126.

Pour configurer l'adresse de nœud manuellement avant de mettre le transmetteur en ligne, régler les sélecteurs sur toute valeur comprise entre **0** et **125**. Si le transmetteur est sous tension lors du réglage des sélecteurs, il faudra couper l'alimentation et le remettre sous tension pour qu'il accepte la nouvelle adresse de nœud.

Si le transmetteur est mis en ligne avec les sélecteurs réglés sur l'adresse 126 :

- Le transmetteur apparaît à l'adresse **126** dans la liste des appareils connectés.
- Il est possible de modifier l'adresse de nœud par voie logicielle en envoyant un télégramme Set Slave Address à partir de l'hôte PROFIBUS.
- Il est possible de modifier l'adresse de nœud manuellement en réglant les sélecteurs sur toute valeur comprise entre **0** et **125**, puis en coupant l'alimentation pendant quelques instants.

Pour plus de détails sur le réglage de l'adresse de nœud, voir la section 8.10.1.

*Remarque : Il n'est pas nécessaire de régler la vitesse de transmission car le transmetteur Modèle 2400S DP détecte et utilise automatiquement la vitesse de transmission du bus de terrain.* 

#### 2.3 Mise en ligne du transmetteur

Pour mettre le transmetteur en ligne :

- 1. Suivre les procédures appropriées afin de s'assurer que le processus de configuration et de mise en service du transmetteur Modèle 2400S DP n'interfère pas avec les boucles de mesurage et de régulation existantes.
- 2. Vérifier que le câble PROFIBUS est connecté au transmetteur comme décrit dans le manuel d'installation du transmetteur.
- 3. Vérifier que tous les couvercles et orifices du transmetteur et du capteur sont fermés et étanches.

# AVERTISSEMENT

L'utilisation du débitmètre en l'absence des couvercles peut entraîner des dégâts matériels et expose le personnel d'exploitation à des risques d'électrocution pouvant entraîner des blessures graves, voire mortelles.

Pour éviter les risques d'électrocution, s'assurer que tous les couvercles du débitmètre sont en place avant de connecter le transmetteur au réseau.

4. Mettre le transmetteur sous tension. Le débitmètre effectue automatiquement un auto-diagnostic interne. Lorsque cette procédure d'initialisation est terminée, le voyant STATUS s'allume en vert. Tout autre comportement du voyant STATUS indique la présence d'une alarme ou un étalonnage en cours. Voir la section 7.6.

Remarque : S'il s'agit d'une mise en service initiale, ou si le transmetteur a été mis hors tension pendant un certain temps et que les composants sont à la température ambiante, le débitmètre est capable de traiter les données du procédé environ une minute après la mise sous tension. Toutefois, il faut jusqu'à dix minutes pour que l'électronique du débitmètre atteigne son équilibre thermique. Pendant cette période de chauffe, il est possible que des instabilités ou des inexactitudes de mesure mineures soient observées.

5. Vérifier que le transmetteur est visible sur le réseau. Pour plus d'informations concernant la mise en communication du transmetteur Modèle 2400S DP avec un hôte PROFIBUS, voir le chapitre 5.

# Chapitre 3 Mode d'emploi de l'interface utilisateur

#### 3.1 Sommaire

Ce chapitre décrit l'interface utilisateur du transmetteur Modèle 2400S DP. Il explique :

- la différence entre les transmetteurs avec indicateur et sans indicateur (voir la section 3.2)
- comment ouvrir et refermer le couvercle du transmetteur (voir la section 3.3)
- le mode d'emploi des touches optiques Scroll et Select (voir la section 3.4)
- le mode d'emploi de l'indicateur (voir la section 3.5)

#### 3.2 Interface utilisateur avec et sans indicateur

L'apparence de l'interface utilisateur est différente suivant que le transmetteur Modèle 2400S DP a été commandé avec ou sans indicateur :

- S'il a été commandé sans indicateur, il n'y a pas d'afficheur LCD sur l'interface utilisateur. L'interface utilisateur comporte les éléments suivants :
  - Trois sélecteurs rotatifs, pour le réglage de l'adresse de nœud PROFIBUS
  - Un commutateur permettant d'activer la résistance de terminaison interne
  - Trois voyants LED : STATUS (état), NETWORK (réseau), et S/W ADDR (adresse logicielle)
  - Les pattes du port service
  - Un bouton d'ajustage du zéro

Pour toute autre fonction, il faut utiliser soit le logiciel ProLink II, soit un hôte PROFIBUS.

- Si le transmetteur a été commandé avec un indicateur, il n'y a pas de bouton d'ajustage du zéro (l'ajustage du zéro doit être lancé à partir de l'indicateur, de ProLink II ou d'un hôte PROFIBUS). Il comporte en outre :
  - Un afficheur à cristaux liquides, qui affiche les grandeurs mesurées et qui permet aussi d'effectuer certaines opérations de configuration et de maintenance. Des touches optiques permettent d'interagir avec l'indicateur.
  - Un port infrarouge (IrDA), qui permet de se connecter sans fil au port service.

Remarque : Le menu de maintenance de l'indicateur ne permet pas d'accéder à toutes les fonctionnalités du transmetteur ; pour accéder à toutes les fonctionnalités, il faut utiliser au choix ProLink II, un hôte PROFIBUS équipé de la description EDD de l'appareil, ou les paramètres du bus de terrain PROFIBUS.

Les figures 3-1 et 3-2 illustrent l'interface utilisateur du transmetteur Modèle 2400S DP avec et sans indicateur. Ces deux illustrations montrent le transmetteur avec le couvercle enlevé.





Si le transmetteur n'est pas équipé d'un indicateur, il faut enlever le couvercle du transmetteur pour accéder aux différentes fonctionnalités de l'interface utilisateur.

#### Mode d'emploi de l'interface utilisateur

Si le transmetteur est équipé d'un indicateur, le couvercle est doté d'une vitre. Tous les éléments illustrés à la figure 3-2 sont visibles à travers la vitre, et l'opérateur peut effectuer les opérations suivantes à travers la vitre (lorsque le couvercle du transmetteur est fermé) :

- Visualiser les voyants
- Visualiser l'afficheur à cristaux liquides
- Utiliser les touches optiques **Select** et **Scroll**
- Se connecter au port service via le port infrarouge.

Toutes les autres opérations nécessitent l'ouverture du couvercle du transmetteur.

Pour plus de renseignements sur :

- l'utilisation des sélecteurs de réglage de l'adresse PROFIBUS, voir la section 8.10.1.
- l'utilisation des voyants, voir la section 7.5.
- la connexion au port service, voir la section 4.4.
- l'utilisation du bouton d'ajustage du zéro, voir la section 10.5.

*Remarque : Le commutateur de la résistance de terminaison est utilisé pour activer ou désactiver la résistance de terminaison interne. Cette résistance interne peut être utilisée à la place d'une résistance externe si une terminaison est nécessaire au niveau du transmetteur.* 

## 3.3 Ouverture et fermeture du couvercle du transmetteur

Certaines procédures nécessitent l'ouverture du couvercle du transmetteur. Pour ouvrir le couvercle :

1. Si le transmetteur est en Zone 2 (Division 2), couper l'alimentation du transmetteur.

# AVERTISSEMENT

Si le transmetteur est en Zone 2 (Division 2), le retrait du couvercle du transmetteur lorsque celui-ci est sous tension risque de causer une explosion.

Pour éviter tout risque d'explosion, couper l'alimentation du transmetteur avant de retirer le couvercle.

- 2. Desserrer les quatre vis imperdables.
- 3. Retirer le couvercle du transmetteur.

Lors de la refermeture du couvercle, prendre soin de bien l'ajuster et de bien serrer les vis afin qu'aucune humidité ne s'infiltre à l'intérieur du boîtier du transmetteur.

#### 3.4 Mode d'emploi des touches optiques

#### Remarque : Cette section ne s'applique qu'aux transmetteurs équipés d'un indicateur.

Les touches **Scroll** (défilement) et **Select** (sélection) sont des touches optiques à infrarouge qui permettent à l'opérateur de naviguer dans les menus de l'indicateur. Pour « appuyer » sur une touche, placer le doigt sur la vitre au-dessus de la touche optique, ou bouger le doigt au-dessus de la touche à proximité de la vitre. Il y a un témoin d'appui au-dessus de chaque touche. Lorsqu'une touche est activée, le témoin d'appui correspondant s'allume en rouge pour confirmer visuellement « l'appui » sur la touche.

# **ATTENTION**

Toute insertion d'objet dans l'ouverture des touches optiques risque d'endommager le transmetteur.

Pour ne pas endommager les touches optiques, ne pas insérer d'objet dans les ouvertures. Utiliser uniquement les doigts pour activer les touches optiques.

#### 3.5 Mode d'emploi de l'indicateur

Remarque : Cette section ne s'applique qu'aux transmetteurs équipés d'un indicateur.

L'indicateur permet à l'opérateur de visualiser les grandeurs mesurées et d'accéder aux menus du transmetteur pour effectuer certaines opération de configuration et de maintenance.

#### 3.5.1 Langue d'affichage

Les menus et les données de l'indicateur peuvent être affichées dans les langues suivantes :

- Anglais
- Français
- Espagnol
- Allemand

Noter que, du fait de certaines restrictions logicielles et matérielles, certains mots anglais peuvent apparaître dans les menus affichés en français. La liste des codes et des abréviations utilisés par l'indicateur est donnée à l'annexe E.

Pour modifier la langue de l'affichage, voir la section 8.9.

Dans ce manuel, les menus de l'indicateur apparaissent en français.

#### 3.5.2 Visualisation des grandeurs mesurées

En mode d'exploitation normal, la ligne de la **Grandeur mesurée** indique la grandeur que représente la valeur affichée à l'écran, et la ligne **Unité de mesure** indique l'unité de cette grandeur.

- Voir la section 8.9.3 pour sélectionner les grandeurs à afficher.
- Voir l'annexe E pour plus d'informations sur les codes et les abréviations employés sur l'indicateur.

Si plus d'une ligne est nécessaire pour décrire la grandeur mesurée, la ligne **Unité de mesure** clignote et affiche en alternance l'unité de mesure et la description supplémentaire. Par exemple, si la valeur affichée sur l'indicateur est un total général, la ligne **Unité de mesure** alterne entre l'unité de mesure (par exemple **KG**) et le type de total général (par exemple **GEN\_M** = total général en masse).

Une fonction de défilement automatique peut être activée :

- Si la fonction de défilement automatique est activée, chaque grandeur configurée pour être affichée apparaît pendant un intervalle de temps spécifié.
- Que cette fonction soit activée ou non, l'opérateur peut faire défiler manuellement les grandeurs configurées pour être affichées en appuyant sur la touche **Scroll**.

Pour plus d'informations sur l'utilisation de l'indicateur pour visualiser les grandeurs mesurées ou gérer les totalisateurs, se reporter au chapitre 7.

#### 3.5.3 Menus de l'indicateur

Remarque : Le système de menus de l'indicateur permet à l'opérateur d'accéder uniquement à certaines fonctions de base du transmetteur. Il ne permet pas d'accéder à toutes les données de configuration et d'exploitation. Pour accéder à toutes les données, utiliser le logiciel ProLink II ou un hôte PROFIBUS.

Pour accéder au menus de l'indicateur :

- 1. Appuyer simultanément sur les touches SCROLL et SELECT.
- 2. Continuer d'appuyer sur Scroll et Select jusqu'à ce que le message LIRE ALARM ou OFF-LINE MAINT apparaisse à l'écran.

*Remarque : L'accès aux menus de l'indicateur peut être activé ou désactivé. S'il est désactivé, l'option OFF-LINE MAINT n'apparaîtra pas. Pour plus d'informations, voir la section 8.9.* 

Pour accéder à certaines sections du menu de l'indicateur :

- Si le mot de passe a été activé, l'opérateur devra le fournir. Voir la section 3.5.4.
- Si le mot de passe n'est pas requis, l'opérateur devra activer les touches optiques en tapant une séquence prédéfinie (**Scroll-Select-Scroll**). Ceci permet d'empêcher l'entrée intempestive dans le menu du fait des variations de l'éclairage ambiant.

Si aucune touche optique n'est activée pendant deux minutes, le transmetteur quittera automatiquement le menu off-line et retournera à l'affichage des grandeurs mesurées.

Appuyer sur la touche Scroll pour faire défiler les options d'un menu.

Pour sélectionner une option ou pour entrer dans un sous-menu, appuyer sur la touche **SCROLL** jusqu'à ce que l'option désirée s'affiche à l'écran, puis appuyer sur la touche **SELECT**. Si un écran de confirmation apparaît :

- Appuyer sur la touche **SELECT** pour confirmer la modification.
- Appuyer sur la touche **SCROLL** pour annuler la modification.

Pour sortir d'un menu sans effectuer de modifications :

- Sélectionner l'option **EXIT** si elle est disponible.
- Sinon, appuyer sur la touche **SCROLL** dans l'écran de confirmation.

#### 3.5.4 Mot de passe de l'indicateur

Certaines fonctionnalités de l'indicateur, tel que l'accès au menu de maintenance, peuvent être protégées par mot de passe. Pour plus d'informations sur la programmation du mot de passe, voir la section 8.9.

Si un mot de passe est requis, le message **CODE**? apparaît à l'écran. Entrer les digits du mot de passe en appuyant sur la touche **Scroll** pour choisir un chiffre et sur la touche **Select** pour sélectionner ce chiffre et passer au digit suivant.

Si vous ne connaissez pas le mot de passe, attendez 60 secondes sans activer les touches optiques. L'écran du mot de passe disparaîtra automatiquement et l'indicateur retournera à l'écran précédent.

#### 3.5.5 Saisie de valeurs à virgule flottante avec l'indicateur

Certaines données de configuration, telles que les facteurs d'ajustage de l'étalonnage ou les valeurs d'échelle des sorties, doivent être entrées sous la forme de valeurs à virgule flottante. Lors de l'accès initial à l'écran de configuration, la valeur est affichée en notation décimale (voir la figure 3-3) et le digit « actif » clignote.





Entrer un nombre (longueur maximale : 8 chiffres, ou 7 chiffres et un tiret). Nombre maximum de chiffres après la virgule : 4.

Pour modifier la valeur :

entrer un tiret (-).

- 1. Appuyer sur la touche **SELECT** pour déplacer le digit actif vers la gauche. Un espace est disponible à la gauche de la valeur pour entrer un signe. Si l'on continue d'appuyer sur SELECT, le digit actif retourne au digit le plus à droite.
- Appuyer sur la touche SCROLL pour modifier la valeur du digit actif : 1 devient 2, 2 devient 3, ..., 9 devient 0, 0 devient 1. Pour le digit le plus à droite, une option E permet de passer au système de notation exponentielle.

Pour modifier le signe d'une valeur :

- 1. Appuyer sur la touche **SELECT** pour placer le curseur sur l'espace qui se trouve immédiatement à gauche du digit le plus à gauche.
- 2. Utiliser la touche **SCROLL** pour afficher un tiret (–) pour une valeur négative ou laisser l'espace vide pour une valeur positive.

En notation décimale, il est possible de choisir la position du point décimal avec un maximum de quatre chiffres à droite du point décimal. Pour ce faire :

- 1. Appuyer sur la touche **SELECT** jusqu'à ce que le point décimal clignote.
- 2. Appuyer sur la touche **SCROLL**. Le point décimal disparaît et le curseur se déplace d'un digit vers la gauche.
- 3. Appuyer sur la touche **SELECT** pour déplacer le digit actif vers la gauche. A chaque déplacement vers la gauche, un point décimal clignote entre chaque paire de digits.
- 4. Lorsque le point décimal se trouve dans la position désirée, appuyer sur la touche **SCROLL.** Le point décimal est inséré et le curseur se déplace d'un digit vers la gauche.

Pour passer au système de notation exponentielle (voir la figure 3-4) :

- 1. Appuyer sur la touche **SELECT** jusqu'à ce que le digit le plus à droite clignote.
- 2. Appuyer sur la touche **SCROLL** jusqu'à ce que la lettre **E** apparaisse, puis appuyer sur **SELECT**. Le système d'affichage change et deux espaces apparaissent pour entrer l'exposant.
- 3. Pour entrer l'exposant :
  - a. Appuyer sur la touche SELECT jusqu'à ce que le digit désiré clignote.
  - b. Appuyer sur la touche **SCROLL** pour afficher la valeur désirée. Il est possible d'entrer un signe moins (–) ou un chiffre entre 0 et 3 dans la première position, et un chiffre compris entre 0 et 9 dans la deuxième position de l'exposant.
  - c. Appuyer sur la touche SELECT.

*Remarque : Lorsque l'on passe du système décimal au système exponentiel, toutes les modifications non sauvegardées sont perdues. Le système retourne à la valeur préalablement sauvegardée.* 

Remarque : En notation exponentielle, les positions du point décimal et de l'exposant sont fixes.



### Figure 3-4 Affichage de valeurs numériques en notation exponentielle

Pour passer du système de notation exponentielle au système de notation décimale :

- 1. Appuyer sur la touche **SELECT** jusqu'à ce que le **E** clignote.
- 2. Appuyer sur la touche **SCROLL** pour afficher la lettre **d**.
- 3. Appuyer sur la touche **SELECT**. L'exposant disparaît et l'affichage passe au système de notation décimale.

Pour sortir du menu :

- Si la valeur a été modifiée, appuyer simultanément sur les touches **SELECT** et **SCROLL** jusqu'à ce que l'écran de confirmation apparaisse.
  - Appuyer sur la touche **SELECT** pour sortir et enregistrer la modification.
  - Appuyer sur la touche **SCROLL** pour sortir sans enregistrer la modification.
- Si la valeur n'a pas été modifiée, appuyer simultanément sur les touches **SELECT** et **SCROLL** jusqu'à ce que l'écran précédemment affiché apparaisse.

# Chapitre 4 Connexion avec le logiciel ProLink II ou Pocket ProLink

## 4.1 Sommaire

ProLink II est un logiciel de configuration et de gestion des transmetteurs Micro Motion. Fonctionnant sous Windows, il permet l'accès à la plupart des fonctions et données du transmetteur. Pocket ProLink est une version de ProLink II pour assistants numériques.

Ce chapitre fournit les informations de base permettant de connecter ProLink II ou Pocket ProLink au transmetteur. Il décrit :

- le matériel nécessaire (voir la section 4.2)
- comment télécharger et sauvegarder la configuration (voir la section 4.3)
- comment se connecter à un transmetteur Modèle 2400S DP (voir la section 4.4)

Les instructions contenues dans ce manuel présument que le lecteur est déjà familiarisé avec le logiciel ProLink II ou Pocket ProLink. Pour plus d'informations sur l'utilisation de ProLink II, consulter le manuel d'instructions de ProLink II. Pour plus d'informations sur l'utilisation de Pocket ProLink, consulter le manuel d'instructions de Pocket ProLink. Ces deux manuels sont disponibles sur le site web de Micro Motion (www.micromotion.com). Les instructions contenues dans ce manuel se rapportent exclusivement à ProLink II.

#### 4.2 Matériel nécessaire

Pour utiliser ProLink II avec le transmetteur Modèle 2400S DP :

- La version 2.5 ou plus récente du logiciel est requise.
- Un kit de connexion adapté à l'ordinateur et au type de connexion doit être utilisé. Voir le manuel ou le guide condensé de ProLink II pour plus de détails.

Pour utiliser Pocket ProLink avec le transmetteur Modèle 2400S DP :

- La version 1.3 ou plus récente du logiciel est requise.
- En outre :
  - Pour se connecter au port service via les pattes de connexion du transmetteur, le kit d'installation de Pocket ProLink ou un matériel équivalent doit être utilisé. Voir le manuel ou le guide condensé de Pocket ProLink pour plus de détails.
  - Pour se connecter au port service via le port infrarouge du transmetteur, aucun matériel supplémentaire n'est nécessaire.

### 4.3 Téléchargement et sauvegarde de la configuration

Les fonctions de téléchargement et de sauvegarde de ProLink II et de Pocket ProLink permettent :

- la sauvegarde et le rétablissement de la configuration du transmetteur
- la duplication aisée de la configuration pour l'appliquer à d'autres transmetteurs

Micro Motion recommande de sauvegarder la configuration du transmetteur sur un ordinateur dès que la configuration est terminée. Voir la figure C-1 et consulter le manuel de ProLink II ou de Pocket ProLink pour plus de détails.

## 4.4 Connexion de l'ordinateur au transmetteur Modèle 2400S DP

Le logiciel ProLink II ou Pocket ProLink doit être connecté au transmetteur Modèle 2400S DP par l'intermédiaire du port service.

## 4.4.1 Options de connexion

Le port service est accessible via les pattes du port service ou le port infrarouge IrDA.

Les pattes du port service ont priorité sur le port infrarouge :

- Si une connexion est établie via les pattes du port service, le port infrarouge est automatiquement désactivé.
- Si une connexion est établie via les pattes du port service alors qu'une autre connexion est déjà établie via le port infrarouge, la connexion via le port infrarouge sera automatiquement désactivée.

De plus :

- Il est possible d'interdire l'accès au transmetteur via le port infrarouge. Dans ce cas, le port infrarouge sera toujours désactivé. L'accès via le port infrarouge est désactivé par défaut.
- Il est possible de protéger le port infrarouge en écriture. Dans ce cas, il ne peut être utilisé que pour lire les données du transmetteur. Par défaut, le port infrarouge est verrouillé en écriture.

Voir la section 8.10.2 pour plus d'informations ou pour modifier ces fonctionnalités.

# 4.4.2 Paramètres de communication du port service

Le port service utilise les valeurs par défaut des paramètres de communication du transmetteur. ProLink II et Pocket ProLink utilisent automatiquement ces valeurs par défaut lorsque le protocole est réglé sur Port service.

En outre, pour faciliter la configuration d'autres outils de communication, le port service est également doté d'un système de détection automatique des paramètres de communication. Le port service accepte toutes les demandes de connexion qui se trouvent dans les limites décrites au tableau 4-1. Pour se connecter au port service à l'aide d'un autre outil de configuration, vérifier que les paramètres de communication de l'outil se trouvent à l'intérieur de ces limites.

| Paramètre                              | Option                                                                                                                                              |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Protocole                              | Modbus ASCII ou Modbus RTU <sup>(1)</sup>                                                                                                           |
| Adresse                                | Le transmetteur répond à :<br>• l'adresse du port service (111)<br>• l'adresse Modbus configurée dans le transmetteur (1 par défaut) <sup>(2)</sup> |
| Vitesse de transmission <sup>(3)</sup> | Vitesse standard comprise entre 1200 et 38400 bauds                                                                                                 |
| Bits d'arrêt                           | 1, 2                                                                                                                                                |
| Parité                                 | Paire, impaire ou sans parité                                                                                                                       |

#### Tableau 4-1 Limites de détection automatique du port service

(1) La communication sur le port service avec le protocole Modbus ASCII peut être désactivée. Voir la section 8.10.4.

(2) Voir la section 8.10.3 pour configurer l'adresse Modbus du transmetteur.

(3) Ce paramètre se rapporte à la vitesse de transmission pour le logiciel qui est connecté au port service. Il ne s'agit pas de la vitesse de transmission PROFIBUS-DP.

#### 4.4.3 Connexion au port service

Pour se connecter au port service :

- 1. Via le port infrarouge du transmetteur :
  - a. S'assurer que le port infrarouge est activé (voir la section 8.10.2).
  - b. Vérifier qu'aucune connexion n'est établie via les pattes du port service.

Remarque : La communication via les pattes du port service a priorité sur celle du port infrarouge. Si une connexion est déjà établie via les pattes du port service, il ne sera pas possible de se connecter via le port infrarouge.

c. Orienter l'appareil infrarouge afin qu'il puisse communiquer avec le port infrarouge du transmetteur (voir la figure 3-2). Il n'est pas nécessaire d'ouvrir le couvercle.

Remarque : Le port infrarouge est en principe utilisé avec Pocket ProLink. Pour l'utiliser avec ProLink II, une interface spéciale est nécessaire ; le port infrarouge qui est intégré à la plupart des ordinateurs portables n'est généralement pas compatible avec le port infrarouge du transmetteur. Pour plus d'informations sur l'utilisation du port infrarouge avec ProLink II, contacter Micro Motion.

- 2. Via les pattes de connexion du transmetteur :
  - Raccorder le convertisseur de signal au port série ou USB de l'ordinateur à l'aide de connecteurs ou d'adaptateurs appropriés (p.e. adaptateur 25 broches – 9 broches ou connecteur USB).
  - b. Enlever le couvercle du transmetteur (voir la section 3.3), puis raccorder les fils du convertisseur de signal au pattes du port service. Voir la figure 4-1.

# AVERTISSEMENT

L'ouverture du couvercle du transmetteur en atmosphère explosive peut entraîner une explosion.

Le raccordement aux pattes du port service nécessitant l'ouverture du couvercle du transmetteur, les pattes du port service ne doivent être utilisées que pour les connexions temporaires (configuration, diagnostic des pannes, etc.).

Si le transmetteur se trouve en atmosphère explosive, utiliser une autre méthode de connexion.

#### Figure 4-1 Raccordement aux pattes du port service



- 3. Ouvrir ProLink II ou Pocket ProLink. Dans le menu Connexion, cliquer sur **Connecter**. Dans la fenêtre qui apparaît, spécifier les options suivantes :
  - Protocole : Port service
  - Port série : Spécifier le port de communication de l'ordinateur

Il n'est pas nécessaire de configurer les autres paramètres.

4. Cliquer sur le bouton **Connecter**. Le logiciel essaye d'établir la connexion avec le transmetteur.

*Remarque : Lorsque la connexion est établie via le port infrarouge, les deux témoins d'appui des touches optiques clignotent en rouge et les touches Scroll et Select de l'indicateur sont désactivées.* 

- 5. Si un message d'erreur apparaît :
  - a. Vérifier que le port de communication est correct.
  - b. S'il s'agit d'une connexion via le port infrarouge, s'assurer que le port infrarouge est activé.
  - c. S'il s'agit d'une connexion via les pattes du port service, inverser les fils et essayer à nouveau de connecter.
  - d. S'il s'agit d'une connexion via les pattes du port service, vérifier tous les câblages entre l'ordinateur et le transmetteur.

#### 4.5 Langue de ProLink II

L'interface de ProLink II est disponible dans les langues suivantes :

- Anglais
- Français
- Allemand

Pour sélectionner la langue de ProLink II, utiliser le menu Outils. Voir la figure C-1.

Dans ce manuel, les menus et les paramètres de ProLink II sont en français.

# **Chapitre 5 Utilisation avec un hôte PROFIBUS**

#### 5.1 Sommaire

Ce chapitre contient des informations de base concernant l'exploitation du transmetteur Modèle 2400S DP avec un hôte PROFIBUS. Il décrit :

- l'usage des fichiers d'exploitation (voir la section 5.2)
- la connexion du transmetteur Modèle 2400S DP à un hôte PROFIBUS (voir la section 5.3)
- l'utilisation d'un hôte PROFIBUS avec le fichier GSD (voir la section 5.4)
- l'utilisation d'un hôte PROFIBUS avec la description EDD de l'appareil (voir la section 5.5)
- l'utilisation d'un hôte PROFIBUS avec les paramètres de bus de terrain (voir la section 5.6)

#### 5.2 Fichiers d'exploitation

Les fichiers d'exploitation suivants sont disponibles pour le transmetteur Modèle 2400S DP :

- MMI0A60.GSD Ce fichier permet de :
  - visualiser la valeur des grandeurs mesurées et des alarmes
  - gérer les totalisateurs partiels et généraux
  - recevoir les données de pression et de température externes permettant d'effectuer des corrections en pression et en température
- Description EDD de l'appareil Outre les fonctions décrites ci-dessus, la description d'appareil permet de :
  - configurer le débitmètre
  - visualiser l'état des événements
  - acquitter les alarmes
  - effectuer un ajustage du zéro ou un étalonnage en masse volumique
  - lancer la procédure de validation du débitmètre

Le fichier GSD peut être téléchargé sur le site web de Micro Motion (**www.micromotion.com**) et est utilisable avec tout hôte compatible PROFIBUS. La description EDD de l'appareil peut être téléchargée sur le site web de Micro Motion et est certifiée pour fonctionner avec le logiciel Siemens Simatic PDM.

Pour installer et mettre en œuvre le fichier GSD ou la description EDD, utiliser une méthode adaptée à l'hôte PROFIBUS.

#### 5.3 Connexion au transmetteur Modèle 2400S DP

Pour établir la communication avec le transmetteur Modèle 2400S DP :

- 1. Le transmetteur détecte et utilise automatiquement la vitesse de transmission du segment DP. Si aucune vitesse de transmission n'est détectée, le transmetteur n'essaye pas d'établir la communication.
- 2. Les sélecteurs de réglage manuel de l'adresse sont réglés à l'usine sur **126**, qui est l'adresse PROFIBUS par défaut pour les appareils qui sont hors service. Pour mettre le transmetteur en service, l'adresse de nœud doit être réglée sur une valeur comprise entre **0** et **125**.
  - Pour se connecter au transmetteur en réglant l'adresse de nœud à l'aide des sélecteurs :
    - a. Régler l'adresse de nœud sur la valeur désirée à l'aide des sélecteurs manuels. Voir la section 8.10.1.
    - b. Connecter l'hôte PROFIBUS au réseau dans lequel se trouve le transmetteur.
    - c. Utiliser la même méthode que pour les autres appareils PROFIBUS-DP pour établir la connexion avec le transmetteur Modèle 2400S DP.
  - Pour se connecter au transmetteur en réglant l'adresse de nœud par voie logicielle :
    - a. Vérifier que les sélecteurs manuels sont réglés sur une adresse supérieure ou égale à **126**.
    - b. Connecter l'hôte PROFIBUS au réseau dans lequel se trouve le transmetteur.
    - c. Utiliser la même méthode que pour les autres appareils PROFIBUS-DP pour établir la connexion avec le transmetteur Modèle 2400S DP
    - d. Envoyer un télégramme Set Slave Address. Voir la section 8.10.1.

#### 5.4 Utilisation du fichier GSD

Les modules disponibles avec le fichier GSD sont indiqués au tableau 5-1. Noter que les termes « entrée » et « sortie » sont définis du point de vue de l'hôte PROFIBUS, c'est-à-dire :

- Les modules d'entrée reçoivent les données issues du transmetteur et les envoient sur le réseau et vers l'hôte PROFIBUS.
- Les modules de sortie capturent les données présentes sur le réseau pour les fournir au transmetteur.

Configurer les modules désirés pour l'échange de données. Il est possible de sélectionner jusqu'à 10 modules d'entrée.

# Tableau 5-1 Modules d'entrée et de sortie

| Numéro du<br>module | Nom du module           | Туре   | Taille (octets) | Commentaires                                                             |
|---------------------|-------------------------|--------|-----------------|--------------------------------------------------------------------------|
| 1                   | Etat de l'appareil      | Entrée | 1               | <ul> <li>0 = Données correctes</li> <li>1 = Mauvaises données</li> </ul> |
| 2                   | Débit massique          | Entrée | 4               |                                                                          |
| 3                   | Total partiel en masse  | Entrée | 4               |                                                                          |
| 4                   | Total général en masse  | Entrée | 4               |                                                                          |
| 5                   | Température             | Entrée | 4               |                                                                          |
| 6                   | Masse volumique         | Entrée | 4               |                                                                          |
| 7                   | Débit volumique         | Entrée | 4               | Volume de liquide                                                        |
| 8                   | Total partiel en volume | Entrée | 4               | Volume de liquide                                                        |

## Tableau 5-1 Modules d'entrée et de sortie suite

| Numéro du<br>module | Nom du module                          | Туре   | Taille (octets) | Commentaires                                                       |
|---------------------|----------------------------------------|--------|-----------------|--------------------------------------------------------------------|
| 9                   | Total général en volume                | Entrée | 4               | Volume de liquide                                                  |
| 10                  | Niveau d'excitation                    | Entrée | 4               |                                                                    |
| 11                  | Débit volumique de gaz STP             | Entrée | 4               | Volume de gaz aux conditions de base                               |
| 12                  | Total partiel en volume de gaz STP     | Entrée | 4               | Volume de gaz aux conditions de base                               |
| 13                  | Total général en volume de gaz STP     | Entrée | 4               | Volume de gaz aux conditions de base                               |
| 14                  | API : Masse volumique                  | Entrée | 4               |                                                                    |
| 15                  | API : Débit volumique                  | Entrée | 4               |                                                                    |
| 16                  | API : Total partiel en volume          | Entrée | 4               |                                                                    |
| 17                  | API : Total général en volume          | Entrée | 4               |                                                                    |
| 18                  | API : Masse volumique moyenne          | Entrée | 4               |                                                                    |
| 19                  | API : Température moyenne              | Entrée | 4               |                                                                    |
| 20                  | API : CTL                              | Entrée | 4               |                                                                    |
| 21                  | DA : Masse volumique à T réf           | Entrée | 4               |                                                                    |
| 22                  | DA : Densité                           | Entrée | 4               |                                                                    |
| 23                  | DA : Débit volumique à T réf           | Entrée | 4               |                                                                    |
| 24                  | DA : Total partiel volume à T réf      | Entrée | 4               |                                                                    |
| 25                  | DA : Total général volume à T réf      | Entrée | 4               |                                                                    |
| 26                  | DA : Débit massique net                | Entrée | 4               |                                                                    |
| 27                  | DA : Total partiel en masse nette      | Entrée | 4               |                                                                    |
| 28                  | DA : Total général en masse nette      | Entrée | 4               |                                                                    |
| 29                  | DA : Débit volumique net               | Entrée | 4               |                                                                    |
| 30                  | DA : Total partiel en volume net       | Entrée | 4               |                                                                    |
| 31                  | DA : Total général en volume net       | Entrée | 4               |                                                                    |
| 32                  | DA : Concentration                     | Entrée | 4               |                                                                    |
| 33                  | DA : °Baumé                            | Entrée | 4               |                                                                    |
| 34                  | Pression externe                       | Sortie | 4               |                                                                    |
| 35                  | Température externe                    | Sortie | 4               |                                                                    |
| 36                  | Activation / blocage des totalisateurs | Sortie | 1               | • 0 = Bloquer<br>• 1 = Activer                                     |
| 37                  | RAZ totaux partiels                    | Sortie | 1               | <ul> <li>0 = Aucune action</li> <li>1 = Remettre à zéro</li> </ul> |
| 38                  | RAZ totaux généraux                    | Sortie | 1               | <ul> <li>0 = Aucune action</li> <li>1 = Remettre à zéro</li> </ul> |

# 5.5 Utilisation de la description EDD de l'appareil

Lorsque la description EDD de l'appareil est importée dans l'hôte PROFIBUS, elle contrôle l'organisation de menus et de paramètres spécifiques. Ces menus et paramètres sont illustrés à l'annexe C (figures C-4 à C-12).

**Configuration optionnelle** 

### 5.6 Utilisation des paramètres de bus PROFIBUS

Selon l'hôte PROFIBUS utilisé, il est possible de lire et d'écrire directement les paramètres de bus PROFIBUS à l'aide de services DP-V1. Les paramètres de bus PROFIBUS offrent un accès direct à toutes les fonctionnalités disponibles par l'intermédiaire du port DP du transmetteur. Les paramètres de bus PROFIBUS sont documentés à l'annexe D.

Noter que certaines informations sont nécessaires pour pouvoir configurer et utiliser le transmetteur Modèle 2400S DP à l'aide des paramètres de bus PROFIBUS ; il faut connaître entre autre :

- Les codes utilisés pour représenter les différentes options (par exemple, les différentes unités de mesure)
- Les bits utilisés pour commander certaines procédures (activer ou bloquer les totalisateurs, lancer les procédures d'étalonnage) ou pour remettre à zéro les totalisateurs
- La signification des bits d'état au sein des mots d'état

Les informations requises sont fournies dans les sections appropriées du manuel et à l'annexe D.

# Chapitre 6 Configuration essentielle du transmetteur

#### 6.1 Sommaire

Ce chapitre décrit les procédures de configuration qui sont généralement requises lors de l'installation initiale d'un transmetteur.

Ce chapitre explique comment :

- caractériser le débitmètre (voir la section 6.2)
- configurer les unités de mesure (voir la section 6.3)

Ce chapitre contient des organigrammes de base pour chaque procédure qui montrent comment accéder aux paramètres de configuration. Des arborescences plus détaillées sont fournies en annexe de ce manuel pour chaque outil de communication.

Pour les paramètres et procédures de configuration optionnelles du transmetteur, voir le chapitre 8.

*Remarque : Toutes les procédures décrites dans ce chapitre présument que la communication avec le transmetteur Modèle 2400S DP est établie et que les règles de sécurité en vigueur sur le site sont respectées.* 

*Remarque : L'interface utilisateur de Pocket ProLink est similaire à celle du logiciel ProLink II décrite dans ce chapitre.* 

#### 6.2 Caractérisation du débitmètre

La *caractérisation* est l'opération qui consiste à configurer le transmetteur pour qu'il prenne en compte les caractéristiques métrologiques spécifiques du capteur auquel il est associé. Les paramètres de caractérisation (ou d'étalonnage) décrivent la sensibilité du capteur au débit, à la masse volumique et à la température.

# 6.2.1 Quand caractériser le débitmètre

Si le capteur et le transmetteur ont été commandés ensemble, le débitmètre a déjà été caractérisé à l'usine et n'a pas besoin d'être caractérisé sur le site. Il ne doit être caractérisé que lors de l'appariement initial du transmetteur et du capteur.

# 6.2.2 Paramètres de caractérisation

Les paramètres de caractérisation à configurer dépendent du type de capteur. Il peut s'agir soit d'un capteur de type monotube droit Série T, soit de tout autre capteur Micro Motion à tubes en U. Les paramètres correspondants à chaque type de capteur sont décrits au tableau 6-1.

Les données de caractérisation sont inscrites sur la plaque signalétique d'étalonnage du capteur. La figure 6-1 illustre les différents types de plaque signalétique.

|           | Type de capteur          |                       |
|-----------|--------------------------|-----------------------|
| Paramètre | Série T (monotube droit) | Autre (tubes courbes) |
| K1        | ✓                        | 1                     |
| K2        | 1                        | 1                     |
| FD        | 1                        | 1                     |
| D1        | 1                        | 1                     |
| D2        | 1                        | 1                     |
| DT ou TC  | 1                        | 1                     |
| Flowcal   |                          | ✓ <sup>(1)</sup>      |
| FCF       | ✓                        |                       |
| FTG       | 1                        |                       |
| FFQ       | ✓                        |                       |
| DTG       | ✓                        |                       |
| DFQ1      | ✓                        |                       |
| DFQ2      | 1                        |                       |

#### Tableau 6-1 Paramètres d'étalonnage du capteur

(1) Voir la section intitulée « Coefficient d'étalonnage en débit ».

## Figure 6-1 Exemples de plaques signalétiques d'étalonnage du capteur

#### Série T

#### **Autres capteurs**

| MODEL T100T628SCAZEZZZZ S/N 1234567890<br>FLOW FCF XXXX.XX.<br>FTG X.XX FFQ X.XX<br>DENS D1 X.XXXXX K1 XXXXX.XXX<br>D2 X.XXXXX K2 XXXX<br>DT X.XX FD XX.XX<br>DT X.XX FD XX.XX<br>DTG X.XX DFQ1 XX.XX DFQ2 X.XX<br>TEMP RANGE -XXX TO XXX C<br>TUBE* CONN** CASE*<br>XXXX XXXXX XXXXX XXXXX<br>• MAXIMAM PRESSURE RATING AT 25°C. ACCORDING TO ANGLARME B16.5. OF MFR'S RATING | MODEL<br>S/N<br>FLOW CAL* 19.0005.13<br>DENS CAL* 12500142864.44<br>D1 0.0010 K1 12502.000<br>D2 0.9980 K2 14282.000<br>TC 4.44000 FD 310<br>TEMP RANGE TO C<br>TUBE** CONN*** CASE** |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |

#### Coefficient d'étalonnage en débit

L'étalonnage en débit est défini à l'aide de deux facteurs :

- Le facteur d'étalonnage en débit, qui est une chaîne de 6 caractères (5 chiffres et un point décimal)
- Le facteur de température du débit, qui est une chaîne de 4 caractères (3 chiffres et un point décimal)

Sur la plaque signalétique du capteur, ces deux facteurs sont enchaînés pour former le coefficient d'étalonnage en débit. Ce coefficient est repéré différemment selon le type de capteur (voir la figure 6-1) :

- Sur la plaque signalétique des capteurs Série T, ce coefficient est appelé FCF.
- Sur la plaque signalétique des autres capteurs, ce coefficient est appelé Flow Cal.

**Configuration optionnelle** 

Pour configurer le coefficient d'étalonnage en débit :

- Avec ProLink II, entrer la chaîne de 10 caractères exactement comme elle est inscrite sur la plaque signalétique (points décimaux inclus) sous le paramètre « Coeff étal débit » de l'onglet Débit. Par exemple, pour la plaque signalétique illustrée à la figure 6-1, entrer **19.0005.13** dans le champ « Coeff étal débit ».
- Avec les autres méthodes, il peut être nécessaire d'entrer soit la chaîne de 10 caractères mentionnée sur la plaque signalétique, soit deux facteurs séparément sous la forme d'une chaîne de 6 caractères (facteur d'étalonnage en débit) et d'une chaîne de 4 caractères (facteur de température en débit). Inclure le point décimal pour chaque chaîne. Par exemple, pour la plaque signalétique illustrée à la figure 6-1 :
  - Entrer **19.000** pour le facteur d'étalonnage en débit.
  - Entrer 5.13 pour le facteur de température du débit.

#### 6.2.3 Comment caractériser le débitmètre

Pour caractériser le débitmètre :

- 1. Voir la figure 6-2 pour accéder aux paramètres de caractérisation.
- 2. S'assurer que le type de capteur correct est sélectionné (monotube droit ou tubes courbes).
- 3. Entrer les paramètres décrits au tableau 6-1.

# Figure 6-2 Caractérisation du débitmètre



#### Hôte PROFIBUS avec EDD



#### Hôte PROFIBUS avec paramètres de bus<sup>(2)</sup>



- (1) Paramètres requis uniquement pour les capteurs Série T.
- (2) Pour plus de détails sur les paramètres de bus, voir les tableaux D-5 et D-3.
- (3) Selon le type de capteur, seuls certains de ces paramètres de masse volumique ont besoin d'être configurés.

#### 6.3 Configuration des unités de mesure

L'unité de mesure de chaque grandeur mesurée doit être configurée en fonction de l'application.

Pour accéder aux paramètres de configuration des unités de mesure, voir la figure 6-3. Pour plus de détails sur les unités disponibles pour chaque grandeur, voir les sections 6.3.1 à 6.3.4.

L'unité de mesure utilisée pour les totalisateurs partiels et généraux est automatiquement sélectionnée en fonction de l'unité de débit correspondante. Par exemple, si le **kg/h** a été sélectionné pour le débit massique, l'unité des totalisateurs partiels et généraux en masse sera le **kg**. Les codes utilisés pour les unités de mesure des totalisateurs sont répertoriés aux tableaux D-10 à D-12.

Remarque : L'unité de pression n'est utilisée que si la correction en pression est activée (voir la section 9.2) ou si l'Assistant Gaz de ProLink II est utilisé pour configurer l'unité de débit d'un gaz aux conditions de base (voir la section 8.2.1).


#### Figure 6-3 Accès aux paramètres de configuration des unités de mesure



(1) Utilisé pour le débit massique, le débit volumique de liquide, et le débit volumique de gaz aux conditions de base.

- (2) Utilisé pour le débit massique et le débit volumique de liquide.
- (3) Utilisé pour le débit volumique de gaz aux conditions de base.
- (4) Régler les paramètres sur le code d'unité désiré, en consultant les tableaux 6-2 à 6-7. Voir également les tableaux D-2 et D-3 si nécessaire.

### 6.3.1 Unité de débit massique

L'unité de débit massique sélectionnée par défaut est le **g/s**. Le tableau 6-2 indique les unités de débit massique disponibles.

|            |              | Symbole      |          |                                       |
|------------|--------------|--------------|----------|---------------------------------------|
| Indicateur | ProLink II   | Label EDD    | Code EDD | Description                           |
| G/S        | g/s          | g_per_s      | 1318     | Gramme par seconde                    |
| G/mIn      | g/min        | g_per_min    | 1319     | Gramme par minute                     |
| G/h        | g/h          | g_per_hr     | 1320     | Gramme par heure                      |
| KG/S       | kg/s         | kg_per_s     | 1322     | Kilogramme par seconde                |
| KG/mIn     | kg/min       | kg_per_min   | 1323     | Kilogramme par minute                 |
| KG/h       | kg/h         | kg_per_hr    | 1324     | Kilogramme par heure                  |
| KG/d       | kg/d         | kg_per_day   | 1325     | Kilogramme par jour                   |
| T/mln      | t/min        | t_per_min    | 1327     | Tonne métrique par minute             |
| T/h        | t/h          | t_per_hr     | 1328     | Tonne métrique par heure              |
| T/d        | t/d          | t_per_day    | 1329     | Tonne métrique par jour               |
| LB/S       | lb/s         | lb_per_s     | 1330     | Livre par seconde                     |
| LB/MIN     | lb/min       | lb_per_min   | 1331     | Livre par minute                      |
| LB/H       | lb/h         | lb_per_hr    | 1332     | Livre par heure                       |
| LB/D       | lb/d         | lb_per_day   | 1333     | Livre par jour                        |
| ST/MIN     | tonne US/min | Ston_per_min | 1335     | Tonne courte (US, 2000 lb) par minute |
| ST/H       | tonne US/h   | Ston_per_hr  | 1336     | Tonne courte (US, 2000 lb) par heure  |
| ST/D       | tonne US/d   | Ston_per_day | 1337     | Tonne courte (US, 2000 lb) par jour   |
| LT/H       | tonne UK/h   | Lton_per_hr  | 1340     | Tonne forte (UK, 2240 lb) par heure   |
| LT/D       | tonne UK/d   | Lton_per_day | 1341     | Tonne forte (UK, 2240 lb) par jour    |

#### Tableau 6-2 Unités de débit massique

#### 6.3.2 Unité de débit volumique

L'unité de débit volumique sélectionnée par défaut est le l/s.

Deux systèmes d'unité de débit volumique différents sont disponibles :

- Unités principalement utilisées pour les mesures de volume de liquides voir le tableau 6-3
- Unités principalement utilisées pour les mesures de volume de gaz aux conditions de base voir le tableau 6-4

Par défaut, seules les unités de débit volumique de liquides sont accessibles avec ProLink II et l'indicateur. Pour accéder aux unités de débit volumique de gaz, il faut d'abord configurer le paramètre « Type de débit volumique ».

Pour mesurer le débit volumique de gaz aux conditions de base, certains paramètres additionnels sont également requis. Voir la section 8.2 pour plus d'informations.

#### Configuration essentielle du transmetteur

#### Unités de débit volumique pour les liquides Tableau 6-3

|            | 9                  |                  |          |                                           |
|------------|--------------------|------------------|----------|-------------------------------------------|
| Indicateur | ProLink II         | Label EDD        | Code EDD | Description                               |
| CUFT/S     | ft3/s              | CFS              | 1356     | Pied cube par seconde                     |
| CUF/MN     | ft3/min            | CFM              | 1357     | Pied cube par minute                      |
| CUFT/H     | ft3/h              | CFH              | 1358     | Pied cube par heure                       |
| CUFT/D     | ft3/d              | ft3_per_day      | 1359     | Pied cube par jour                        |
| m3/S       | m3/s               | m3_per_s         | 1347     | Mètre cube par seconde                    |
| m3/mIn     | m3/min             | m3_per_min       | 1348     | Mètre cube par minute                     |
| m3/h       | m3/h               | m3_per_hr        | 1340     | Mètre cube par heure                      |
| m3/d       | m3/d               | m3_per_day       | 1350     | Mètre cube par jour                       |
| USGPS      | gal US/s           | gal_per_s        | 1362     | Gallon U.S. par seconde                   |
| USGPM      | gal US/min         | GPM              | 1363     | Gallon U.S. par minute                    |
| USGPH      | gal US/h           | gal_per_hour     | 1364     | Gallon U.S. par heure                     |
| USGPD      | gal US/d           | gal_per_day      | 1365     | Gallon U.S. par jour                      |
| MILG/D     | Mgal US/d          | Mgal_per_day     | 1366     | Million de gallons U.S. par jour          |
| L/S        | l/s                | L_per_s          | 1351     | Litre par seconde                         |
| L/mIn      | l/min              | L_per_min        | 1352     | Litre par minute                          |
| L/h        | l/h                | L_per_hr         | 1353     | Litre par heure                           |
| MILL/D     | MI/d               | MI_per_day       | 1355     | Million de litres par jour                |
| UKGPS      | gal UK/s           | ImpGal_per_s     | 1367     | Gallon impérial par seconde               |
| UKGPM      | gal UK/min         | ImpGal_per_min   | 1368     | Gallon impérial par minute                |
| UKGPH      | gal UK/h           | ImpGal_per_hr    | 1369     | Gallon impérial par heure                 |
| UKGPD      | gal UK/d           | ImpGal_per_day   | 1370     | Gallon impérial par jour                  |
| BBL/S      | baril/s            | bbl_per_s        | 1371     | Baril par seconde <sup>(1)</sup>          |
| BBL/MN     | baril/min          | bbl_per_min      | 1372     | Baril par minute <sup>(1)</sup>           |
| BBL/H      | baril/h            | bbl_per_hr       | 1373     | Baril par heure <sup>(1)</sup>            |
| BBL/D      | baril/d            | bbl_per_day      | 1374     | Baril par jour <sup>(1)</sup>             |
| BBBL/S     | Baril de bière/s   | Beer_bbl_per_s   | 1642     | Baril de bière par seconde <sup>(2)</sup> |
| BBBL/MN    | Baril de bière/min | Beer_bbl_per_min | 1643     | Baril de bière par minute <sup>(2)</sup>  |
| BBBL/H     | Baril de bière/h   | Beer_bbl_per_hr  | 1644     | Baril de bière par heure <sup>(2)</sup>   |
| BBBL/D     | Baril de bière/d   | Beer_bbl_per_day | 1645     | Baril de bière par jour <sup>(2)</sup>    |

Baril de pétrole (42 gallons U.S.)
 Baril de bière U.S.= 31 gallons U.S.

#### Configuration essentielle du transmetteur

|            |            | Symbole     |          |                                 |
|------------|------------|-------------|----------|---------------------------------|
| Indicateur | ProLink II | Label EDD   | Code EDD | Description                     |
| Nm3/S      | Nm3/s      | Nm3_per_s   | 1522     | Mètre cube normal par seconde   |
| Nm3/m      | Nm3/min    | Nm3_per_min | 1523     | Mètre cube normal par minute    |
| Nm3/h      | Nm3/h      | Nm3_per_hr  | 1524     | Mètre cube normal par heure     |
| Nm3/d      | Nm3/d      | Nm3_per_day | 1525     | Mètre cube normal par jour      |
| NL/S       | NI/s       | NL_per_s    | 1532     | Litre normal par seconde        |
| NL/mIn     | NI/min     | NL_per_min  | 1533     | Litre normal par minute         |
| NL/h       | NI/h       | NL_per_hr   | 1534     | Litre normal par heure          |
| NL/d       | NI/d       | NL_per_day  | 1535     | Litre normal par jour           |
| SCFS       | Sft3/s     | SCFS        | 1604     | Pied cube standard par seconde  |
| SCFM       | Sft3/min   | SCFM        | 1360     | Pied cube standard par minute   |
| SCFH       | Sft3/h     | SCFH        | 1361     | Pied cube standard par heure    |
| SCFD       | Sft3/d     | SCFD        | 1605     | Pied cube standard par jour     |
| Sm3/S      | Sm3/s      | Sm3_per_s   | 1527     | Mètre cube standard par seconde |
| Sm3/m      | Sm3/min    | Sm3_per_min | 1528     | Mètre cube standard par minute  |
| Sm3/h      | Sm3/h      | Sm3_per_hr  | 1529     | Mètre cube standard par heure   |
| Sm3/d      | Sm3/d      | Sm3_per_day | 1530     | Mètre cube standard par jour    |
| SL/S       | SI/s       | SL_per_s    | 1537     | Litre standard par seconde      |
| SL/mIn     | SI/min     | SL_per_min  | 1538     | Litre standard par minute       |
| SL/h       | Sl/h       | SL_per_hr   | 1539     | Litre standard par heure        |
| SL/d       | SI/d       | SL_per_day  | 1540     | Litre standard par jour         |

## Tableau 6-4 Unités de débit volumique pour les gaz

## 6.3.3 Unité de masse volumique

L'unité de masse volumique sélectionnée par défaut est le **g/cm<sup>3</sup>** Le tableau 6-2 indique les unités de masse volumique disponibles.

#### Tableau 6-5 Unités de masse volumique

| Symbole    |              |              |          |                                       |
|------------|--------------|--------------|----------|---------------------------------------|
| Indicateur | ProLink II   | Label EDD    | Code EDD | Description                           |
| G/cm3      | g/cm3        | g_per_cm3    | 1100     | Gramme par centimètre cube            |
| G/L        | g/l          | g_per_L      | 1105     | Gramme par litre                      |
| G/mL       | g/ml         | g_per_ml     | 1104     | Gramme par millilitre                 |
| KG/L       | kg/l         | kg_per_L     | 1103     | Kilogramme par litre                  |
| KG/m3      | kg/m3        | kg_per_m3    | 1097     | Kilogramme par mètre cube             |
| LB/GAL     | lb/gal US    | lb_per_gal   | 1108     | Livre par gallon U.S.                 |
| LB/CUF     | lb/ft3       | lb_per_ft3   | 1107     | Livre par pied cube                   |
| LB/CUI     | lb/in3       | lb_per_in3   | 1106     | Livre par pouce cube                  |
| ST/CUY     | tonne US/yd3 | Ston_per_yd3 | 1109     | Tonne U.S. par yard cube              |
| D API      | deg API      | DegAPI       | 1113     | Degré API                             |
| DENS       | Densité      | SGU          | 1114     | Densité (non corrigée en température) |

## 6.3.4 Unité de température

L'unité de température sélectionnée par défaut est le °**C**. Le tableau 6-6 indique les unités de température disponibles.

|            |            | Symbole   |          |                  |  |
|------------|------------|-----------|----------|------------------|--|
| Indicateur | ProLink II | Label EDD | Code EDD | Description      |  |
| °C         | °C         | Deg_C     | 1001     | Degré Celsius    |  |
| °F         | °F         | Deg_F     | 1002     | Degré Fahrenheit |  |
| °R         | °R         | Deg_R     | 1003     | Degré Rankine    |  |
| °K         | °K         | К         | 1000     | Kelvin           |  |

## Tableau 6-6 Unités de température

## 6.3.5 Unité de pression

Le débitmètre ne mesure pas la pression. L'unité de pression doit être configurée uniquement dans les cas suivants :

- Si le débitmètre doit être configuré pour effectuer une correction en pression des mesures (voir la section 9.2) Dans ce cas, l'unité de pression doit être identique à celle utilisée par le transmetteur de pression externe.
- Si une unité de débit volumique aux conditions de base doit être calculée à l'aide de l'Assistant Gaz de ProLink II, et la pression de base doit être spécifiée par l'opérateur (voir la section 8.2).

Si vous ne savez pas si vous devez configurer la correction en pression ou utiliser l'Assistant Gaz, vous n'avez pas besoin de configurer l'unité de pression à ce stade. Vous pourrez la configurer ultérieurement si nécessaire.

L'unité de mesure de la pression sélectionnée par défaut est le **PSI**. Le tableau 6-7 indique la liste complète des unités de pression disponibles.

| Indicateur | ProLink II       | Label EDD         | Code EDD | Description                     |
|------------|------------------|-------------------|----------|---------------------------------|
| FTH2O      | Pied H20 à 68°F  | ft. H2O @68 DegF  | 1154     | Pied d'eau à 68°F               |
| INW4C      | Pouce H20 à 4°C  | inch H2O @4 DegC  | 1147     | Pouce d'eau à 4 °C              |
| INW60      | Pouce H20 à 60°F | inch H2O @60 DegF | 1146     | Pouce d'eau à 60°F              |
| INH2O      | Pouce H20 à 68°F | inch H2O @68 DegF | 1148     | Pouce d'eau à 68°F              |
| mmCE4      | mm H20 à 4°C     | mm H2O @4 DegC    | 1150     | Millimètre d'eau à 4 °C         |
| mmH2O      | mm H20 à 68°F    | mm H2O @68 DegF   | 1151     | Millimètre d'eau à 68°F         |
| mmHG       | mm Hg à 0°C      | mm Hg @0 DegC     | 1158     | Millimètre de mercure à 0 °C    |
| INHG       | Pouce Hg à 0°C   | inch Hg @0 DegC   | 1156     | Pouce de mercure à 0 °C         |
| PSI        | PSI              | psi               | 1141     | Livre par pouce carré           |
| BAR        | bar              | bar               | 1137     | Bar                             |
| mBAR       | mbar             | milibar           | 1138     | Millibar                        |
| G/cm2      | g/cm2            | g_per_cm2         | 1144     | Gramme par centimètre carré     |
| KG/cm2     | kg/cm2           | kg_per_cm2        | 1145     | Kilogramme par centimètre carré |
| PA         | Pa               | Pa                | 1130     | Pascal                          |

## Tableau 6-7 Unités de mesure de la pression

## Configuration essentielle du transmetteur

## Tableau 6-7 Unités de mesure de la pression suite

|            |            | Symbole      |          |             |  |
|------------|------------|--------------|----------|-------------|--|
| Indicateur | ProLink II | Label EDD    | Code EDD | Description |  |
| KPA        | kPa        | KiloPa       | 1133     | Kilopascal  |  |
| MPA        | MPa        | MegaPa       | 1132     | Megapascal  |  |
| TORR       | Torr à 0°C | torr @0 DegC | 1139     | Torr à 0 °C |  |
| ATM        | atm        | atm          | 1140     | Atmosphère  |  |

# Chapitre 7 Exploitation du transmetteur

## 7.1 Sommaire

Ce chapitre explique comment exploiter le transmetteur. Il décrit :

- l'usage des fonctions I&M (voir la section 7.2)
- le relevé des grandeurs mesurées (voir la section 7.3)
- comment visualiser les grandeurs mesurées (voir la section 7.4)
- comment interpréter l'état des voyants LED (voir la section 7.5)
- comment visualiser les alarmes et l'état du transmetteur (voir la section 7.6)
- comment gérer les alarmes (voir la section 7.7)
- comment visualiser et contrôler les totalisateurs partiels et généraux (voir la section 7.8)

*Remarque : Toutes les procédures décrites dans ce chapitre présument que la communication avec le transmetteur Modèle 2400S DP est établie et que les règles de sécurité en vigueur sur le site sont respectées.* 

*Remarque : L'interface utilisateur de Pocket ProLink est similaire à celle du logiciel ProLink II décrite dans ce chapitre.* 

#### 7.2 Usage des fonctions I&M

Le transmetteur Modèle 2400S DP est capable de mettre en œuvre les fonctions I&M (Identification et Maintenance) suivante :

- I&M 0
- I&M 1

telles que spécifiées dans le document intitulé *Profile Guidelines Part 1: Identification & Maintenance Functions Version 1.1.1, March 2005.* 

Les fonctions I&M contiennent diverses informations relatives à l'appareil et au fabricant. Deux des valeurs I&M sont réglées par l'opérateur lors de l'installation (voir la section 8.12). Les autre valeurs, y compris le numéro d'identification du fabricant (Manufacturer ID), sont encodées de façon permanente dans le transmetteur. Le numéro d'identification du fabricant peut être utilisé pour obtenir des informations à propos de l'appareil et du fabricant sur le site web de PROFIBUS (*http://www.profibus.com/IM/Man\_ID\_Table.xml*).

Les fonctions I&M ne sont pas accessibles via ProLink II ou l'indicateur. Avec Siemens Simatic PDM, la version 6.0 SP2 ou supérieure est requise. Les versions antérieures ne supportent pas les fonctions I&M.

Pour utiliser les fonctions I&M :

1. Lire les données du transmetteur :

- Avec un hôte PROFIBUS utilisant la description EDD de l'appareil, se connecter au transmetteur en tant que « Spécialiste ». Voir la figure C-12.
- Avec les paramètres de bus PROFIBUS, utiliser le bloc de fonction I&M (voir le tableau D-9). Il faut lire l'ensemble du groupe de données de 64 octets.
- 2. Si nécessaire, aller sur le site web de PROFIBUS et entrer le numéro d'identification du fabricant (Manufacturer ID) du transmetteur.

#### 7.3 Relevé des grandeurs mesurées

Il est recommandé de noter la valeur des grandeurs mesurées mentionnées ci-après dans des conditions normales d'exploitation. Cela permettra de détecter si ces grandeurs atteignent une valeur anormalement haute ou basse, et éventuellement de modifier la configuration du transmetteur.

Relever la valeur des grandeurs suivantes :

- Débit
- Masse volumique
- Température
- Fréquence de vibration des tubes
- Niveau de détection
- Niveau d'excitation

Pour visualiser ces grandeurs, voir la section 7.4. Ces informations peuvent aussi servir à diagnostiquer les pannes ou les défauts de fonctionnement. Pour plus de renseignements, voir la section 11.13.

#### 7.4 Visualisation des grandeurs mesurées

Le débitmètre mesure les grandeurs suivantes: le débit massique, le débit volumique, le total en masse et en volume, la température et la masse volumique.

Ces grandeurs peuvent être visualisées avec l'indicateur (si le transmetteur est équipé d'un indicateur), avec ProLink II ou avec un hôte PROFIBUS.

Remarque : Si le transmetteur est équipé de la fonctionnalité de mesurage des produits pétroliers, deux des grandeurs API sont des valeurs moyennes : la masse volumique moyenne et la température moyenne pondérée sur la quantité mesurée. Pour ces deux valeurs, la moyenne est calculée sur la période de totalisation actuelle (c'est-à-dire depuis la dernière remise à zéro du totalisateur partiel en volume API).

#### 7.4.1 Avec l'indicateur

L'indicateur affiche par défaut les grandeurs suivantes : le débit massique, le total partiel en masse, le débit volumique, le total partiel en volume, la température, la masse volumique et le niveau d'excitation. Si nécessaire, il est possible de configurer l'indicateur pour afficher d'autres grandeurs. Voir la section 8.9.3.

L'indicateur affiche l'abréviation anglaise du nom de la grandeur (par exemple « **DENS** » pour la masse volumique), sa valeur instantanée et l'unité de mesure (par exemple **KG/m3**). Voir l'annexe E pour la description des abréviations et des codes affichés par l'indicateur.

#### Exploitation du transmetteur

Pour visualiser les grandeurs mesurées avec l'indicateur, voir la figure 3-2 et :

- Si le défilement automatique des grandeurs est activé, attendre que la grandeur désirée apparaisse à l'écran.
- Si le défilement automatique des grandeurs n'est pas activé, appuyer sur **Scroll** jusqu'à ce que le nom de la grandeur désirée :
  - soit apparaisse sur la ligne d'affichage de la grandeur mesurée ;
  - soit clignote en alternance avec l'unité de mesure

La résolution de l'affichage peut être réglée séparément pour chaque grandeur (voir la section 8.9.3). Ce réglage affecte uniquement la valeur affichée sur l'indicateur ; il n'a pas d'effet sur les valeurs transmises par le transmetteur par voie numérique.

Les grandeurs mesurées sont affichées en notation décimale ou exponentielle :

- Les valeurs < 100 000 000 sont affichées en notation décimale (p.e. **123456.78**).
- Les valeurs  $\geq 100\ 000\ 000\ \text{sont}\ \text{affichées}\ \text{en notation}\ \text{exponentielle}\ (p.e.\ 1.000E08).$ 
  - Si la valeur est inférieure à la résolution configurée pour cette grandeur mesurée, la valeur affichée sera **0** (la notation exponentielle n'est pas utilisée pour les nombres fractionnels).
  - Si la valeur est trop élevée pour pouvoir être affichée avec la résolution configurée, la résolution est réduite (le point décimal est déplacé vers la droite) si nécessaire pour que la valeur puisse être affichée.

## 7.4.2 Avec ProLink II

La fenêtre Grandeurs mesurées s'ouvre automatiquement lorsque la connexion est établie avec le transmetteur. Cette fenêtre affiche la valeur actuelle des grandeurs mesurées standard (masse, volume, masse volumique, température et, le cas échéant, les valeurs de pression et de température externe).

Pour visualiser ces grandeurs mesurées si la fenêtre Grandeurs mesurées a été fermée, cliquer sur **Prolink > Grandeurs mesurées**.

Pour visualiser les grandeurs de la fonctionnalité de mesurage de produits pétroliers (si le transmetteur est équipé de cette fonctionnalité), cliquer sur **ProLink > Grandeurs API**.

Pour visualiser les grandeurs de la fonctionnalité de densimétrie avancée (si le transmetteur est équipé de cette fonctionnalité), cliquer sur **ProLink > Grandeurs DA**. Différentes valeurs seront affichées suivant la configuration de la fonctionnalité de densimétrie avancée.

## 7.4.3 Avec un hôte PROFIBUS et la description EDD de l'appareil

Pour visualiser les grandeurs mesurées avec un hôte PROFIBUS doté de la description EDD de l'appareil :

- Utiliser le menu View (voir la figure C-5) pour visualiser les grandeurs mesurées standard. Le volume de gaz aux conditions de base et les grandeurs des fonctionnalités de mesurage de produits pétroliers (API) et de densimétrie avancée ne sont pas affichées dans ce menu.
- Utiliser le menu Device (voir la figure C-6) pour visualiser toutes les grandeurs mesurées.

## 7.4.4 Avec un hôte PROFIBUS et le fichier GSD de l'appareil

Pour visualiser les grandeurs mesurées avec un hôte PROFIBUS et le fichier GSD de l'appareil, il faut importer les modules d'entrée désirés dans l'hôte PROFIBUS (voir la section 5.4). Les grandeurs sélectionnées seront disponibles pour être visualisées sur l'hôte PROFIBUS.

## 7.4.5 Avec les paramètres de bus PROFIBUS

Pour visualiser les grandeurs mesurées avec les paramètres de bus PROFIBUS :

- Pour les grandeurs de la fonctionnalité de mesurage de produits pétroliers, utiliser le bloc API (voir le tableau D-7)
- Pour les grandeurs de la fonctionnalité de densimétrie avancée, utiliser le bloc Densimétrie avancée (voir le tableau D-8)
- Pour toutes les autres grandeurs, utiliser le bloc Mesurage (voir le tableau D-2)

#### 7.5 Interprétation de l'état des voyants LED

Le module de l'interface utilisateur est doté de trois voyants LED, repérés STATUS (état), NETWORK (réseau) et S/W ADDR (adresse logicielle). Voir les figures 3-1 et 3-2.

- Si le transmetteur a un indicateur, les voyants LED sont visibles à travers la vitre de l'indicateur.
- Si le transmetteur n'a pas d'indicateur, il faut enlever le couvercle du transmetteur pour visualiser les voyants LED (voir la section 3.3).

Pour plus d'informations :

- Sur le voyant NETWORK, voir la section 7.5.1.
- Sur le voyant S/W ADDR, voir la section 7.5.2.
- Sur le voyant STATUS, voir la section 7.6.1.

#### 7.5.1 Voyant NETWORK

Le tableau 7-1 décrit les différents états du voyant NETWORK.

#### Tableau 7-1 Voyant NETWORK : états, définitions et recommandations

| Etat du voyant<br>NETWORK | Définition                              | Commentaires                                                                                                                                                                                                                                 |
|---------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eteint                    | Transmetteur hors ligne                 | La voie de communication PROFIBUS-DP n'est pas<br>connectée à un système hôte. Vérifier la configuration de<br>l'hôte et le câblage, puis ressayer d'établir la connexion.                                                                   |
| Vert continu              | Transmetteur en ligne et connecté       | L'appareil est en train d'échanger des données avec un maître de Classe 1 ou il est en train d'être configuré avec un maître de Classe 2. Aucune action requise.                                                                             |
| Vert clignotant           | Transmetteur en ligne mais non connecté | L'appareil a détecté la vitesse de transmission du réseau,<br>mais la communication avec l'hôte n'est pas établie.                                                                                                                           |
| Rouge continu             | Erreur de communication                 | Vérifier la présence de l'un des problèmes de<br>communication suivants avec le réseau PROFIBUS :<br>Invalid Parameterization, Invalid Configuration, Invalid<br>Slot, Invalid Index, Invalid C2 Acyclic Communication<br>Initiate Telegram. |

#### 7.5.2 Voyant S/W ADDR

Le tableau 7-2 décrit les différents états du voyant S/W ADDR.

### Tableau 7-2 Voyant S/W ADDR : états, définitions et recommandations

| Etat du voyant S/W ADDR | Définition                                                                                               |
|-------------------------|----------------------------------------------------------------------------------------------------------|
| Eteint                  | Le transmetteur est en mode d'adressage manuel.                                                          |
| Rouge continu           | Le transmetteur est en mode d'adressage logiciel, mais l'adresse n'a pas encore été<br>fixée par l'hôte. |
| Vert continu            | Le transmetteur est en mode d'adressage logiciel et l'adresse a été fixée par l'hôte.                    |

#### 7.6 Visualisation de l'état de fonctionnement du transmetteur

Pour vérifier l'état du transmetteur, utiliser le voyant STATUS du transmetteur, le logiciel ProLink II, un hôte PROFIBUS avec la description EDD de l'appareil, ou les paramètres de bus PROFIBUS. Suivant la méthode choisie, différentes informations sont disponibles.

## 7.6.1 Avec le voyant STATUS du transmetteur

Le voyant STATUS indique l'état du transmetteur comme décrit au tableau 7-3. Noter que le voyant STATUS n'indique ni l'état des événements TOR, ni les alarmes dont le niveau de gravité est configuré sur Ignorer (voir la section 8.8).

#### Tableau 7-3 Etats du voyant STATUS

#### Etat du voyant Niveau de priorité de l'alarme Définition

| Vert             | Pas d'alarme                                | Fonctionnement normal                                                                                                                                                            |
|------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jaune clignotant | Alarme A104                                 | Ajustage du zéro ou étalonnage en cours                                                                                                                                          |
| Jaune continu    | Alarme d'exploitation<br>(informationnelle) | <ul> <li>Alarme n'engendrant pas d'erreur de mesure</li> <li>La valeur des grandeurs mesurées continue d'être transmise</li> </ul>                                               |
| Rouge            | Alarme d'état critique (défaut)             | <ul> <li>Alarme engendrant des erreurs de mesure</li> <li>Les valeurs transmises par voie numérique sont forcées à<br/>leur niveau de défaut (voir la section 8.10.7)</li> </ul> |

#### 7.6.2 Avec ProLink II

La fenêtre Etat du transmetteur de ProLink II affiche :

- les alarmes de défaut du débitmètre
- l'état des événements TOR
- d'autres données du transmetteur

## 7.6.3 Avec un hôte PROFIBUS et la description EDD de l'appareil

Les informations d'état se trouvent dans le menu View (voir la figure C-5) et le menu Device (voir les figures C-6 et C-7). Le menu View affiche l'état des alarmes. Le menu Device affiche :

- l'état des alarmes
- l'état des événements
- les informations de diagnostic du débitmètre et de la platine processeur

#### 7.6.4 Avec les paramètres de bus PROFIBUS

Les informations d'état se trouvent dans le bloc Diagnostics (voir le tableau D-4).

#### 7.7 Gestion des alarmes

Certaines conditions de fonctionnement du procédé ou du débitmètre génèrent des alarmes. Un code est associé à chaque alarme.

Les alarmes sont classées en trois niveaux de gravité : Défaut, Informationnel et Ignorer. Le niveau de gravité d'une alarme détermine le comportement du transmetteur lorsque cette alarme se produit.

*Remarque : Le niveau de gravité de certaines alarmes peut être modifié. Pour plus d'informations sur la configuration du niveau de gravité des alarmes, voir la section 8.8.* 

Remarque : Pour des informations plus détaillées sur chaque alarme, y compris des suggestions sur les causes et les remèdes possibles, voir le tableau 11-2. Avant de rechercher la cause de l'apparition d'alarmes, il faut d'abord acquitter toutes les alarmes. Cela permet d'éliminer les alarmes disparues de la liste afin de pouvoir se concentrer sur les alarmes encore présentes.

Deux bits d'état sont associés à chaque alarme :

- Le premier bit indique si l'alarme est « active » (présente) ou « inactive » (absente).
- Le deuxième bit indique si l'alarme est « acquittée » ou « non acquittée ».

En outre, le transmetteur garde en mémoire l'historique des 50 alarmes les plus récentes. Pour chaque alarme, le transmetteur enregistre :

- Le code de l'alarme
- L'instant où l'alarme est apparue
- L'instant où l'alarme a disparu
- L'instant où l'alarme a été acquittée

Lorsque le transmetteur détecte un défaut, il vérifie le niveau de gravité de l'alarme correspondante et effectue les actions décrites au tableau 7-4.

#### Tableau 7-4Réponses du transmetteur aux alarmes

#### Réponse du transmetteur

| Niveau de<br>gravité<br>de l'alarme <sup>(1)</sup> | Bits d'état                                                                                                                                     | Historique des alarmes                                                                     | Forçage sur défaut<br>des valeurs transmises<br>par voie numérique                                                  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Défaut                                             | <ul> <li>Le bit « alarme active » est<br/>immédiatement activé</li> <li>Le bit « alarme non acquittée »<br/>est immédiatement activé</li> </ul> | L'apparition de l'alarme est<br>immédiatement enregistrée<br>dans l'historique des alarmes | Activé après que la temporisation<br>configurée du forçage sur défaut<br>ait expiré (le cas échéant) <sup>(2)</sup> |
| Informationnel                                     | <ul> <li>Le bit « alarme active » est<br/>immédiatement activé</li> <li>Le bit « alarme non acquittée »<br/>est immédiatement activé</li> </ul> | L'apparition de l'alarme est<br>immédiatement enregistrée<br>dans l'historique des alarmes | Non activé                                                                                                          |
| Ignorer                                            | <ul> <li>Le bit « alarme active » est<br/>immédiatement activé</li> <li>Le bit « alarme non acquittée »<br/>est immédiatement activé</li> </ul> | Aucune action                                                                              | Non activé                                                                                                          |

(1) Voir la section 8.8 pour des informations sur la configuration du niveau de gravité des alarmes.

(2) Voir les sections 8.10.7 et 8.10.8 pour plus de renseignements sur la temporisation et le forçage sur défaut des valeurs transmises par communication numérique.

#### Exploitation du transmetteur

Lorsque le défaut ou l'événement qui a généré l'alarme disparaît :

- Le premier bit d'état bascule pour indiquer que l'alarme est « inactive ».
- Le forçage sur défaut des valeurs transmises par voie numérique est désactivé (pour les alarmes de type Défaut uniquement).
- La disparition de l'alarme est enregistrée dans l'historique des alarmes (alarmes de type Défaut et Informationnel uniquement).
- Le deuxième bit d'état ne change pas (l'alarme reste non acquittée).

Une intervention de l'opérateur est requise pour faire basculer le deuxième bit d'état sur « alarme acquittée ». Il n'est pas indispensable d'acquitter les alarmes. Si l'alarme est acquittée, l'acquittement de l'alarme est enregistré dans l'historique des alarmes.

#### 7.7.1 Avec l'indicateur

L'indicateur affiche uniquement les alarmes actives dont le niveau de gravité est de type Défaut ou Informationnel. Les alarmes de type Ignorer ne sont pas affichées, et il n'est pas possible de visualiser l'historique des alarmes sur l'indicateur.

Pour visualiser ou acquitter les alarmes à l'aide des menus de l'indicateur, consulter l'arborescence à la figure 7-1.

Si le transmetteur n'est pas équipé d'un indicateur, ou si l'accès au menu d'alarmes de l'indicateur est désactivé (voir la section 8.9.5), les alarmes peuvent être visualisées et acquittées à l'aide de ProLink II, un hôte PROFIBUS avec la description EDD de l'appareil, ou les paramètres de bus PROFIBUS. Noter que l'acquittement des alarmes est une procédure facultative.

D'autre part, l'indicateur peut être configuré pour permettre l'acquit simultané de toutes les alarmes à l'aide de la commande ACQUIT TOUS. Si la fonctionnalité d'acquit général de l'indicateur n'est pas activée, cette commande n'est pas disponible et les alarmes doivent être acquittées individuellement.



## Figure 7-1 Visualisation et acquit des alarmes avec l'indicateur

## 7.7.2 Avec ProLink II

ProLink II affiche les alarmes dans deux fenêtres différentes :

- La fenêtre Etat du transmetteur
- La fenêtre Liste des alarmes actives

#### Fenêtre Etat du transmetteur

La fenêtre Etat du transmetteur affiche l'état actuel des alarmes considérées comme les plus utiles pour l'exploitation et le diagnostic des pannes du débitmètre, y compris les alarmes de type Ignorer. La fenêtre Etat du transmetteur affiche uniquement l'état actuel du bit d'activation des alarmes ; elle ne permet pas d'accéder à l'historique des alarmes. Elle n'affiche pas non plus d'informations sur l'acquittement des alarmes, et il n'est pas possible d'acquitter les alarmes dans cette fenêtre.

Dans la fenêtre Etat du transmetteur :

- Les alarmes sont classées en trois catégories : Critique, Information et Exploitation. Chaque catégorie est affichée dans un panneau différent.
- Si une ou plusieurs alarmes d'une catégorie sont actives, l'onglet correspondant est rouge.
- Sur chaque panneau, un voyant vert indique que l'alarme correspondante est inactive et un voyant rouge indique que l'alarme est active.

*Remarque : La catégorisation des alarmes sous les onglets Critique, Information et Exploitation est prédéterminée ; elle n'est pas affectée par le niveau de gravité des alarmes.* 

Pour utiliser la fenêtre Etat du transmetteur :

- 1. Cliquer sur le menu **ProLink>Etat**.
- 2. Cliquer sur l'onglet correspondant à la catégorie d'alarmes à visualiser.

#### Fenêtre Liste des alarmes actives

La fenêtre Liste des alarmes actives consulte l'historique des alarmes et affiche les alarmes suivantes :

- Toutes les alarmes actives de type Défaut et Informationnel
- Toutes les alarmes inactives de type Défaut et Informationnel qui n'ont pas été acquittées

Les alarmes de type Ignorer ne sont pas prises en compte.

Il est possible d'acquitter les alarmes dans la fenêtre Liste des alarmes actives.

Dans la fenêtre Liste des alarmes actives :

- Les alarmes sont classées en deux catégories : Haute priorité et Faible priorité. Chaque catégorie est affichée dans un panneau différent.
- Sur chaque panneau, un voyant vert indique que l'alarme correspondante est « inactive mais non acquittée » et un voyant rouge indique que l'alarme est « active ».

*Remarque : La catégorisation des alarmes sous les onglets Haute priorité et Faible priorité est prédéterminée ; elle n'est pas affectée par le niveau de gravité des alarmes.* 

Pour utiliser la fenêtre Liste des alarmes actives :

- 1. Cliquer sur le menu ProLink>Liste des alarmes actives.
- 2. Cliquer sur l'onglet correspondant à la catégorie d'alarmes à visualiser.
- 3. Pour acquitter une alarme, cliquer sur la case à cocher **Acquit** correspondante. Une fois que le transmetteur a traité la commande :
  - Si l'alarme était inactive (voyant vert), elle est retirée de la liste.
  - Si l'alarme était encore active (voyant rouge), elle reste affichée mais elle sera automatiquement retirée de la liste lorsque l'alarme deviendra inactive.

#### 7.7.3 Avec un hôte PROFIBUS et la description EDD de l'appareil

Si l'hôte PROFIBUS est doté de la description EDD de l'appareil, les alarmes peuvent être visualisées dans la fenêtre Alarm Status. La fenêtre Alarm Status peut être ouverte de deux façons :

- En cliquant sur Device > Device > Alarm Status
- En cliquant sur View > Display > Alarm Status

La fenêtre Alarm Status affiche l'état actuel des alarmes considérées comme les plus utiles pour l'exploitation, la maintenance et le diagnostic des pannes, y compris les alarmes dont le niveau de gravité est réglé sur Ignorer. Les alarmes actives sont indiquées par une case cochée.

*Remarque : La fenêtre Alarm Status indique l'état actuel des bits d'état ; elle ne donne pas accès à l'historique des alarmes.* 

La fenêtre Alarm Status peut être utilisée pour acquitter chaque alarme individuellement ou pour acquitter toutes les alarmes simultanément. Pour acquitter une seule alarme :

- 1. Régler la commande Acknowledge Alarm sur l'alarme à acquitter.
- 2. Envoyer la commande au transmetteur.

Pour acquitter toutes les alarmes simultanément :

- 1. Régler la commande Acknowledge All Alarms sur Acknowledge.
- 2. Envoyer la commande au transmetteur.

#### 7.7.4 Avec les paramètres de bus PROFIBUS

Avec les paramètres de bus PROFIBUS, utiliser le bloc Diagnostics pour visualiser l'état d'un groupe d'alarmes présélectionnées, visualiser des informations sur une alarme particulière, acquitter une alarme individuellement ou toutes les alarmes simultanément, et consulter l'historique des alarmes. Voir le tableau D-4.

Pour visualiser l'état d'un groupe d'alarmes présélectionnées, utiliser les indices 10-17.

Remarque : Ces alarmes sont les mêmes alarmes qui sont affichées dans la fenêtre Etat de ProLink II.

Pour visualiser les informations relatives à une seule alarme :

- 1. Régler l'index 20 sur le code de l'alarme à consulter.
- 2. Lire l'index 22, et interpréter les données à l'aide des codes suivants :
  - 0x00 = Alarme acquittée ayant disparu
  - 0x01 = Alarme active et acquittée
  - 0x10 = Alarme non acquittée, mais ayant disparu
  - 0x11 = Alarme active, non acquittée

3. D'autres informations sur l'alarme indexée sont disponibles aux index suivants:

- Index 23 : Nombre de fois que l'alarme a été active
- Index 24 : Instant de la dernière apparition de cette alarme
- Index 25 : Instant de la dernière disparition de cette alarme

Pour acquitter une seule alarme :

- 1. Régler l'index 20 sur le code de l'alarme à acquitter.
- 2. Ecrire une valeur de **0** à l'index 22.

Pour acquitter toutes les alarmes simultanément, écrire une valeur de 1 à l'index 30.

Pour consulter l'historique des alarmes :

1. Spécifier à l'index 26 le numéro d'enregistrement d'alarme à vérifier. Choisir une valeur entre **0** et **49**.

Remarque : L'historique des alarmes étant un registre tampon circulaire, les nouveaux enregistrements effacent les plus anciens. Pour déterminer si un enregistrement est plus ou moins récent qu'un autre, il faut comparer leur horodatage.

#### Exploitation du transmetteur

- 2. Lire les valeurs suivantes :
  - Index 27 : Type d'alarme
  - Index 29 : Instant du changement d'état de cette alarme
  - Index 28 : Type de changement d'état :
    - 1 = Apparition de l'alarme
    - 2 = Disparition de l'alarme

#### 7.8 Utilisation des totalisateurs partiels et généraux

Les *totalisateurs partiels* totalisent les quantités en masse et en volume mesurées par le transmetteur pendant une certaine période de temps. Ils peuvent être visualisés, activés ou bloqués, et remis à zéro.

Les *totalisateurs généraux* totalisent les mêmes grandeurs que les totalisateurs partiels. Les totalisateurs généraux sont toujours activés et bloqués en même temps que les totalisateurs partiels (y compris les totalisateurs généraux des fonctionnalités de mesurage de produits pétroliers et de densimétrie avancée). Toutefois, les totalisateurs généraux ne sont pas automatiquement remis à zéro lorsque les totalisateurs partiels de unuer plusieurs quantités de masse ou de volume lorsque les totalisateurs partiels doivent être remis à zéro.

Le transmetteur est capable d'enregistrer les valeurs des totalisateurs partiels et généraux jusqu'à 2<sup>64</sup>. Les valeurs plus élevées entraîneront un dépassement de capacité du totalisateur interne.

#### 7.8.1 Visualisation de la valeur actuelle des totaux partiels et généraux

La valeur actuelle des totaux partiels et généraux peut être visualisée avec l'indicateur (si le transmetteur est équipé d'un indicateur), ProLink II, un hôte PROFIBUS, ou les paramètres de bus PROFIBUS.

#### Avec l'indicateur

Pour que la valeur actuelle d'un total partiel ou général puisse s'afficher sur l'indicateur, celui-ci doit être configuré pour afficher ce total. Voir la section 8.9.3.

Pour visualiser la valeur d'un total partiel ou général, consulter la figure 7-2 et procéder comme suit :

- 1. Le mot TOTAL doit apparaître dans le coin inférieur gauche de l'écran.
  - Si le défilement automatique des grandeurs est activé, attendre que la valeur désirée apparaisse à l'écran. Il est aussi possible d'appuyer sur **Scroll** jusqu'à ce que la valeur désirée apparaisse.
  - Si le défilement automatique des grandeurs n'est pas activé, appuyer sur **Scroll** jusqu'à ce que la valeur désirée apparaisse.
- 2. Consulter le tableau 7-5 pour identifier la grandeur mesurée et l'unité de mesure.
- 3. Lire la valeur actuelle du total sur la ligne supérieure de l'indicateur

#### Tableau 7-5 Affichage des totaux partiels et généraux sur l'indicateur

| Grandeur                                         | Affichage                                            |
|--------------------------------------------------|------------------------------------------------------|
| Total partiel en masse                           | L'unité de mesure est affichée ; pas de clignotement |
| Total général en masse                           | L'unité de mesure clignote en alternance avec GEN_M  |
| Total partiel en volume (liquide)                | L'unité de mesure est affichée ; pas de clignotement |
| Total général en volume (liquide)                | L'unité de mesure clignote en alternance avec GENVT  |
| Total partiel en volume de gaz aux cond. de base | L'unité de mesure est affichée ; pas de clignotement |

| Grandeur                                         | Affichage                                           |
|--------------------------------------------------|-----------------------------------------------------|
| Total général en volume de gaz aux cond. de base | L'unité de mesure clignote en alternance avec GSV I |
| API : Total partiel en volume à temp. référence  | L'unité de mesure clignote en alternance avec TCORR |
| API : Total général en volume à temp. référence  | L'unité de mesure clignote en alternance avec TCORI |
| DA : Total partiel en masse nette                | L'unité de mesure clignote en alternance avec NET M |
| DA : Total général en masse nette                | L'unité de mesure clignote en alternance avec NETMI |
| DA : Total partiel en volume net                 | L'unité de mesure clignote en alternance avec NET V |
| DA : Total général en volume net                 | L'unité de mesure clignote en alternance avec NETVI |
| DA : Total partiel en volume à temp. référence   | L'unité de mesure clignote en alternance avec STD V |
| DA : Total général en volume à temp. référence   | L'unité de mesure clignote en alternance avec STDVI |

## Tableau 7-5 Affichage des totaux partiels et généraux sur l'indicateur suite

## Figure 7-2 Affichage d'un total sur l'indicateur



## Avec ProLink II

Pour visualiser la valeur actuelle des totaux partiels et généraux avec ProLink II :

- 1. Cliquer sur le menu **ProLink**.
- 2. Sélectionner Grandeurs mesurées, Grandeurs API ou Grandeurs DA.

#### Avec un hôte PROFIBUS et la description EDD de l'appareil

Si l'hôte PROFIBUS est doté de la description EDD de l'appareil :

- Utiliser le menu View (voir la figure C-5) pour visualiser les totaux partiels et généraux standard. Les totalisations du volume de gaz aux conditions de base et des fonctionnalités de mesurage de produits pétroliers (API) et de densimétrie avancée ne sont pas affichées dans ce menu.
- Utiliser le menu Device (voir la figure C-6) pour visualiser toutes les totalisations.

#### Exploitation du transmetteur

## Avec un hôte PROFIBUS et le fichier GSD de l'appareil

Pour visualiser les totalisateurs avec un hôte PROFIBUS et le fichier GSD de l'appareil, il faut importer les modules d'entrée désirés dans l'hôte PROFIBUS (voir la section 5.4). Les totalisations sélectionnées seront disponibles pour être visualisées sur l'hôte PROFIBUS.

## Avec les paramètres de bus PROFIBUS

Pour visualiser la valeur actuelle des totaux partiels et généraux avec les paramètres de bus PROFIBUS, voir la section 7.4.5.

## 7.8.2 Contrôle des totalisateurs partiels et généraux

Les commandes d'activation, de blocage et de remise à zéro varient selon l'outil utilisé.

## Avec l'indicateur

Si les totalisateurs sont configurés pour être affichés sur l'indicateur, il est possible d'utiliser l'indicateur pour activer ou bloquer simultanément tous les totalisateurs partiels et généraux, ou pour remettre à zéro les totalisateur partiels individuellement. Voir le diagramme à la figure 7-3. Il n'est pas possible de remettre à zéro les totalisateurs généraux avec l'indicateur.

## Figure 7-3 Contrôle des totalisateurs partiels et généraux avec l'indicateur



- (1) Cet écran n'apparaît que si l'indicateur a été configuré pour afficher cette grandeur.
- (2) La fonctionnalité de mesurage de produits pétroliers (API) ou de densimétrie avancée (DA) doit être installée dans le transmetteur.
  (3) L'écran VS-E1 ou VS-E2 peut être utilisé pour configurer ou modifier la valeur de seuil de l'événement 1 ou 2 uniquement. Ces écrans apparaissent uniquement avec certains types d'événements. Pour modifier la valeur de seuil d'un événement affecté au total partiel en masse, il faut entrer dans le menu de gestion du total à partir de l'écran du total partiel en masse. Pour modifier la valeur de seuil d'un événement affecté au total partiel en volume, il faut entrer dans le menu de gestion du total partiel en volume, il faut entrer dans le menu de gestion du total à partir de l'écran du total partiel en volume. Voir la section 8.6.3 pour plus d'informations.
- (4) Le transmetteur doit être configuré pour permettre l'activation et le blocage des totalisateurs avec l'indicateur. Voir la section 8.9.5.
- (5) Les totalisateurs partiels et généraux sont tous bloqués et activés en même temps, y compris ceux de la fonctionnalité de mesurage de produits pétroliers (API) ou de densimétrie avancée (DA).
- (6) Le transmetteur doit être configuré pour permettre la remise à zéro des totalisateurs avec l'indicateur. Voir la section 8.9.5.
- (7) Seul le totalisateur partiel affiché à l'écran est remis à zéro. Les autres totalisateurs partiels et les totalisateurs généraux ne sont pas affectés. S'assurer que le totalisateur qui doit être remis à zéro est bien celui qui est affiché à l'écran.

#### Avec ProLink II

Les commandes de contrôle des totalisateurs partiels et généraux offertes par ProLink II sont répertoriées au tableau 7-6. Noter les points suivants :

- ProLink II ne permet pas d'effectuer une remise à zéro individuelle du totalisateur partiel ou général de la fonctionnalité API. Pour remettre à zéro ces totalisateurs, il faut effectuer une remise à zéro simultanée de tous les totalisateurs.
- Pour pouvoir remettre à zéro les totalisateurs généraux avec ProLink II, cette fonction doit avoir été préalablement autorisée. Pour autoriser la remise à zéro des totalisateurs généraux avec ProLink II:

- a. Cliquer sur Visualisation > Préférences.
- b. Cocher la case Autoriser la R.A.Z. des totalisateurs généraux.
- c. Cliquer sur **Appliquer**.

#### Tableau 7-6 Commandes de contrôle des totalisateurs de ProLink II

|                                       |                                                             | R.A.Z. des tota | lisateurs généraux |
|---------------------------------------|-------------------------------------------------------------|-----------------|--------------------|
| Objet                                 | Fonction                                                    | Désactivé       | Activé             |
| Totalisateurs partiels<br>et généraux | Activation ou blocage simultané de toutes les totalisations | $\checkmark$    | 1                  |
| Totalisateurs partiels                | R.A.Z. simultanée de tous les totaux généraux               | 1               | 1                  |
|                                       | R.A.Z. individuelle du total partiel en masse               | 1               | 1                  |
|                                       | R.A.Z. individuelle du total partiel en volume              | 1               | 1                  |
|                                       | R.A.Z. individuelle des totaux partiels DA                  | 1               | ✓                  |
|                                       | R.A.Z. individuelle du total partiel en volume API          | Impossible      | Impossible         |
| Totalisateurs généraux                | R.A.Z. simultanée de tous les totaux généraux               |                 | 1                  |
|                                       | R.A.Z. individuelle du total général en masse               |                 | 1                  |
|                                       | R.A.Z. individuelle du total général en volume              |                 | 1                  |
|                                       | R.A.Z. individuelle des totaux généraux DA                  |                 | 1                  |
|                                       | R.A.Z. individuelle du total général en volume API          | Impossible      | Impossible         |

Pour activer ou bloquer simultanément tous les totalisateurs partiels et généraux :

- 1. Cliquer sur ProLink > Contrôle des totalisateurs ou ProLink > Contrôle des totalisateurs DA (si la fonctionnalité de densimétrie avancée est présente).
- 2. Cliquer sur le bouton Activer ou Bloquer sous « Toutes les totalisations ».

Remarque : Les commandes d'activation et de blocage de toutes les totalisations sont dupliquées dans ces deux fenêtres pour des raisons de commodité. Il est possible d'activer ou de bloquer tous les totalisateurs partiels et généraux simultanément à partir de l'une ou l'autre de ces fenêtres.

Pour remettre à zéro tous les totaux partiels simultanément :

- 1. Cliquer sur ProLink > Contrôle des totalisateurs ou ProLink > Contrôle des totalisateurs **DA** (si la fonctionnalité de densimétrie avancée est présente).
- 2. Cliquer sur le bouton R.A.Z. sous « Toutes les totalisations ».

Pour remettre à zéro tous les totaux généraux simultanément :

- 1. Cliquer sur **ProLink > Contrôle des totalisateurs** ou **ProLink > Contrôle des totalisateurs DA** (si la fonctionnalité de densimétrie avancée est présente).
- 2. Cliquer sur le bouton R.A.Z. totaux généraux sous « Toutes les totalisations ».

Pour remettre à zéro un totalisateur partiel ou général individuellement :

- 1. Cliquer sur **ProLink > Contrôle des totalisateurs** ou **ProLink > Contrôle des totalisateurs DA** (si la fonctionnalité de densimétrie avancée est présente).
- 2. Cliquer sur le bouton approprié (par exemple RAZ total partiel masse, RAZ total partiel volume, RAZ total partiel masse nette).

## Avec un hôte PROFIBUS et la description EDD de l'appareil

Si l'hôte PROFIBUS est doté de la description EDD de l'appareil, utiliser la fenêtre Device pour activer ou bloquer tous les totaux partiels et généraux simultanément ; remettre à zéro tous les totaux partiels simultanément ; ou remettre à zéro tous les totaux généraux simultanément ; ou remettre à zéro chaque total partiel ou général individuellement (standard, API ou DA). Voir la figure C-6.

#### Avec un hôte PROFIBUS et le fichier GSD de l'appareil

Pour contrôler les totalisateurs avec un hôte PROFIBUS et le fichier GSD de l'appareil, utiliser les modules de sortie 36, 37 et 38. Il est possible d'activer ou de bloquer tous les totaux partiels et généraux simultanément, de remettre à zéro tous les totaux partiels simultanément ou de remettre à zéro tous les totaux généraux simultanément. Pour utiliser ces modules de sortie :

- 1. Les importer dans l'hôte PROFIBUS.
- 2. Envoyer la commande appropriée au transmetteur (voir le tableau 5-1).

#### Avec les paramètres de bus PROFIBUS

Pour contrôler les totaux partiels et généraux avec les paramètres de bus PROFIBUS, voir le tableau 7-7.

#### Tableau 7-7 Contrôle des totalisateurs à l'aide des paramètres de bus PROFIBUS

| Pour effectuer cette commande                             | Utiliser                                           |
|-----------------------------------------------------------|----------------------------------------------------|
| Blocage de tous les totalisateurs partiels et généraux    | Bloc Mesurage (Slot 1)<br>Index : 22<br>Valeur : 0 |
| Activation de tous les totalisateurs partiels et généraux | Bloc Mesurage (Slot 1)<br>Index : 22<br>Valeur : 1 |
| R.A.Z. simultanée de tous les totaux partiels             | Bloc Mesurage (Slot 1)<br>Index : 23<br>Valeur : 1 |
| R.A.Z. simultanée de tous les totaux généraux             | Bloc Mesurage (Slot 1)<br>Index : 24<br>Valeur : 1 |
| R.A.Z. du total partiel en masse                          | Bloc Mesurage (Slot 1)<br>Index : 25<br>Valeur : 1 |
| R.A.Z. du total général en masse                          | Bloc Mesurage (Slot 1)<br>Index : 43<br>Valeur : 1 |

| Pour effectuer cette commande                                    | Utiliser                                                      |
|------------------------------------------------------------------|---------------------------------------------------------------|
| R.A.Z. du total partiel en volume de liquide                     | Bloc Mesurage (Slot 1)<br>Index : 26<br>Valeur : 1            |
| R.A.Z. du total général en volume de liquide                     | Bloc Mesurage (Slot 1)<br>Index : 44<br>Valeur : 1            |
| R.A.Z. du total partiel en volume de gaz aux cond. de réf.       | Bloc Mesurage (Slot 1)<br>Index : 41<br>Valeur : 1            |
| R.A.Z. du total général en volume de gaz aux cond. de réf.       | Bloc Mesurage (Slot 1)<br>Index : 42<br>Valeur : 1            |
| R.A.Z. du total partiel en volume à température de référence API | Bloc API (Slot 6)<br>Index : 11<br>Valeur : 1                 |
| R.A.Z. du total général en volume à température de référence API | Bloc API (Slot 6)<br>Index : 12<br>Valeur : 1                 |
| R.A.Z. du total partiel en volume à température de référence DA  | Bloc Densimétrie avancée (Slot 7)<br>Index : 17<br>Valeur : 1 |
| R.A.Z. du total partiel en masse nette DA                        | Bloc Densimétrie avancée (Slot 7)<br>Index : 18<br>Valeur : 1 |
| R.A.Z. du total partiel en volume net DA                         | Bloc Densimétrie avancée (Slot 7)<br>Index : 19<br>Valeur : 1 |
| R.A.Z. du total général en volume à température de référence DA  | Bloc Densimétrie avancée (Slot 7)<br>Index : 20<br>Valeur : 1 |
| R.A.Z. du total général en masse nette DA                        | Bloc Densimétrie avancée (Slot 7)<br>Index : 21<br>Valeur : 1 |
| R.A.Z. du total général en volume net DA                         | Bloc Densimétrie avancée (Slot 7)<br>Index : 22<br>Valeur : 1 |

# Chapitre 8 Configuration optionnelle

#### 8.1 Sommaire

Ce chapitre décrit la configuration des paramètres optionnels dont l'emploi dépend des besoins de l'application. Pour la configuration des paramètres essentiels, voir le chapitre 6.

Le tableau 8-1 liste tous les paramètres qui sont traités dans ce chapitre. La valeur par défaut et la plage de réglage des paramètres les plus usités sont données à l'annexe A.

*Remarque : Toutes les procédures décrites dans ce chapitre présument que la communication avec le transmetteur Modèle 2400S DP est établie et que les règles de sécurité en vigueur sur le site sont respectées.* 

Outil de configuration

*Remarque : L'interface utilisateur de Pocket ProLink est similaire à celle du logiciel ProLink II décrite dans ce chapitre.* 

| Paramètre                              |                                                      | ProLink II | Hôte PROFIBUS <sup>(1)</sup> | Indicateur | Section |
|----------------------------------------|------------------------------------------------------|------------|------------------------------|------------|---------|
| Configuration pou<br>de gaz aux condit | r le mesurage du volume<br>ions de base              | 1          | 1                            |            | 8.2     |
| Seuils de coupure                      | )                                                    | 1          | 1                            |            | 8.3     |
| Amortissement                          |                                                      | ✓          | 1                            |            | 8.4     |
| Sens d'écouleme                        | nt                                                   | 1          | 1                            |            | 8.5     |
| Evénements                             |                                                      | 1          | ✓                            |            | 8.6     |
| Ecoulement bipha                       | asique                                               | 1          | ✓                            |            | 8.7     |
| Gravité des alarm                      | es                                                   | 1          | ✓                            |            | 8.8     |
| Indicateur <sup>(2)</sup>              | Période de rafraîchissement                          | 1          | ✓                            | 1          | 8.9.1   |
|                                        | Langue d'affichage                                   | 1          | ✓                            | ✓          | 8.9.2   |
|                                        | Grandeurs à afficher et<br>résolution de l'affichage | 1          | 1                            |            | 8.9.3   |
|                                        | Rétro-éclairage indicateur                           | 1          | ✓                            |            | 8.9.4   |
|                                        | Activation/blocage totalisations                     | 1          | ✓                            | 1          | 8.9.5   |
|                                        | R.A.Z. totalisations                                 | 1          | ✓                            | 1          |         |
|                                        | Défilement automatique                               | 1          | ✓                            | ✓          |         |
|                                        | Vitesse de défilement                                | 1          | ✓                            | ✓          |         |
|                                        | Accès menu de maintenance                            | 1          | ✓                            | ✓          |         |
|                                        | Mot de passe                                         | 1          | ✓                            | ✓          |         |
|                                        | Accès menu d'alarmes                                 | 1          | 1                            | 1          |         |
|                                        | Acquit général                                       | 1          | ✓                            | 1          |         |

#### Tableau 8-1 Liste des paramètres de configuration optionnels

### Tableau 8-1 Liste des paramètres de configuration optionnels suite

|                                                   |                                                              |            | Outil de configuratio        | n          |         |
|---------------------------------------------------|--------------------------------------------------------------|------------|------------------------------|------------|---------|
| Paramètre                                         |                                                              | ProLink II | Hôte PROFIBUS <sup>(1)</sup> | Indicateur | Section |
| Communication                                     | Adresse de nœud PROFIBUS                                     |            | ✓ <sup>(3)</sup>             | (4)        | 8.10.1  |
| numérique                                         | Verrouillage du port infrarouge                              | ✓          | 1                            | 1          | 8.10.2  |
|                                                   | Adresse Modbus                                               | ✓          | 1                            | 1          | 8.10.3  |
|                                                   | Support Modbus ASCII                                         | 1          | 1                            | ✓          | 8.10.4  |
|                                                   | Ordre des octets à virgule flottante                         | 1          |                              |            | 8.10.5  |
|                                                   | Délai supplémentaire de<br>réponse numérique                 | 1          |                              |            | 8.10.6  |
|                                                   | Forçage sur défaut des valeurs transmises par voie numérique | 1          | ✓                            |            | 8.10.7  |
|                                                   | Temporisation du forçage sur<br>défaut                       | 1          | ✓                            |            | 8.10.8  |
| Informations sur le transmetteur                  |                                                              | ✓          | ✓ <sup>(5)</sup>             |            | 8.11    |
| Fonctions I&M                                     |                                                              |            | 1                            |            | 8.12    |
| Informations sur le capteur                       |                                                              | 1          | 1                            |            | 8.13    |
| Fonctionnalité de mesurage de produits pétroliers |                                                              | 1          | ✓                            |            | 8.14    |
| Fonctionnalité de densimétrie avancée             |                                                              | 1          | 1                            |            | 8.15    |

(1) Via un hôte équipé de la description EDD de l'appareil ou via les paramètres de bus PROFIBUS.

(2) Ces paramètres concernent uniquement les transmetteurs équipés d'un indicateur.

(3) Via un télégramme Set Slave Address.

(4) Via les commutateurs rotatifs situés sur la face avant du transmetteur.

(5) Uniquement via les paramètres de bus PROFIBUS.

#### 8.2 Configuration pour le mesurage du volume de gaz

Deux types de mesurage du volume sont disponibles :

- Volume liquide (sélectionné par défaut)
- Volume de gaz aux conditions de base

Ces deux types de mesurage du volume ne peuvent pas être effectués simultanément (si le mesurage du volume liquide est sélectionné, le mesurage du volume de gaz sera désactivé, et inversement). La liste des unités de mesure du débit volumique disponibles diffère selon le type de mesurage du volume sélectionné (voir les tableaux 6-3 et 6-4). Pour le mesurage du débit volumique de gaz aux conditions de base, une étape de configuration supplémentaire est nécessaire.

*Remarque : Pour utiliser la fonctionnalité de mesurage de produits pétroliers ou de densimétrie avancée, il faut sélectionner le mesurage de débit volumique de liquides.* 

La méthode utilisée pour configurer le mesurage du débit volumique de gaz dépend de l'outil utilisé (ProLink II, hôte PROFIBUS avec description EDD de l'appareil, ou paramètres de bus PROFIBUS). Quelle que soit la méthode utilisée, il faut :

- Activer la fonctionnalité de mesurage du volume de gaz aux conditions de base
- Sélectionner l'unité à utiliser
- Spécifier le seuil de coupure bas débit
- Spécifier la masse volumique du gaz aux conditions de base

Remarque : Pour pouvoir effectuer une configuration complète pour le mesurage du débit volumique de gaz, il faut utiliser soit ProLink II, soit l'hôte PROFIBUS. L'indicateur permet uniquement de sélectionner une unité de mesure dans la liste disponible pour le type de débit volumique configuré.

## 8.2.1 Avec ProLink II

Pour configurer le mesurage du débit volumique de gaz avec ProLink II :

- 1. Cliquer sur ProLink > Configuration > Débit.
- 2. Régler le paramètre Type de débit volumique sur Volume de gaz aux cond. de base.
- Sélectionner l'unité de mesure désirée dans le menu déroulant Unité Qvol gaz aux cond. de base. L'unité sélectionnée par défaut est le Sft3/min.
- 4. Spécifier le seuil de coupure bas débit sous **Seuil bas Qvol gaz aux cond. de base** (voir la section 8.3). La valeur par défaut est **0**.
- 5. Si la masse volumique du gaz aux conditions de base est connue, entrer sa valeur sous **MV gaz aux cond. de base**. Sinon, utiliser l'Assistant Gaz pour déterminer sa valeur. Voir la section qui suit.

## Utilisation de l'Assistant Gaz

L'Assistant Gaz sert à calculer la masse volumique du gaz mesuré aux conditions de base.

Pour utiliser l'Assistant Gaz :

- 1. Cliquer sur **ProLink > Configuration > Débit**.
- 2. Cliquer sur le bouton Assistant Gaz.
- 3. Si le gaz à mesurer apparaît dans le menu déroulant Sélectionner un gaz :
  - a. Cliquer sur le bouton d'option Sélectionner un gaz.
  - b. Sélectionner le gaz à mesurer.
- 4. Si le gaz à mesurer n'apparaît pas dans la liste déroulante, il faut décrire ses propriétés.
  - a. Cliquer sur le bouton d'option Spécifier les propriétés du gaz.
  - b. Sélectionner la méthode à utiliser pour décrire les propriétés du gaz : Masse molaire, Densité par rapport à l'air, ou Masse volumique.
  - c. Entrer les informations requises. Si la méthode choisie est **Masse volumique**, la valeur doit être entrée dans l'unité de masse volumique configurée et les valeurs de la température et de la pression auxquelles la masse volumique a été déterminée doivent être spécifiées.

*Remarque : Vérifier que les valeurs spécifiées ici sont correctes et que la composition du gaz est stable, sinon les mesures de débit volumique seront fausses.* 

- 5. Cliquer sur **Suivant**.
- 6. Confirmer les valeurs de la température et de la pression de base auxquelles la masse volumique spécifiée doit être ramenée. Si ces valeurs ne sont pas appropriées pour l'application, cliquer sur le bouton **modification des conditions de base** et entrer les valeurs de température et de pression de base désirées.

- 7. Cliquer sur **Suivant**. Le résultat du calcul de la masse volumique aux conditions de base est affiché.
  - Si cette valeur est correcte, cliquer sur **Terminer** pour l'inscrire dans la mémoire du transmetteur.
  - Si cette valeur n'est pas correcte, cliquer sur **Précédent** et modifier les valeurs entrées si nécessaire.

Remarque : L'Assistant Gaz affiche les valeurs de masse volumique, de température et de pression dans les unités configurées pour ces grandeurs. Si nécessaire, le transmetteur peut être configuré pour utiliser d'autres unités. Voir la section 6.3.

#### 8.2.2 Avec un hôte PROFIBUS et la description EDD de l'appareil

Pour configurer le mesurage du débit volumique de gaz avec un hôte PROFIBUS doté de la description EDD de l'appareil :

- 1. Se référer à la figure C-8 et procéder comme suit :
  - a. Activer le mesurage de gaz aux conditions de base (Configuration parameters > Flow > GSV parameters > Enable gas std volume flow and total).
  - b. Envoyer la commande au transmetteur.
  - c. Dans le menu GSV process variables, configurer les paramètres Gas std density (masse volumique du gaz aux conditions de base), Gas std volume flow units (unité de volume du gaz aux conditions de base), Gas std volume total and inventory units (unité de totalisation du volume de gaz aux conditions de base), et Gas std volume flow cutoff (seuil bas débit du volume de gaz aux conditions de base).
- 2. Envoyer la commande au transmetteur.

#### 8.2.3 Avec les paramètres de bus PROFIBUS

Pour configurer le mesurage du débit volumique de gaz avec les paramètres de bus PROFIBUS :

- 1. Se référer au tableau D-2 (bloc Mesurage) et procéder comme suit :
  - a. Activer le mesurage de gaz aux conditions de base (Index 33).
  - b. Configurer les paramètres de mesurage de gaz aux conditions de base (Index 34, 38 et 40) sur les valeurs désirées.
- 2. Envoyer la commande au transmetteur.

#### 8.3 Seuils de coupure

Le seuil de coupure d'une grandeur représente la valeur de la grandeur en dessous de laquelle le transmetteur indique une valeur nulle de cette grandeur. Un seuil de coupure peut être configuré pour le débit massique, le débit volumique de liquides, le débit volumique de gaz aux conditions de base et la masse volumique.

Le tableau 8-2 indique les valeurs par défaut ainsi que certaines informations utiles pour la configuration de ce paramètre. Pour plus de renseignements sur l'interaction des seuils de coupure avec d'autres paramètres du transmetteur, voir la section 8.3.1.

Pour configurer les seuils de coupure :

- avec ProLink II, voir la figure C-2.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-8 et configurer les paramètres Mass flow cutoff (seuil bas débit massique), Volume flow cutoff (seuil bas débit volumique), Gas std volume flow cutoff (seuil bas débit du volume de gaz aux conditions de base), et Low density cutoff (seuil bas masse volumique).
- avec les paramètres de bus PROFIBUS, configurer les index 18, 19, 20 et 40 du bloc Mesurage (voir le tableau D-2).

Remarque : Les seuils de coupure ne peuvent pas être configurés avec l'indicateur.

| Seuil de coupure                                 | Valeur par<br>défaut      | Commentaires                                                                             |
|--------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------|
| Débit massique                                   | 0,0 g/s                   | Valeur recommandée : 5 % du débit maximum spécifié du capteur                            |
| Débit volumique liquide                          | 0,0 l/s                   | Limite : coefficient d'étalonnage en débit du capteur, exprimé en l/s, multiplié par 0,2 |
| Débit volumique de gaz<br>aux conditions de base | 0,0 Sft <sup>3</sup> /min | Aucune limite                                                                            |
| Masse volumique                                  | 200 kg/m <sup>3</sup>     | Plage réglable : 0,0 à 500 kg/m <sup>3</sup>                                             |

#### Tableau 8-2 Valeur par défaut des seuils de coupure

#### 8.3.1 Relation entre les seuils de coupure et l'indication de débit volumique

Si le débitmètre est configuré pour mesurer le débit volumique d'un liquide :

- Le seuil de coupure de la masse volumique est appliqué au calcul du débit volumique. Le débit volumique sera donc nul si la masse volumique tombe en dessous du seuil de coupure.
- Le seuil de coupure du débit massique n'a pas d'effet sur le calcul du débit volumique. Même si le débit massique tombe en dessous du seuil de coupure et que les sorties du transmetteur indiquent un débit massique nul, le débit volumique continuera d'être calculé à partir du débit massique réel mesuré.

Si le débitmètre est configuré pour mesurer le débit volumique d'un gaz aux conditions de base, ni le seuil du débit massique ni celui de la masse volumique n'est appliqué au calcul du débit volumique.

#### 8.4 Amortissement des grandeurs mesurées

La valeur d'amortissement est une constante de temps, exprimée en secondes, qui correspond au temps nécessaire pour que la sortie atteigne 63% de sa nouvelle valeur en réponse à une variation de la grandeur mesurée. Ce paramètre permet au transmetteur d'amortir les variations brusques de la grandeur mesurée.

- Une valeur d'amortissement importante rend le signal de sortie plus lisse car la sortie réagit plus lentement aux variations du procédé.
- Une faible valeur d'amortissement rend le signal de sortie plus irrégulier car la sortie réagit plus rapidement aux variations du procédé.

La valeur d'amortissement peut être configurée séparément pour le débit, la masse volumique et la température.

Les valeurs d'amortissement entrées par l'utilisateur sont automatiquement arrondies vers le bas aux valeurs prédéterminées par le logiciel les plus proches. Voir le tableau 8-3.

Remarque : Si le fluide mesuré est un gaz, la valeur d'amortissement minimum recommandée est 2,56.

Avant de régler les valeurs d'amortissement, consulter la section 8.4.1 pour plus de renseignements sur l'interaction de l'amortissement avec d'autres paramètres du transmetteur.

| Grandeur mesurée        | Valeurs d'amortissement prédéterminées |
|-------------------------|----------------------------------------|
| Débit (masse et volume) | 0, 0,04, 0,08, 0,16, 40,96             |
| Masse volumique         | 0, 0,04, 0,08, 0,16, 40,96             |
| Température             | 0, 0,6, 1,2, 2,4, 4,8, 76,8            |

 Tableau 8-3
 Valeurs d'amortissement prédéterminées

Pour configurer les valeurs d'amortissement des grandeurs mesurées :

- avec ProLink II, voir la figure C-2.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-8 et configurer les paramètres **Flow damping** (amortissement débit), **Temperature damping** (amortissement température) et **Density damping** (amortissement masse volumique).
- avec les paramètres de bus PROFIBUS, configurer les index 12, 13 et 14 du bloc Mesurage (voir le tableau D-2).

Remarque : Les valeurs d'amortissement ne peuvent pas être configurées avec l'indicateur.

#### 8.4.1 Impact de l'amortissement sur les mesures de volume

Lors du réglage des valeurs d'amortissement, tenir compte des points suivants :

- La mesure du volume de liquides étant dérivée des mesures de la masse et de la masse volumique, toute valeur d'amortissement appliquée à la masse volumique aura aussi un effet sur la mesure du débit volumique.
- Le débit volumique de gaz aux conditions de base étant dérivé uniquement de la mesure de masse, seule la valeur d'amortissement du débit sera appliquée à la mesure du débit volumique au conditions de base.

Régler les valeurs d'amortissement en conséquence.

#### 8.5 Sens d'écoulement

Le paramètre *Sens d'écoulement* détermine la façon dont le transmetteur interprète le signal de débit en fonction du sens d'écoulement du fluide dans la conduite.

- Un écoulement est dit *normal* ou positif s'il est dans le même sens que la flèche qui est gravée sur le capteur.
- Un écoulement est dit *inverse* ou négatif s'il est dans le sens opposé à la flèche qui est gravée sur le capteur.

Le paramètre Sens d'écoulement peut être réglé sur l'une des options suivantes :

- Ecoulement normal
- Ecoulement inverse
- Valeur absolue
- Ecoulement bidirectionnel
- Ecoulement normal avec inversion numérique
- Ecoulement bidirectionnel avec inversion numérique

L'effet du sens d'écoulement sur les totalisations et les valeurs de débit est décrit au tableau 8-4.

## Tableau 8-4 Effet du sens d'écoulement sur les totalisateurs et sur les valeurs de débit

|                                                             | Ecoule         | ment normal <sup>(1)</sup>  |
|-------------------------------------------------------------|----------------|-----------------------------|
| Option du paramètre « Sens d'écoulement »                   | Totalisateurs  | Valeurs de débit            |
| Normal (Forward)                                            | Incrémentés    | Positives                   |
| Inverse (Reverse)                                           | Inchangés      | Positives                   |
| Bidirectionnel (Bidirectional)                              | Incrémentés    | Positives                   |
| Valeur absolue (Absolute value)                             | Incrémentés    | Positives <sup>(2)</sup>    |
| Inversion numérique - normal (Negate/Forward only)          | Inchangés      | Négatives                   |
| Inversion numérique - bidirectionnel (Negate/Bidirectional) | Décrémentés    | Négatives                   |
|                                                             | Ecoulement nul |                             |
| Option du paramètre « Sens d'écoulement »                   | Totalisateurs  | Valeurs de débit            |
| Toutes options                                              | Inchangés      | 0                           |
|                                                             | Ecoule         | ment inverse <sup>(3)</sup> |
| Option du paramètre « Sens d'écoulement »                   | Totalisateurs  | Valeurs de débit            |
| Normal (Forward)                                            | Inchangés      | Négatives                   |
| Inverse (Reverse)                                           | Incrémentés    | Négatives                   |
| Bidirectionnel (Bidirectional)                              | Décrémentés    | Négatives                   |
| Valeur absolue (Absolute value)                             | Incrémentés    | Positives <sup>(2)</sup>    |
| Inversion numérique - normal (Negate/Forward only)          | Incrémentés    | Positives                   |
| Inversion numérique - bidirectionnel (Negate/Bidirectional) | Incrémentés    | Positives                   |

(1) Le fluide s'écoule dans la même direction que la flèche du capteur.

(2) Consulter les bits d'état de la communication numérique pour déterminer si l'écoulement est normal ou inverse.

(3) Le fluide s'écoule dans la direction opposée à la flèche du capteur.

Pour configurer le sens d'écoulement :

- avec ProLink II, voir la figure C-2.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-8 et configurer le paramètre **Flow direction**.
- avec les paramètres de bus PROFIBUS, configurer l'index 21 du bloc Mesurage (voir le tableau D-2).

Remarque : Ce paramètre ne peut pas être configuré avec l'indicateur.

#### 8.6 Configuration des événements

Un *événement* intervient lorsque la valeur instantanée d'une grandeur choisie par l'utilisateur passe au-dessus ou en dessous d'un seuil prédéterminé, ou se trouve à l'intérieur ou à l'extérieur d'une plage spécifiée par l'utilisateur. Jusqu'à cinq événements différents peuvent être configurés.

Pour chaque événement, il est possible de spécifier une ou plusieurs actions qui se produiront en présence de l'événement. Par exemple, le transmetteur peut être configuré pour que tous les totalisateurs partiels et généraux se bloquent et pour que le total partiel en masse soit automatiquement remis à zéro lorsque l'événement 1 se déclenche.

#### 8.6.1 Configuration d'un événement

Pour configurer un événement :

- avec ProLink II, voir la figure C-3.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-9 et configurer les paramètres du sous-menu **Discrete event parameters** (voir le tableau 8-5).
- avec les paramètres de bus PROFIBUS, consulter le tableau D-4 (bloc Diagnostics).

Suivre la procédure décrite au tableau 8-5.

#### Tableau 8-5 Procédure de configuration des événements

| Etape | Description                                                                                                                                                                                                                                                                                                                                                                      | Paramètre de la<br>description EDD à<br>configurer | Paramètres de bus<br>PROFIBUS à<br>configurer                          |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------|
| 1     | Sélectionner l'événement à définir                                                                                                                                                                                                                                                                                                                                               | Discrete event index                               | Slot 3 (bloc Diagnostic),<br>Index 4                                   |
| 2     | Sélectionner le type d'événement. Les différents types<br>d'événements sont décrits au tableau 8-6                                                                                                                                                                                                                                                                               | Discrete event type                                | Slot 3 (bloc Diagnostic),<br>Index 5                                   |
| 3     | Affecter une grandeur à l'événement                                                                                                                                                                                                                                                                                                                                              | Discrete event process<br>variable code            | Slot 3 (bloc Diagnostic),<br>Index 8                                   |
| 4     | <ul> <li>Spécifier la ou les valeur(s) de seuil. La valeur de seuil représente la valeur de la grandeur à laquelle l'événement change d'état.</li> <li>Si l'événement est de type Seuil bas ou Seuil haut, seule la valeur de seuil A est utilisée.</li> <li>Si l'événement est de type Dans bande ou Hors bande, il faut spécifier les deux valeurs de seuil A et B.</li> </ul> | Low setpoint (A)<br>High setpoint (B)              | Slot 3 (bloc Diagnostic)<br>• Seuil A : Index 6<br>• Seuil B : Index 7 |

#### Tableau 8-6 Types d'événements

| Туре                                          | Description                                                                                                                                                                                    |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Seuil haut (grandeur > A)<br>EDD : High (> A) | Valeur par défaut. L'événement est actif lorsque la valeur de la grandeur affectée à l'événement est supérieure à la valeur de seuil (A). <sup>(1)</sup>                                       |
| Seuil bas (grandeur < A)<br>EDD : Low (< A)   | L'événement est actif lorsque la valeur de la grandeur affectée à l'événement est inférieure à la valeur de seuil (A). <sup>(1)</sup>                                                          |
| Dans bande<br>EDD : In Range                  | L'événement est actif lorsque la valeur de la grandeur affectée à l'événement se trouve entre les seuils bas (A) <i>et</i> haut (B) configurés. <sup>(2)</sup>                                 |
| Hors bande<br>EDD : Out of Range              | L'événement est actif lorsque la valeur de la grandeur affectée à l'événement est soit inférieure ou égale au seuil bas (A), <i>soit</i> supérieure ou égale au seuil haut (B). <sup>(2)</sup> |

(1) L'événement n'est pas activé lorsque la grandeur est égale à la valeur de seuil.

(2) L'événement est activé lorsque la grandeur est égale à la valeur de seuil.

Remarque : Si un total partiel en masse ou en volume est affecté à l'événement 1 ou 2, et qu'il est également configuré pour s'afficher sur l'indicateur, si l'événement est de type Haut ou Bas et que le transmetteur est configuré pour permettre la remise à zéro des totalisateurs à l'aide de l'indicateur, l'indicateur peut aussi être utilisé pour définir ou modifier la valeur de seuil A. Voir la section 8.6.3.

Une fois l'événement configuré, affecter une ou plusieurs actions à l'événement si nécessaire. Les actions pouvant être affectées à un événement sont listées au tableau 8-7. Pour ce faire :

• Avec ProLink II, cliquer sur l'onglet Entrées TOR de la fenêtre de Configuration, identifier l'action à effectuer, puis sélectionner l'événement devant commander cette action dans le menu déroulant. Voir la figure C-3.

Remarque : Bien que le transmetteur Modèle 2400S DP n'ait pas d'entrée TOR, l'affectation d'actions aux événements se fait dans le panneau Entrées TOR pour des raisons de cohérence avec d'autres produits Micro Motion.

- Avec l'indicateur, voir la figure C-15 et utiliser le sous-menu AFF.
- Avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10. Dans le sous-menu **Discrete event action code and assignement**, spécifier l'événement qui déclenchera l'action à l'aide du paramètre **Discrete event assignement** et spécifier l'action à effectuer à l'aide du paramètre **Discrete event action code**.
- Avec les paramètres de bus PROFIBUS, utiliser l'index 83 du bloc Diagnostic (tableau D-4) pour spécifier l'événement qui déclenchera l'action et l'index 82 pour spécifier l'action à effectuer.

| Label de<br>ProLink II                   | Label de<br>l'indicateur | Label EDD<br>PROFIBUS        | Description                                                                                                                                                 |
|------------------------------------------|--------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ajustage du zéro                         | AJUSTAGE ZERO            | Start Sensor Zero            | Lancement de la procédure d'ajustage du zéro                                                                                                                |
| RAZ total partiel masse                  | r.A.0 MASSE              | Reset Mass Total             | Remise à zéro du total partiel en masse                                                                                                                     |
| RAZ total partiel vol                    | r.A.0 VOL                | Reset Volume Total           | Remise à zéro du total partiel en volume de liquide <sup>(1)</sup>                                                                                          |
| RAZ total vol de gaz<br>aux cond de base | r.A.0 GSV T              | Reset GSV Total              | Remise à zéro du total partiel en volume de gaz aux conditions de base <sup>(2)</sup>                                                                       |
| RAZ total vol à Tref API                 | r.A.0. TCORR             | Reset API Volume<br>Total    | Remise à zéro du total partiel en volume à température de référence API (3)                                                                                 |
| RAZ total vol à Tref DA                  | r.A.0 STD V              | Reset ED Volume Total        | Remise à zéro du total partiel en volume à température de référence DA <sup>(4)</sup>                                                                       |
| RAZ total masse nette<br>DA              | r.A.0 NET M              | Reset ED Net Mass<br>Total   | Remise à zéro du total partiel en masse nette de matière portée DA <sup>(4)</sup>                                                                           |
| RAZ total vol net DA                     | r.A.0 NET V              | Reset ED Net Volume<br>Total | Remise à zéro du total partiel en volume net de matière portée DA <sup>(4)</sup>                                                                            |
| RAZ de tous les totaux                   | r.A.0 TOUS               | Reset All Totals             | Remise à zéro de toutes les totalisations partielles                                                                                                        |
| Activ/blocage<br>totalisations           | ACT_STOP TOT             | Start/Stop All Totals        | Si la totalisation est activée, bloque la totalisation<br>Si la totalisation est bloquée, active la totalisation                                            |
| DA : Sélec courbe suivante               | INCr COURBE              | Increment ED Curve           | Change la courbe active de la fonctionnalité de densimétrie avancée (passe de la courbe 1 à la courbe 2, de la courbe 2 à la courbe 3, etc.) <sup>(4)</sup> |
| Lancer la validation                     | LANCER VALID             | Start Meter Verification     | Lancement d'un test de validation du débitmètre <sup>(5)</sup>                                                                                              |

#### Tableau 8-7 Actions pouvant être affectées à un événement

(1) Disponible uniquement si le paramètre Type de débit volumique est configuré sur Liquide.

(2) Disponible uniquement si le paramètre Type de débit volumique est configuré sur Volume de gaz aux cond. de base.

(3) Disponible uniquement si la fonctionnalité de mesurage des produits pétroliers est installée.

(4) Disponible uniquement si la fonctionnalité de densimétrie avancée est installée.

(5) Disponible uniquement avec la fonctionnalité de validation évoluée.

Manuel de configuration et d'utilisation

| Exemple | Configurer l'événement TOR 1 pour que tous les totalisateurs se bloquent lorsque le débit massique, en sens normal ou inverse, est inférieur à 60 kg/h ou supérieur à 600 kg/h. |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|         | Avec ProLink II :                                                                                                                                                               |  |  |  |
|         | 1. Sélectionner le kg/h comme unité de débit massique. Voir la section 6.3.1.                                                                                                   |  |  |  |
|         | 2. Configurer le paramètre Sens d'écoulement sur « Valeur absolue». Voir la section 8.5.                                                                                        |  |  |  |
|         | 3. Sélectionner l'événement TOR 1.                                                                                                                                              |  |  |  |
|         | 4. Configurer les paramètres suivants :                                                                                                                                         |  |  |  |
|         | <ul> <li>Type d'événement = Hors bande</li> </ul>                                                                                                                               |  |  |  |
|         | Grandeur = Débit massique                                                                                                                                                       |  |  |  |
|         | <ul> <li>Valeur seuil bas (A) = 60</li> </ul>                                                                                                                                   |  |  |  |
|         | <ul> <li>Valeur seuil haut (B) = 600</li> </ul>                                                                                                                                 |  |  |  |
|         | <ol> <li>Cliquer sur l'onglet Entrées TOR, ouvrir le menu déroulant Activ/blocage totalisations<br/>et sélectionner l'événement TOR 1.</li> </ol>                               |  |  |  |
|         | Avec les paramètres de bus PROFIBUS :                                                                                                                                           |  |  |  |
|         | 1. Sélectionner le kg/h comme unité de débit massique. Voir la section 6.3.1.                                                                                                   |  |  |  |
|         | <ol> <li>Configurer le paramètre Sens d'écoulement sur « Valeur absolue ». Voir la<br/>section 8.5.</li> </ol>                                                                  |  |  |  |
|         | 3. Dans le bloc Diagnostics (Slot 3), régler les index suivants :                                                                                                               |  |  |  |
|         | <ul> <li>Index de l'événement TOR (Index 4) = 0</li> </ul>                                                                                                                      |  |  |  |
|         | <ul> <li>Type de l'événement TOR (Index 5) = 3</li> </ul>                                                                                                                       |  |  |  |
|         | <ul> <li>Grandeur affectée à l'événement TOR (Index 8) = 0</li> </ul>                                                                                                           |  |  |  |
|         | <ul> <li>Valeur de seuil A de l'événement TOR (Index 6) = 60</li> </ul>                                                                                                         |  |  |  |
|         | <ul> <li>Valeur de seuil B de l'événement TOR (Index 7) = 600</li> </ul>                                                                                                        |  |  |  |
|         | <ul> <li>Code d'affectation de l'événement TOR (Index 83) = 57</li> </ul>                                                                                                       |  |  |  |
|         | <ul> <li>Code d'action de l'événement TOR (Index 82) = 9</li> </ul>                                                                                                             |  |  |  |

#### 8.6.2 Visualisation de l'état d'un événement

L'état des événements peut être visualisé de différentes façons :

- ProLink II affiche automatiquement l'état des événements sous l'onglet Information de la fenêtre Etat du transmetteur ainsi que dans la fenêtre Niveaux de sortie.
- Avec un hôte PROFIBUS doté de la description EDD de l'appareil, l'état des événements est affiché dans le menu Device > Discrete Events > Discrete events status (voir la figure C-6).
- Avec les paramètres de bus PROFIBUS, consulter l'index 9 du bloc Diagnostics (voir le tableau D-4).

Remarque : Le fichier GSD ne permet pas de visualiser l'état des événements TOR

## 8.6.3 Modification de la valeur de seuil d'un événement avec l'indicateur

Si l'événement 1 ou 2 est affecté à un total partiel en masse ou en volume, il est possible de modifier la valeur de seuil A de l'événement avec l'indicateur, à condition que :

- un total partiel en masse ou en volume (y compris les totaux des fonctionnalités de mesurage de produits pétroliers et de densimétrie avancée) soit déjà affecté à l'événement,
- le type d'événement soit configuré sur Seuil haut ou Seuil bas, et
- l'indicateur soit configuré pour afficher le total partiel en masse ou en volume (voir la section 8.9.3).
- le transmetteur soit configuré pour permettre la remise à zéro des totalisateurs partiels à l'aide de l'indicateur (voir la section 8.9.5).

Dans ce cas, procéder comme suit pour modifier la valeur de seuil de l'événement avec l'indicateur :

- 1. Consulter l'organigramme de la figure 7-3. Appuyer sur **Scroll** pour afficher le total partiel désiré à l'écran.
- 2. Appuyer sur la touche **SELECT**.
- 3. Appuyer sur **SCROLL** pour afficher l'écran VS-E1 (pour l'événement 1) ou VS-E2 (pour l'événement 2), puis appuyer sur **SELECT** pour saisir la nouvelle valeur de seuil. Voir la section 3.5.5 pour les instructions concernant la saisie des valeurs à virgule flottante sur l'indicateur.

## 8.7 Limites et durée autorisée d'écoulement biphasique

Un *écoulement biphasique* se produit lorsque des poches d'air ou de gaz se forment dans un écoulement liquide, ou lorsque des poches liquides se forment dans un écoulement gazeux. Ce phénomène peut fausser l'indication de masse volumique du débitmètre. La programmation de limites et d'une durée autorisée d'écoulement biphasique permet non seulement de limiter l'impact des écoulements biphasiques sur les mesures, mais aussi d'alerter l'opérateur afin qu'il puisse remédier au problème.

Trois paramètres permettent de gérer la présence d'écoulements biphasiques :

- La *limite basse d'écoulement biphasique* représente le point le plus bas de la masse volumique du procédé en dessous duquel le transmetteur indique la présence d'un écoulement biphasique. Ce point correspond généralement à la limite inférieure de la plage de masse volumique normale du procédé. La valeur par défaut est 0,0 g/cm<sup>3</sup>; la valeur programmée doit être comprise entre 0,0 et 10,0 g/cm<sup>3</sup>.
- La *limite haute d'écoulement biphasique* représente le point le plus haut de la masse volumique du procédé en dessus duquel le transmetteur indique la présence d'un écoulement biphasique. Ce point correspond généralement à la limite supérieure de la plage de masse volumique normale du procédé. La valeur par défaut est 5,0 g/cm<sup>3</sup>; la valeur programmée doit être comprise entre 0,0 et 10,0 g/cm<sup>3</sup>.
- La *durée d'écoulement biphasique* représente le délai pendant lequel le transmetteur, lorsqu'il détecte un écoulement biphasique (masse volumique *en dehors* des limites fixées), attend le retour à un écoulement normal (masse volumique *à l'intérieur* des limites fixées). La valeur par défaut est **0,0 s** ; la valeur programmée doit être comprise entre **0,0 et 60,0 s**.

Si le transmetteur détecte un écoulement biphasique :

- Une alarme d'écoulement biphasique est immédiatement générée.
- Pendant la durée d'écoulement biphasique programmée, le transmetteur maintient la dernière valeur de débit massique mesurée avant l'apparition de l'écoulement biphasique, quel que soit le débit massique mesuré par le capteur. Cette valeur sera la valeur de débit massique indiquée par le transmetteur, et tous les calculs internes qui incluent le débit massique utiliseront cette valeur.
- Si l'écoulement biphasique n'a pas disparu à la fin de la durée d'écoulement biphasique programmée, le transmetteur force le débit massique à zéro, quel que soit le débit massique mesuré par le capteur. La valeur de débit massique indiquée par le transmetteur est **0** et tous les calculs internes qui incluent le débit massique utiliseront **0**.
- Lorsque la masse volumique du procédé revient dans les limites d'écoulement biphasique programmées, l'alarme d'écoulement biphasique disparaît et le débit massique mesuré est à nouveau pris en compte par le transmetteur.

Pour configurer les paramètres d'écoulement biphasique :

- avec ProLink II, cliquer sur l'onglet Masse volumique de la fenêtre Configuration. Voir la figure C-2.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-8 et configurer les paramètres Slug low limit (limite basse d'écoulement biphasique), Slug high limit (limite haute d'écoulement biphasique) et Slug duration (durée d'écoulement biphasique).
- avec les paramètres de bus PROFIBUS, configurer les index 1, 2 et 3 du bloc Diagnostics (voir le tableau D-4).

#### Remarque : Ces paramètres ne peuvent pas être configurés avec l'indicateur.

Remarque : Les limites d'écoulement biphasique doivent être spécifiées en g/cm<sup>3</sup>, même si l'unité de mesure de la masse volumique est différente. La durée d'écoulement biphasique doit être spécifiée en secondes. Le fait d'augmenter la limite basse ou de diminuer la limite haute d'écoulement biphasique augmentera le risque de détection d'un écoulement biphasique. Inversement, le fait de diminuer la limite basse ou d'augmenter la limite haute d'écoulement biphasique diminuera le risque de détection d'un écoulement biphasique diminuera le risque de détection d'un écoulement biphasique est réglée sur 0, le débit massique est forcé à zéro dès qu'un écoulement biphasique est détecté.

#### 8.8 Configuration du niveau de gravité des alarmes

Le transmetteur Modèle 2400S peut indiquer la présence d'un défaut de trois façons :

- en activant le bit d'état « alarme active »
- en enregistrant l'alarme dans l'historique des alarmes
- en forçant les grandeurs transmises par communication numérique à leur valeur de défaut (voir la section 8.10.7)

Le *niveau de gravité* des alarmes détermine quelles méthodes d'indication sont utilisées par le transmetteur lorsqu'une alarme particulière se produit, comme décrit au tableau 8-8. Pour plus de détails sur la gestion des alarmes, voir la section 7.7.

|                   | Action du transmetteur forsque raianne apparait |                                           |                                                           |  |  |
|-------------------|-------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|--|--|
| Niveau de gravité | Bit « alarme active » activé ?                  | Alarme enregistrée dans<br>l'historique ? | Forçage valeur de défaut comm. numérique ? <sup>(1)</sup> |  |  |
| Défaut            | Oui                                             | Oui                                       | Oui                                                       |  |  |
| Informationnel    | Oui                                             | Oui                                       | Non                                                       |  |  |
| Ignorer           | Oui                                             | Non                                       | Non                                                       |  |  |

Action du transmottour largque l'alarma apparaît

#### Tableau 8-8 Méthodes d'indication des alarmes en fonction de leur niveau de gravité

(1) Pour certaines alarmes, les grandeurs transmises par communication numérique ne seront pas forcées à leur valeur de défaut tant que la temporisation d'indication des défaut n'aura pas atteint la fin du délai d'attente. Pour configurer la temporisation d'indication des défauts, voir la section 8.10.8. Les autres méthodes d'indication des alarmes indiquent la présence de ces alarmes dès qu'elles sont détectées. Le tableau 8-9 stipule quelles alarmes sont affectées par la temporisation d'indication des défauts.

Le niveau de gravité de certaines alarmes peut être modifié. Par exemple :

- Le niveau de gravité configuré par défaut pour l'alarme A020 (coefficients d'étalonnage absents) est **Défaut**, mais il est possible de le reconfigurer sur **Informationnel** ou **Ignorer**.
- Le niveau de gravité configuré par défaut pour l'alarme A102 (excitation hors limites) est **Informationnel**, mais il est possible de le reconfigurer sur **Ignorer** ou **Défaut**.

Le tableau 8-9 indique le niveau de gravité configuré par défaut pour toutes les alarmes. Pour plus d'informations sur les alarmes, y compris des suggestions sur les causes et les remèdes possibles, voir le tableau 11-2.

Pour configurer le niveau de gravité des alarmes :

- avec ProLink II, voir la figure C-3.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-9. Accéder au menu **Configuration Parameters > Alarm > Alarm status parameters** et :
  - a. spécifier le code d'indexage de l'alarme sous Alarm n index.
  - b. spécifier le niveau de gravité de l'alarme sous Alarm n severity.
- avec les paramètres de bus PROFIBUS, voir le tableau D-4 (bloc Diagnostics) et :
  - a. spécifier le code d'indexage de l'alarme (index 20).
  - b. spécifier le niveau de gravité de l'alarme (index 21).

Remarque : Le niveau de gravité des alarmes ne peut pas être configuré avec l'indicateur.

#### Tableau 8-9 Niveau de gravité des alarmes

| Code de<br>l'alarme | Message sur l'hôte PROFIBUS (EDD)         | Niveau de |               | Affectée par la temporisation |
|---------------------|-------------------------------------------|-----------|---------------|-------------------------------|
|                     | Message de ProLink II                     | défaut    | Configurable? | des défauts ?                 |
| A001                | EEprom Checksum Error (Core Processor)    | Défaut    | Non           | Non                           |
|                     | Erreur Total de contrôle EEPROM (PP)      |           |               |                               |
| A002                | RAM Test Error (Core Processor)           | Défaut    | Non           | Non                           |
|                     | Erreur RAM (PP)                           |           |               |                               |
| A003                | Sensor Not Responding (No Tube Interrupt) | Défaut    | Oui           | Oui                           |
|                     | Panne du capteur                          |           |               |                               |
| A004                | Temperature sensor out of range           | Défaut    | Non           | Oui                           |
|                     | Panne sonde de température                |           |               |                               |

## Tableau 8-9 Niveau de gravité des alarmes suite

| Code de             | Message sur l'hôte PROFIBUS (EDD)                   | Niveau de<br>gravité par<br>défaut | Configurable? | Affectée par la<br>temporisation<br>des défauts ? |
|---------------------|-----------------------------------------------------|------------------------------------|---------------|---------------------------------------------------|
| l'alarme            | Message de ProLink II                               |                                    |               |                                                   |
| A005                | Input Over-Range                                    | Défaut                             | Oui           | Oui                                               |
|                     | Entrée hors limites                                 | -                                  |               |                                                   |
| A006                | Transmitter Not Characterized                       | Défaut                             | Oui           | Non                                               |
|                     | Non configuré                                       | -                                  |               |                                                   |
| A008                | Density Outside Limits                              | Défaut                             | Oui           | Oui                                               |
|                     | Masse volumique hors limites                        | -                                  |               |                                                   |
| A009                | Transmitter Initializing/Warming Up                 | Ignorer                            | Oui           | Non                                               |
|                     | Initialisation du transmetteur                      | -                                  |               |                                                   |
| A010                | Calibration Failure                                 | Défaut                             | Non           | Non                                               |
|                     | Echec de l'étalonnage                               | -                                  |               |                                                   |
| A011                | Excess Calibration Correction, Zero too Low         | Défaut                             | Oui           | Non                                               |
|                     | Débit < 0 excessif                                  | •                                  |               |                                                   |
| A012                | Excess Calibration Correction, Zero too High        | Défaut                             | Oui           | Non                                               |
|                     | Débit > 0 excessif                                  | •                                  |               |                                                   |
| A013                | Process too Noisy to Perform Auto Zero              | Défaut                             | Oui           | Non                                               |
|                     | Débit trop instable                                 | •                                  |               |                                                   |
| A014                | Transmitter Failed                                  | Défaut                             | Non           | Non                                               |
|                     | Panne du transmetteur                               | •                                  |               |                                                   |
| A016                | Line RTD Temperature Out-Of-Range                   | Défaut                             | Oui           | Oui                                               |
|                     | Temp Pt100 capteur hors limites                     |                                    |               |                                                   |
| A017                | Meter RTD Temperature Out-Of-Range                  | Défaut                             | Oui           | Oui                                               |
|                     | Temp Pt100 Série T hors limites                     |                                    |               |                                                   |
| A020                | Calibration Factors Unentered                       | Défaut                             | Oui           | Non                                               |
|                     | Coefficient d'étalonnage absent                     | •                                  |               |                                                   |
| A021                | Unrecognized/Unentered Sensor Type                  | Défaut                             | Non           | Non                                               |
|                     | Type de capteur incorrect (K1)                      |                                    |               |                                                   |
| A029                | Internal Communication Failure                      | Défaut                             | Non           | Non                                               |
|                     | Défaut de communication PIC/carte                   | -                                  |               |                                                   |
| A030                | Hardware/Software Incompatible                      | Défaut                             | Non           | Non                                               |
|                     | Type de carte incorrect                             | -                                  |               |                                                   |
| A031                | Undefined                                           | Défaut                             | Non           | Non                                               |
|                     | Tension d'alimentation trop faible                  | -                                  |               |                                                   |
| A032 <sup>(1)</sup> | Meter Verification Fault Alarm                      | Défaut                             | Non           | Non                                               |
|                     | Validation débitmètre / sorties = niveau de forçage | -                                  |               |                                                   |
| A032 <sup>(2)</sup> | Outputs Fixed during Meter Verification             | Variable <sup>(3)</sup>            | Non           | Non                                               |
|                     | Validation en cours avec sorties figées             | <u>.</u>                           |               |                                                   |
| A033                | Sensor OK, Tubes Stopped by Process                 | Défaut                             | Oui           | Oui                                               |
|                     | Capteur OK/Tubes bloqués par le procédé             |                                    |               |                                                   |
### Tableau 8-9 Niveau de gravité des alarmes suite

| Code de             | Message sur l'hôte PROFIBUS (EDD)                  | Niveau de<br>gravité par |                    | Affectée par la temporisation |  |
|---------------------|----------------------------------------------------|--------------------------|--------------------|-------------------------------|--|
| l'alarme            | Message de ProLink II                              | défaut                   | Configurable?      | des défauts ?                 |  |
| A034 <sup>(2)</sup> | Meter Verification Failed                          | Informationnel           | Oui                | Non                           |  |
|                     | Echec de validation du débitmètre                  | -                        |                    |                               |  |
| A035 <sup>(2)</sup> | Meter Verification Aborted                         | Informationnel           | Oui                | Non                           |  |
|                     | Validation du débitmètre interrompue               | -                        |                    |                               |  |
| A102                | Drive Over-Range/Partially Full Tube               | Informationnel           | Oui                | Non                           |  |
|                     | Excitation hors limites/Tube non rempli            | -                        |                    |                               |  |
| A104                | Calibration-In-Progress                            | Informationnel           | Oui <sup>(4)</sup> | Non                           |  |
|                     | Etalonnage en cours                                | -                        |                    |                               |  |
| A105                | Slug Flow                                          | Informationnel           | Oui                | Non                           |  |
|                     | Ecoulement biphasique                              | -                        |                    |                               |  |
| A107                | Power Reset Occurred                               | Informationnel           | Oui                | Non                           |  |
|                     | Coupure d'alimentation                             | -                        |                    |                               |  |
| A116                | API Temperature Out-of-Limits                      | Informationnel           | Oui                | Non                           |  |
|                     | AP I : Température hors limites                    | -                        |                    |                               |  |
| A117                | API Density Out-of-Limits                          | Informationnel           | Oui                | Non                           |  |
|                     | API : Masse volumique hors limites                 | -                        |                    |                               |  |
| A120                | ED: Unable to fit curve data                       | Informationnel           | Non                | Non                           |  |
|                     | DA : Mise en équation impossible                   | -                        |                    |                               |  |
| A121                | ED: Extrapolation alarm                            | Informationnel           | Oui                | Non                           |  |
|                     | DA : Alarme d'extrapolation                        | -                        |                    |                               |  |
| A131 <sup>(1)</sup> | Meter Verification Info Alarm                      | Informationnel           | Oui                | Non                           |  |
|                     | Validation débitmètre / sorties = dern val mesurée | -                        |                    |                               |  |
| A131 <sup>(2)</sup> | Meter Verification in Progress                     | Informationnel           | Oui                | Non                           |  |
|                     | Validation débitmètre en cours                     | -                        |                    |                               |  |
| A132                | Simulation Mode Active                             | Informationnel           | Oui                | Non                           |  |
|                     | Mode de simulation activé                          | -                        |                    |                               |  |
| A133                | PIC UI EEPROM Error                                | Informationnel           | Oui                | Non                           |  |
|                     | Erreur PIC UI EEPROM                               |                          |                    |                               |  |

(1) Cette alarme s'applique uniquement aux transmetteurs dotés de la version d'origine de la fonctionnalité de validation du débitmètre.

(2) Cette alarme s'applique uniquement aux transmetteurs dotés de la version évoluée de la fonctionnalité de validation du débitmètre.
 (3) Si les sorties sont réglées sur Dernière Valeur Mesurée, le niveau de gravité est Informationnel. Si les sorties sont réglées sur Niveau

de défaut, le niveau de gravité est Défaut.

(4) Peut être réglé sur Informationnel ou Ignorer, mais ne peut pas être réglé sur Défaut.

# 8.9 Configuration de l'indicateur

Si le transmetteur est équipé d'un indicateur, plusieurs paramètres permettent de contrôler les fonctionnalités de l'indicateur.

# 8.9.1 Période de rafraîchissement

La période de rafraîchissement détermine la fréquence à laquelle les données affichées sur l'indicateur sont rafraîchies. La valeur par défaut est **200 millisecondes** ; la plage réglable est de **100** à **10000 ms** (10 secondes).

Pour configurer la période de rafraîchissement de l'affichage :

- avec ProLink II, voir la figure C-3.
- avec l'indicateur, voir la figure C-15.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10 et configurer le paramètre **Display > Display parameters > Display update period**.
- avec les paramètres de bus PROFIBUS, configurer l'index 31 du bloc Indicateur local (voir le tableau D-6).

## 8.9.2 Langue

L'indicateur peut être configuré pour afficher les données et les menus dans les langues suivantes :

- Anglais
- Français
- Allemand
- Espagnol

Pour sélectionner la langue de l'indicateur :

- avec ProLink II, voir la figure C-3.
- avec l'indicateur, voir la figure C-15.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10 et configurer le paramètre **Display > Display parameters > Display language**.
- avec les paramètres de bus PROFIBUS, configurer l'index 33 du bloc Indicateur local (voir le tableau D-6).

### 8.9.3 Sélection et résolution des grandeurs à afficher

Il est possible de faire défiler jusqu'à 15 grandeurs mesurées différentes sur l'écran de l'indicateur. L'utilisateur peut choisir les grandeurs à afficher ainsi que l'ordre dans lequel elles apparaîtront à l'écran. Il est aussi possible de spécifier la résolution de l'affichage individuellement pour chaque grandeur. La résolution de l'affichage détermine le nombre de chiffres qui sont affichés à droite du point décimal. Ce nombre peut être réglé sur toute valeur comprise entre **0** et **5**.

Pour sélectionner les grandeurs à afficher et configurer la résolution de l'affichage :

- avec ProLink II, voir la figure C-3.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10 et :
  - a. pour spécifier les grandeurs à afficher, configurer les variables d'affichage sous Display > Display parameters > Display variable 1–15.
  - b. pour spécifier la résolution désirée pour chaque grandeur, accéder au menu Display > Display parameters > Display precision. Pour chaque grandeur, sélectionner la grandeur à l'aide du paramètre LDO process variable et choisir la résolution désirée à l'aide du paramètre Number of Decimals.
- avec les paramètres de bus PROFIBUS, voir le tableau D-6 (bloc Indicateur local) et :
  - a. spécifier les grandeurs à afficher à l'aide des index 16 à 30.
  - b. spécifier la résolution désirée pour chaque grandeur à l'aide des index 14 et 15.

### Remarque : Ces paramètres ne peuvent pas être configurés avec l'indicateur.

Le tableau 8-10 est un exemple de configuration de l'affichage des grandeurs mesurées. Noter qu'il est possible de répéter plusieurs fois la même grandeur et que l'option « Néant » permet de supprimer la visualisation de la variable d'affichage correspondante (sauf pour la variable 1 qui ne peut pas être désactivée). Pour la description des codes utilisés pour l'affichage des grandeurs mesurées sur l'indicateur, voir l'annexe E.

| Variable d'affichage      | Grandeur mesurée              |  |
|---------------------------|-------------------------------|--|
| Variable 1 <sup>(1)</sup> | Débit massique                |  |
| Variable 2                | Total partiel en masse        |  |
| Variable 3                | Débit volumique               |  |
| Variable 4                | Total partiel en volume       |  |
| Variable 5                | Masse volumique               |  |
| Variable 6                | Température                   |  |
| Variable 7                | Signal externe de température |  |
| Variable 8                | Signal externe de pression    |  |
| Variable 9                | Débit massique                |  |
| Variable 10               | Néant                         |  |
| Variable 11               | Néant                         |  |
| Variable 12               | Néant                         |  |
| Variable 13               | Néant                         |  |
| Variable 14               | Néant                         |  |
| Variable 15               | Néant                         |  |

### Tableau 8-10 Exemple de configuration de l'affichage des grandeurs mesurées

(1) La variable d'affichage 1 ne peut pas être réglée sur l'option « Néant ».

## 8.9.4 Rétro-éclairage de l'indicateur

L'éclairage arrière de l'indicateur peut être allumé ou éteint. Pour allumer ou éteindre le rétro-éclairage :

- avec ProLink II, voir la figure C-3.
- avec l'indicateur, voir la figure C-15.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10 et configurer le paramètre **Display > Display options > Display backlight on/off**.
- avec les paramètres de bus PROFIBUS, configurer l'index 13 du bloc Indicateur local (voir le tableau D-6).

En outre, il est possible de régler l'intensité du rétro-éclairage à l'aide de ProLink II ou d'un hôte PROFIBUS. Spécifier une valeur entre **0** et **63** : plus la valeur est élevée, plus l'éclairage est intense. Pour régler l'intensité du rétro-éclairage :

- avec ProLink II, voir la figure C-3.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10 et configurer le paramètre **Display > Display parameters > Display backlight intensity**.
- avec les paramètres de bus PROFIBUS, configurer l'index 32 du bloc Indicateur local (voir le tableau D-6).

### 8.9.5 Mise en/hors fonction des fonctionnalités de l'indicateur

Le tableau 8-11 liste les paramètres qui contrôlent les fonctionnalités de l'indicateur et décrit leur effet lorsqu'ils sont activés ou désactivés.

| Paramètre                                                                   | Activé                                                                                                      | Désactivé                                                                                                                 |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Activation/blocage totalisations<br>(Display start/stop totalizers)         | L'indicateur peut être utilisé pour activer ou<br>bloquer les totalisateurs.                                | Il n'est pas possible d'activer ou de<br>bloquer les totalisateurs à l'aide de<br>l'indicateur.                           |
| R.A.Z. totalisations<br>(Display totalizer reset)                           | L'indicateur peut être utilisé pour remettre<br>à zéro les totalisateurs partiels en masse<br>et en volume. | Il n'est pas possible de remettre à zéro<br>les totalisateurs partiels en masse et en<br>volume à l'aide de l'indicateur. |
| Défilement automatique <sup>(1)</sup><br>(Display auto scroll)              | Les grandeurs sélectionnées défilent<br>automatiquement à l'écran à une vitesse<br>réglable.                | L'opérateur doit appuyer sur le bouton<br><b>Scroll</b> pour faire défiler les grandeurs à<br>l'écran.                    |
| Accès au menu « off-line »<br>(Display offline menu)                        | L'opérateur a accès au menu de maintenance (ajustage du zéro, simulation et configuration).                 | L'opérateur n'a pas accès au menu de maintenance de l'indicateur.                                                         |
| Mot de passe menu « off-line » <sup>(2)</sup><br>(Display offline password) | L'opérateur doit entrer un mot de passe<br>pour accéder au menu de maintenance.                             | L'opérateur peut accéder au menu de<br>maintenance sans entrer de mot de<br>passe.                                        |
| Accès au menu d'alarmes<br>(Display alarm menu)                             | L'opérateur a accès au menu de contrôle<br>des alarmes (visualisation et acquit des<br>alarmes).            | L'opérateur n'a pas accès au menu de contrôle des alarmes.                                                                |
| Acquit général<br>(Display ack all alarms)                                  | L'opérateur peut acquitter toutes les alarmes en même temps avec l'indicateur.                              | L'opérateur doit acquitter chaque<br>alarme séparément.                                                                   |

### Tableau 8-11 Fonctionnalités de l'indicateur

(1) Si cette fonctionnalité est activée, la vitesse de défilement peut être réglée.

(2) Si cette fonctionnalité est activée, le mot de passe de l'indicateur doit également être configuré.

Pour activer ou désactiver ces options :

- avec ProLink II, voir la figure C-3.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10 pour accéder au menu **Display > Display options** et activer ou désactiver les options décrites au tableau 8-11.
- avec les paramètres de bus PROFIBUS, configurer les index 4–12 du bloc Indicateur local (voir le tableau D-6).
- avec l'indicateur, voir la figure C-15.

Noter les points suivants :

- Si l'indicateur est utilisé pour désactiver l'accès au menu de maintenance, le menu de maintenance disparaîtra à la sortie du menu et il ne sera pas possible de le réactiver avec l'indicateur. Pour réactiver l'accès au menu de maintenance, il faudra utiliser ProLink II ou un hôte PROFIBUS.
- Lorsque la fonctionnalité de défilement automatique est activée, la vitesse de défilement définit le temps d'affichage, en secondes, de chaque grandeur configurée pour s'afficher sur l'indicateur (voir la section 8.9.3). Par exemple, si la vitesse de défilement est réglée sur **10**, chaque grandeur restera affichée pendant 10 secondes.
- Le mot de passe permet d'empêcher l'accès au menu de maintenance aux personnes non autorisées. Le mot de passe est formé de quatre chiffres au maximum.
- Si la configuration de l'indicateur est effectuée avec l'indicateur :
  - la fonctionnalité de défilement automatique doit d'abord être activée pour pouvoir configurer la vitesse de défilement.
  - le verrouillage par mot de passe du menu de maintenance doit d'abord être activé pour pouvoir configurer le mot de passe.

### 8.10 Configuration de la communication numérique

Les paramètres de communication numérique contrôlent la façon dont le transmetteur communique avec les appareils externes. Les paramètres suivants peuvent être configurés :

- Adresse de nœud PROFIBUS
- Verrouillage du port infrarouge
- Adresse Modbus
- Support Modbus ASCII
- Ordre des octets à virgule flottante
- Délai supplémentaire de réponse numérique
- Forçage sur défaut des valeurs transmises par voie numérique
- Temporisation du forçage sur défaut

# 8.10.1 Adresse de nœud PROFIBUS

L'adresse de nœud PROFIBUS-DP de l'appareil peut être réglée manuellement à l'aide des sélecteurs rotatifs du transmetteur ou par voie logicielle à partir d'un hôte PROFIBUS.

Remarque : Il n'est pas possible de régler l'adresse de nœud avec ProLink II ou les menus de l'indicateur.

Le transmetteur fonctionne soit en mode d'adressage matériel, soit en mode d'adressage logiciel :

- En mode d'adressage matériel, les sélecteurs de l'adresse sont réglés sur une valeur comprise entre **0** et **126**, et la position des sélecteurs détermine l'adresse de nœud du transmetteur. Dans ce cas, le voyant S/W ADDR qui se trouve sur la face avant du transmetteur est éteint (voir la figure 3-1ou 3-2).
- En mode d'adressage logiciel, les sélecteurs de l'adresse sont réglés sur une valeur supérieure ou égale à **126**, et l'adresse de nœud du transmetteur est réglée via un télégramme Set Slave Address envoyé par l'hôte. Dans ce cas, la position des sélecteurs de l'adresse ne correspond pas nécessairement à l'adresse nœud du transmetteur. Le voyant S/W ADDR du transmetteur est alors rouge ou vert :
  - Rouge : le transmetteur n'a pas reçu le télégramme Set Slave Address.
  - Vert : le transmetteur a reçu le télégramme Set Slave Address et a reconnu l'adresse.

L'adresse de nœud par défaut du transmetteur Modèle 2400S DP est **126**, ce qui permet d'utiliser au choix l'adressage matériel ou logiciel.

Pour régler l'adresse de nœud avec les sélecteurs rotatifs du transmetteur :

- 1. Enlever le couvercle du transmetteur comme décrit à la section 3.3.
- 2. Identifier les trois sélecteurs de réglage de l'adresse sur le module de l'interface opérateur du transmetteur (voir la figure 3-10u 3-2).
- 3. Pour régler les sélecteurs, insérer une petite lame dans l'encoche des sélecteurs et tourner la flèche dans la position désirée. Par exemple, pour régler l'adresse de nœud sur **60** :
  - a. Tourner le sélecteur de gauche pour que la flèche pointe sur le **0**.
  - b. Tourner le sélecteur central pour que la flèche pointe sur le 6.
  - c. Tourner le sélecteur de droite pour que la flèche pointe sur le **0**.
- 4. Couper l'alimentation du transmetteur et le remettre sous tension. La nouvelle adresse de nœud est alors reconnue par le transmetteur, mais pas encore par l'hôte. Il faut mettre à jour la configuration de l'hôte pour qu'il puisse reconnaître la nouvelle adresse.

Pour régler l'adresse de nœud par voie logicielle :

- 1. S'assurer que le transmetteur est en mode d'adressage logiciel (le voyant S/W ADDR doit être allumé rouge ou vert). S'il est en mode d'adressage logiciel, aller directement à l'étape 2. S'il est en mode d'adressage matériel (si le voyant S/W ADDR est éteint) :
  - a. Régler les sélecteurs de réglage de l'adresse sur toute valeur supérieure ou égale à 126.
  - b. Couper l'alimentation du transmetteur et le remettre sous tension. Le transmetteur est alors en mode d'adressage logiciel, et le voyant S/W ADDR est allumé en rouge.
- 2. Envoyer un télégramme Set Slave Address avec l'hôte. Il n'est pas nécessaire de mettre le transmetteur hors tension pour activer la nouvelle adresse. La nouvelle adresse de nœud est alors reconnue par le transmetteur et par l'hôte, et le voyant S/W ADDR du transmetteur s'allume en vert.

Pour retourner l'adresse de nœud à 126 (parfois nécessaire pour la maintenance) :

- Le télégramme Set Slave Address ne permettant pas de régler l'adresse de nœud sur 126, il faut utiliser les sélecteurs rotatifs du transmetteur. Si le transmetteur est déjà en mode d'adressage matériel (le voyant S\W ADDR est éteint), aller directement à l'étape 2. S'il est en mode d'adressage logiciel (si le voyant S/W ADDR est rouge ou vert) :
  - a. Régler les sélecteurs de réglage de l'adresse sur toute valeur entre 0 et 125 (p.e. 100).
  - b. Couper l'alimentation du transmetteur et le remettre sous tension. Le transmetteur est alors en mode d'adressage matériel, et le voyant S/W ADDR est éteint.

- 2. Régler les sélecteurs de réglage de l'adresse sur **126**.
- 3. Couper l'alimentation du transmetteur et le remettre sous tension.

## 8.10.2 Verrouillage du port infrarouge

Le port infrarouge (IrDA) de l'indicateur peut être verrouillé ou déverrouillé. S'il est déverrouillé, il peut être configuré pour un accès en lecture seule ou en lecture/écriture.

Pour verrouiller ou déverrouiller le port infrarouge :

- avec ProLink II, voir la figure C-2.
- avec l'indicateur, voir la figure C-15.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10 et activer ou désactiver l'option Device > Digital comm settings > Enable IrDA communication.
- avec les paramètres de bus PROFIBUS, configurer l'index 34 du bloc Indicateur local (voir le tableau D-6).

Pour configurer le port infrarouge pour un accès en lecture seule ou en lecture/écriture

- avec ProLink II, voir la figure C-2.
- avec l'indicateur, voir la figure C-15.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10 et activer ou désactiver l'option Device > Digital comm settings > Enable write protect IrDA port.
- avec les paramètres de bus PROFIBUS, configurer l'index 35 du bloc Indicateur local (voir le tableau D-6).

### 8.10.3 Adresse Modbus

Remarque : L'adresse Modbus n'est utilisée que pour connecter un outil Modbus au port service du transmetteur. Une fois la mise en service initiale terminée, les connexions au port service ne sont en principe requises que pour diagnostiquer les pannes du débitmètre ou pour effectuer des procédures de maintenance spécifiques telles que l'étalonnage en température. ProLink II est généralement connecté au transmetteur en mode Port service ; dans ce cas ProLink II utilise l'adresse standard du port service plutôt que l'adresse Modbus configurée. Voir la section 4.4 pour plus d'informations.

Les adresses Modbus valides dépendent de la configuration du support pour la communication Modbus ASCII (voir la section 8.10.4). Seules les adresses Modbus suivantes sont valides :

- Si le support pour la communication Modbus ASCII est activé : 1–15, 32–47, 64–79, 96–110
- Si le support pour la communication Modbus ASCII est désactivé : 0–127

Pour configurer l'adresse Modbus :

- avec ProLink II, voir la figure C-2.
- avec l'indicateur, voir la figure C-15.

Remarque : Ce paramètre ne peut pas être configuré via le bus de terrain PROFIBUS.

## 8.10.4 support Modbus ASCII

Lorsque le support pour la communication Modbus ASCII est activé, le port service accepte aussi bien les connexions de type Modbus ASCII que de type Modbus RTU. Lorsque le support pour la communication Modbus ASCII est désactivé, le port service accepte uniquement les connexions de type Modbus RTU. Les connexions de type Modbus ASCII ne sont pas possibles.

La désactivation du support pour la communication Modbus ASCII permet de disposer d'un plus grand choix d'adresses Modbus sur le port service si la connexion est de type Modbus RTU.

Pour activer ou désactiver le support pour la communication Modbus ASCII :

- avec ProLink II, voir la figure C-2.
- avec l'indicateur, voir la figure C-15.

Remarque : Ce paramètre ne peut pas être configuré via le bus de terrain PROFIBUS.

### 8.10.5 Ordre des octets à virgule flottante

*Remarque : Ce paramètre concerne uniquement la communication Modbus. Il n'a pas d'impact sur la communication PROFIBUS.* 

Les valeurs à virgule flottante sont transmises sur quatre octets. Le contenu de ces octets est décrit au tableau 8-12.

| Octet | Bits    | Définitions                  |
|-------|---------|------------------------------|
| 1     | SEEEEEE | S = Signe<br>E = Exposant    |
| 2     | ЕММММММ | E = Exposant<br>M = Mantisse |
| 3     | МММММММ | M = Mantisse                 |
| 4     | МММММММ | M = Mantisse                 |

Tableau 8-12 Contenu des octets dans les commandes et les réponses Modbus

L'ordre des octets du transmetteur est réglé par défaut sur **3–4 1–2**. Si nécessaire, modifier ce paramètre pour qu'il corresponde à l'ordre des octets du système de contrôle-commande ou de l'automate.

Pour configurer l'ordre des octets avec ProLink II, voir la figure C-2.

Remarque : Ce paramètre ne peut pas être configuré via l'indicateur ou le bus de terrain PROFIBUS.

### 8.10.6 Délai supplémentaire de réponse numérique

*Remarque : Ce paramètre concerne uniquement la communication Modbus. Il n'a pas d'impact sur la communication PROFIBUS.* 

Certains hôtes ou automates sont plus lents que le transmetteur. Pour synchroniser la communication Modbus avec ce type d'appareil, il est possible de configurer un délai de réponse supplémentaire qui s'ajoute à chaque réponse que le transmetteur envoie vers l'hôte.

L'unité de base de ce délai représente 2/3 du temps de transmission d'un caractère tel que calculé à partir de la valeur actuelle de la vitesse de transmission du port série et des paramètres de communication configurés. Cette unité de base est multipliée par la valeur configurée pour obtenir le délai supplémentaire désiré. La valeur entrée doit être comprise entre 1 et 255.

Ontion

Pour configurer le délai supplémentaire de réponse numérique avec ProLink II, voir la figure C-2. *Remarque : Ce paramètre ne peut pas être configuré via l'indicateur ou le bus de terrain PROFIBUS.* 

### 8.10.7 Forçage sur défaut des valeurs transmises par voie numérique

Remarque : Ce paramètre affecte les communications PROFIBUS et Modbus.

Ce paramètre détermine la valeur à laquelle les grandeurs mesurées transmises par voie numérique seront forcées en cas de détection d'un défaut. Le tableau 8-13 décrit les options de forçage disponibles.

Remarque : L'option de forçage des valeurs transmises par communication numérique n'a pas d'impact sur le bit d'état des alarmes. Par exemple, si la valeur de forçage sur défaut est réglée sur Néant, les bits d'état des alarmes seront tout de même activés si un défaut est détecté. Voir la section 7.7 pour plus d'informations.

### Tableau 8-13 Options de forçage sur défaut des valeurs transmises par communication numérique

| Ορι                 |                |                                                                                                                                                                                                                                                                                             |
|---------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Label de ProLink II | Label EDD      | Définition                                                                                                                                                                                                                                                                                  |
| Valeur haute        | Upscale        | <ul> <li>Les grandeurs transmises indiquent que valeur se trouve au-dessus<br/>de la portée limite supérieure du capteur.</li> <li>Les totalisateurs ne sont plus incrémentés.</li> </ul>                                                                                                   |
| Valeur basse        | Downscale      | <ul> <li>Les grandeurs mesurées indiquent que la valeur est inférieure à la<br/>portée limite inférieure du capteur.</li> <li>Les totalisateurs ne sont plus incrémentés.</li> </ul>                                                                                                        |
| Signaux à zéro      | IntZero-All 0  | <ul> <li>Les indications de débit et de masse volumique sont forcées à zéro.</li> <li>Les indications de température sont forcées à 0 °C, ou à la valeur<br/>équivalente si une autre unité est utilisée (par ex. 32 °F).</li> <li>Les totalisateurs ne sont plus incrémentés.</li> </ul>   |
| IEEE NaN            | Not-a-Number   | <ul> <li>Les grandeurs mesurées sont forcées à la valeur IEEE<br/>Not-a-Number.</li> <li>Le niveau d'excitation continue d'être transmis tel que mesuré</li> <li>Les Scaled Integers Modbus transmettent la valeur Max Int.</li> <li>Les totalisateurs ne sont plus incrémentés.</li> </ul> |
| Débit nul           | IntZero-Flow 0 | <ul> <li>Les indications de débit sont forcées à zéro.</li> <li>Les autres grandeurs sont transmises telles que mesurées.</li> <li>Les totalisateurs ne sont plus incrémentés.</li> </ul>                                                                                                   |
| Néant (par défaut)  | None           | <ul> <li>Les grandeurs mesurées continuent d'être transmises telles que<br/>mesurées.</li> <li>Les totalisateurs sont incrémentés s'ils sont activés.</li> </ul>                                                                                                                            |

Pour configurer le forçage sur défaut des valeurs transmises par communication numérique :

- avec ProLink II, voir la figure C-2 et configurer le paramètre Indic. défauts comm numérique sous l'onglet Appareil.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-9 et configurer le paramètre **Alarm > Fault action**.
- avec les paramètres de bus PROFIBUS, configurer l'index 18 du bloc Diagnostics (voir le tableau D-4).

### Remarque : Ce paramètre ne peut pas être configuré avec l'indicateur.

*Remarque : Le forçage sur défaut des valeurs transmises par communication numérique est affecté par la temporisation du forçage sur défaut. Voir la section 8.10.8.* 

## 8.10.8 Temporisation du forçage sur défaut

Par défaut, le transmetteur force les grandeurs transmises par communication numérique à leur valeur de défaut dès qu'un défaut est détecté. Pour certains types de défauts, il est possible de retarder cette action en programmant une durée de temporisation. Pendant la durée de temporisation programmée, les grandeurs transmises par communication numérique continuent d'indiquer la dernière valeur mesurée.

Remarque : Cette temporisation s'applique uniquement au forçage sur défaut des valeurs transmises par communication numérique. Le bit d'état « alarme active » est activé dès que le défaut est détecté (quel que soit le niveau de gravité de l'alarme), et l'apparition de l'alarme est immédiatement enregistrée dans l'historique des alarmes (uniquement pour les alarmes de type Défaut et Informationnel). Pour plus d'informations sur la gestion des alarmes, voir la section 7.7. Pour plus d'informations sur le niveau de gravité des alarmes, voir la section 8.8.

La temporisation du forçage sur défaut ne s'applique qu'à certains types de défauts. Pour les autres défauts, les valeurs transmises par communication numérique sont immédiatement forcées à leur niveau de défaut quel que soit le réglage de la temporisation. Le tableau 8-9 indique quelles alarmes sont affectées par la durée de temporisation du forçage sur défaut.

Pour configurer la temporisation du forçage sur défaut :

- avec ProLink II, voir la figure C-2 et configurer le paramètre **Tempor. dernière valeur mesurée** sous l'onglet **Appareil**.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-9 et configurer le paramètre **Alarm > Last measured value fault timeout**.
- avec les paramètres de bus PROFIBUS, configurer l'index 19 du bloc Diagnostics (voir le tableau D-4).

Remarque : Ce paramètre ne peut pas être configuré avec l'indicateur.

### 8.11 Informations sur le transmetteur

Les paramètres d'informations sur le transmetteur fournissent des renseignements sur le transmetteur. Ils comprennent les paramètres décrits au tableau 8-14.

### Tableau 8-14 Paramètres d'informations sur le transmetteur

| Paramètre   | Description                                                                                                                                                                                                |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Descripteur | Chaîne alphanumérique que l'utilisateur peut utiliser pour décrire le transmetteur. Ce paramètre n'a<br>aucun rôle métrologique et n'est pas requis.<br>Longueur maximum : 16 caractères.                  |
| Message     | Chaîne alphanumérique que l'utilisateur peut utiliser pour décrire le transmetteur ou l'application.<br>Ce paramètre n'a aucun rôle métrologique et n'est pas requis.<br>Longueur maximum : 32 caractères. |
| Date        | Toute date sélectionnée par l'utilisateur. Ce paramètre n'a aucun rôle métrologique et n'est pas requis.                                                                                                   |

Pour configurer les paramètres d'informations sur le transmetteur, il faut utiliser ProLink II. Voir la figure C-2.

Remarque : Ce paramètre ne peut pas être configuré via l'indicateur ou le bus de terrain PROFIBUS.

Pour entrer une date avec ProLink II, utiliser les flèches gauche et droite en haut du calendrier pour sélectionner l'année et le mois, puis cliquer sur une date.

### 8.12 Configuration des valeurs de la fonction I&M PROFIBUS

La plupart des valeurs de la fonction I&M sont configurées à l'usine et elles ne peuvent pas être modifiées par l'utilisateur. Il est possible de modifier deux valeurs de la fonction I&M :

- Repère d'identification de l'appareil (Device identification tag)
- Repère d'implantation de l'appareil (Device location identification tag)

Pour configurer ces valeurs :

- avec ProLink II, voir la figure C-2. La version 2.6 ou supérieure de ProLink II est requise.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-12. Il faut être connecté en tant que Spécialiste pour pouvoir utiliser le menu I&M Functions.
- avec les paramètres de bus PROFIBUS, voir le tableau D-9.

Remarque : Ces paramètres ne peuvent pas être configurés avec l'indicateur.

### 8.13 Informations sur le capteur

Les paramètres d'informations sur le capteur permettent de décrire le capteur qui est associé au transmetteur. Un de ces paramètres, le type de tube du capteur, doit être configuré lors de la caractérisation du débitmètre (voir la section 6.2). Les autres données sont purement informatives ; elles n'ont aucun rôle métrologique. Ces paramètres sont :

- Le numéro de série du capteur
- Le matériau de construction du capteur
- Le matériau de revêtement interne du capteur
- Le type de raccords du capteur

Pour configurer ces paramètres :

- avec ProLink II, voir la figure C-2.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10 et utiliser le menu **Configuration parameters > Sensor**.
- avec les paramètres de bus PROFIBUS, configurer les index 7 à 12 du bloc Informations sur l'appareil (voir le tableau D-5).

Remarque : Ces paramètres ne peuvent pas être configurés avec l'indicateur.

### 8.14 Configuration de la fonctionnalité de mesurage de produits pétroliers

Les *paramètres API* déterminent les valeurs qui seront utilisées pour les calculs de la fonctionnalité de mesurage de produits pétroliers. Les paramètres de configuration de la fonctionnalité de mesurage des produits pétroliers ne sont disponibles que si cette fonctionnalité a été installée dans le transmetteur.

Remarque : La fonctionnalité de mesurage de produits pétroliers nécessite l'emploi d'unités de mesure de volume liquide. Si la fonctionnalité de mesurage de produits pétroliers doit être utilisée, le type de débit volumique doit être réglé sur Volume de liquide. Voir la section 8.2.

# 8.14.1 Présentation de la fonctionnalité de mesurage des produits pétroliers

Les mesures de volume et de masse volumique des produits pétroliers sont particulièrement sensibles aux variations de la température. Dans la plupart des applications, ces mesures doivent répondre aux normes fixées par l'American Petroleum Institute (API). La fonctionnalité de mesurage des produits pétroliers permet de déterminer le *coefficient d'expansion volumique* (CTL) de ces produits.

### Termes et définitions

La fonctionnalité de mesurage des produits pétroliers utilise les acronymes suivants :

- API acronyme de « American Petroleum Institute »
- *CTL* acronyme de « Correction for the Temperature on volume of Liquids » : Coefficient d'expansion volumique, dont la valeur est utilisée pour déterminer le VCF.
- TEC acronyme de « Thermal Expansion Coefficient » : Coefficient d'expansion thermique.
- *VCF* acronyme de « Volume Correction Factor » : Ce facteur de correction, calculé à partir du CTL, permet de déterminer le volume à la température de référence.

### Méthodes de dérivation du CTL

Il y a deux méthodes de dérivation du CTL :

- La première méthode repose sur les valeurs mesurées en ligne de la masse volumique et de la température.
- La deuxième méthode nécessite l'emploi d'une masse volumique de référence constante (ou dans certains cas d'un coefficient d'expansion thermique connu) et de la température mesurée en ligne.

### Tables de référence API

Les tables de référence sont classées en fonction de la température de référence, de la méthode de dérivation du CTL, du type de liquide, et de l'unité de masse volumique. La sélection du type de table détermine toutes les options suivantes.

- Température de référence :
  - Si la table sélectionnée est de type 5x, 6x, 23x, ou 24x, la température de référence est 60 °F, et elle ne peut pas être modifiée par l'utilisateur.
  - Si la table sélectionnée est de type 53x ou 54x, la température de référence par défaut est 15 °C, mais il est possible de la modifier suivant l'application (par exemple à 14,0 ou 14,5 °C).
- Méthode de dérivation du CTL :
  - Si le numéro de la table est impaire (5, 23 ou 53), le CTL est dérivé à l'aide de la première méthode mentionnée ci-dessus.
  - Si le numéro de la table est paire (6, 24 ou 54), le CTL est dérivé à l'aide de la deuxième méthode mentionnée ci-dessus.
- La lettre *A*, *B*, *C* ou *D* qui se trouve à la fin du nom de la table indique le type de produit pour lequel la table est conçue :
  - Les tables « A » sont utilisées avec le brut généralisé et le JP4.
  - Les tables « *B* » sont utilisées avec les produits généralisés.
  - Les tables « *C* » sont utilisées avec les liquides dont la masse volumique est constante ou dont le coefficient d'expansion thermique est connu.
  - Les tables « D » sont utilisées avec les huiles lubrifiantes.
- L'unité de la masse volumique de référence est fonction du type de table :
  - Degré API
  - Densité relative (SG)
  - Masse volumique à température de référence (kg/m<sup>3</sup>)

Le tableau 8-15 résume toutes ces options.

|       |                                 |                             | Unité et plage de mesure de la masse volumique |                               |                  |
|-------|---------------------------------|-----------------------------|------------------------------------------------|-------------------------------|------------------|
| Table | Méthode de<br>dérivation du CTL | Température de<br>référence | Degré<br>API                                   | Masse vol. à<br>temp. de réf. | Densité relative |
| 5A    | Méthode 1                       | 60 °F, non-configurable     | 0 à + 100                                      |                               |                  |
| 5B    | Méthode 1                       | 60 °F, non-configurable     | 0 à + 85                                       |                               |                  |
| 5D    | Méthode 1                       | 60 °F, non-configurable     | – 10 à + 40                                    |                               |                  |
| 23A   | Méthode 1                       | 60 °F, non-configurable     |                                                |                               | 0,6110 à 1,0760  |
| 23B   | Méthode 1                       | 60 °F, non-configurable     |                                                |                               | 0,6535 à 1,0760  |
| 23D   | Méthode 1                       | 60 °F, non-configurable     |                                                |                               | 0,8520 à 1,1640  |
| 53A   | Méthode 1                       | 15 °C, configurable         |                                                | 610 à 1075 kg/m <sup>3</sup>  |                  |
| 53B   | Méthode 1                       | 15 °C, configurable         |                                                | 653 à 1075 kg/m <sup>3</sup>  |                  |
| 53D   | Méthode 1                       | 15 °C, configurable         |                                                | 825 à 1164 kg/m <sup>3</sup>  |                  |
|       |                                 |                             | Unité de la                                    | a masse volumique             | e de référence   |
| 6C    | Méthode 2                       | 60 °F, non-configurable     | Degré API                                      |                               |                  |
| 24C   | Méthode 2                       | 60 °F, non-configurable     | Densité rela                                   | tive                          |                  |
| 54C   | Méthode 2                       | 15 °C, configurable         | Masse vol. à                                   | a temp de réf., en kg/n       | n³               |

# Tableau 8-15 Tables des températures de référence API

### 8.14.2 Procédure de configuration

Les paramètres de configuration API sont définis au tableau 8-16.

### Tableau 8-16 Paramètres API

| Paramètre                           | Description                                                                                                                                                                                                                                                                                  |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type de table                       | Spécifie le type de table API à utiliser en fonction de la température de référence et de l'unité de masse volumique de référence. Sélectionner le type de table désiré suivant les besoins de l'application. Voir la section intitulée « <i>Tables de référence API</i> » ci-après.         |
| C.E.T. manuel <sup>(1)</sup>        | Coefficient d'expansion thermique spécifié par l'utilisateur. Entrer la valeur à utiliser pour le calcul du CTL.                                                                                                                                                                             |
| Unité de température <sup>(2)</sup> | Paramètre à lecture seule. Indique l'unité dans laquelle est exprimée la température de référence de<br>la table.                                                                                                                                                                            |
| Unité de masse volumique            | Paramètre à lecture seule. Indique l'unité dans laquelle est exprimée la masse volumique de référence de la table.                                                                                                                                                                           |
| Température de référence            | Température de référence, modifiable uniquement si la table sélectionnée est de type 53 <i>x</i> ou 54 <i>x</i> .<br>Si l'une de ces tables a été sélectionnée :<br>• Spécifier la température de référence à utiliser pour le calcul du CTL.<br>• Entrer la température de référence en °C. |

(1) Configurable uniquement si le type de table est 6C, 24C ou 54C.

(2) Dans la plupart des cas, l'unité de température correspondant à la table de référence API choisie doit être identique à l'unité de température que le transmetteur utilise pour les mesures de température. Pour configurer l'unité de mesure de température, voir la section 6.3.

Pour configurer la fonctionnalité de mesurage de produits pétroliers :

- avec ProLink II, voir la figure C-3.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-11 et utiliser le menu **API setup parameters**.
- avec les paramètres de bus PROFIBUS, configurer les index 13 à 15 du bloc API (voir le tableau D-7).

Remarque : Ces paramètres ne peuvent pas être configurés avec l'indicateur.

Pour la valeur de température utilisée pour le calcul du CTL, il est possible d'utiliser soit la mesure interne du capteur Coriolis, soit l'entrée de correction en température externe en spécifiant une valeur de température fixe ou en interrogeant une sonde de température externe.

- Pour utiliser les mesures de température du capteur Coriolis, aucune action n'est requise.
- Pour configurer la correction en température avec un signal externe, voir la section 9.3.

### 8.15 Configuration de la fonctionnalité Densimétrie avancée

Les capteurs Micro Motion mesurent directement la masse volumique, mais pas la concentration. La fonctionnalité de densimétrie avancée calcule les grandeurs de densimétrie telles que la concentration ou la masse volumique à température de référence à partir des mesures de masse volumique et de température.

*Remarque : Pour une description détaillée de la fonctionnalité de densimétrie avancée, voir le manuel intitulé* Fonctionnalité de densimétrie avancée Micro Motion : Théorie, configuration et exploitation.

*Remarque : La fonctionnalité de densimétrie avancée nécessite l'emploi d'unités de mesure de volume liquide. Si la fonctionnalité de densimétrie avancée doit être utilisée, le type de débit volumique doit être réglé sur Volume de liquide. Voir la section 8.2.* 

### 8.15.1 Présentation de la fonctionnalité de densimétrie avancée

Les calculs de densimétrie avancée nécessitent l'utilisation d'une courbe de densité ; cette courbe spécifie la relation entre la température, la concentration et la masse volumique du fluide mesuré. Micro Motion fournit six courbes de densité standard (voir le tableau 8-17). Si aucune de ces courbes ne convient à l'application, il est possible de configurer une courbe personnalisée ou d'en commander une auprès de Micro Motion.

La grandeur dérivée qui est spécifiée lors de la configuration détermine le type de grandeurs de concentration qui seront mesurées par l'appareil. Chaque grandeur dérivée permet le calcul de certaines grandeurs de densimétrie particulières (voir le tableau 8-18). Les grandeurs calculées par la fonctionnalité de densimétrie avancée peuvent être utilisées pour le contrôle du procédé comme toute autre grandeur mesurée par le débitmètre (débit massique, débit volumique, etc.). Par exemple, un événement peut être contrôlé par une grandeur de densimétrie avancée.

- Pour toutes les courbes standard, la grandeur dérivée doit être Concent Masse (Masse vol).
- Pour les courbes personnalisées, il est possible de choisir la grandeur dérivée parmi celles décrites au tableau 8-18.

Le transmetteur peut avoir jusqu'à six courbes de densité en mémoire, mais une seule de ces courbes est la courbe active (celle qui est utilisée pour les mesures). Toutes les courbes de densité chargées dans la mémoire du transmetteur doivent utiliser la même grandeur dérivée.

| Nom         | Description                                                                                                                                                                                                                                                                                                                                      | Unité de masse<br>volumique | Unité de<br>température |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|
| Deg Balling | Courbe basée sur l'échelle Balling, indiquant le pourcentage<br>en masse de matière sèche en suspension dans un fluide.<br>Par exemple, si l'on dit qu'un moût de bière est de<br>10 °Balling, cela signifie que si la matière sèche dissoute est<br>constituée exclusivement de saccharose, la saccharose<br>représente 10% de la masse totale. | g/cm³                       | °F                      |
| Deg Brix    | Echelle hydrométrique indiquant la teneur en masse de<br>saccharose d'un produit à une température donnée. Par<br>exemple, un mélange constitué de 40 Kg de saccharose et<br>de 60 Kg d'eau correspond à 40 °Brix.                                                                                                                               | g/cm³                       | °C                      |
| Deg Plato   | Courbe basée sur l'échelle Plato, indiquant le pourcentage en masse de matière sèche en suspension dans un fluide. Par exemple, si l'on dit qu'un moût de bière est de 10 °Plato, cela signifie que si la matière sèche dissoute est constituée exclusivement de saccharose, la saccharose représente 10% de la masse totale.                    | g/cm³                       | °F                      |
| HFCS 42     | Echelle hydrométrique indiquant le pourcentage en masse<br>d'isoglucose de type HFCS 42 (high fructose corn syrup)<br>dans une solution.                                                                                                                                                                                                         | g/cm³                       | °C                      |
| HFCS 55     | Echelle hydrométrique indiquant le pourcentage en masse<br>d'isoglucose de type HFCS 55 (high fructose corn syrup)<br>dans une solution.                                                                                                                                                                                                         | g/cm <sup>3</sup>           | °C                      |
| HFCS 90     | Echelle hydrométrique indiquant le pourcentage en masse<br>d'isoglucose de type HFCS 90 (high fructose corn syrup)<br>dans une solution.                                                                                                                                                                                                         | g/cm³                       | ٦°                      |

### Tableau 8-17 Courbes standard et unités de mesure correspondantes

# Tableau 8-18 Grandeurs dérivées et grandeurs mesurées disponibles

# Grandeurs mesurées disponibles

| Grandeur dérivée                                                                                                                                                                                                                                                                                       | Label de<br>ProLink II           | Label EDD             | Masse volumique<br>à temp de réf. | Débit volumique<br>à temp de réf. | Densité  | Concentration | Débit massique net<br>de matière portée | Débit volumique net<br>de matière portée |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------|-----------------------------------|-----------------------------------|----------|---------------|-----------------------------------------|------------------------------------------|
| Masse volumique à température de référence<br>Masse par unité de volume, calculée à une<br>température de référence donnée                                                                                                                                                                             | Masse<br>volumique<br>à T ref    | Density @ Ref         | 1                                 | 1                                 |          |               |                                         |                                          |
| Densité<br>Rapport de la masse volumique d'un fluide<br>à une température donnée à celle de<br>l'eau à une température donnée. Les deux<br>températures de référence ne sont pas<br>forcément identiques.                                                                                              | Densité                          | SG                    | ✓                                 | 1                                 | 1        |               |                                         |                                          |
| Concentration en masse dérivée de la masse<br>volumique à température de référence<br>Teneur en masse de liquide en solution ou<br>de matière sèche en suspension dans un<br>mélange, calculée à partir de la mesure de<br>masse volumique à température de référence                                  | Concent<br>masse<br>(Masse vol)  | Mass Conc<br>(Dens)   | ✓                                 | 1                                 |          | 1             | 1                                       |                                          |
| Concentration en masse dérivée de la densité<br>Teneur en masse de liquide en solution<br>ou de matière sèche en suspension dans<br>un mélange, calculée à partir de la mesure<br>de densité                                                                                                           | Concent<br>masse<br>(Densité)    | Mass Conc<br>(SG)     | 1                                 | 1                                 | 1        | 1             | 1                                       |                                          |
| Concentration en volume dérivée de la masse<br>volumique à température de référence<br>Teneur en volume de liquide en solution ou<br>de matière sèche en suspension dans un<br>mélange, calculée à partir de la mesure de<br>masse volumique à température de référence                                | Concent<br>volume<br>(Masse vol) | Volume Conc<br>(Dens) | 1                                 | 1                                 |          | 1             |                                         | 1                                        |
| Concentration en volume dérivée de la<br>densité<br>Teneur en volume de liquide en solution<br>ou de matière sèche en suspension dans<br>un mélange, calculée à partir de la mesure<br>de densité                                                                                                      | Concent<br>volume<br>(Densité)   | Volume Conc<br>(SG)   | 1                                 | 1                                 | 1        | 1             |                                         | ✓                                        |
| Concentration dérivée de la masse<br>volumique à température de référence<br>Proportion en masse, volume, poids, ou<br>nombre de moles de liquide en solution ou de<br>matière sèche en suspension dans un<br>mélange, calculée à partir de la mesure de<br>masse volumique à température de référence | Concentration<br>(Masse vol)     | Conc (Dens)           | J                                 | ✓                                 |          | 1             |                                         |                                          |
| Concentration dérivée de la densité<br>Proportion en masse, volume, poids, ou<br>nombre de moles de liquide en solution<br>ou de matière sèche en suspension dans<br>un mélange, calculée à partir de la mesure<br>de densité                                                                          | Concentration<br>(Densité)       | Conc (SG)             | ✓<br>✓                            | ✓                                 | <i>✓</i> | <i>✓</i>      |                                         |                                          |

### 8.15.2 Procédure de configuration

Les instructions détaillées de configuration de la fonctionnalité de densimétrie avancée sont fournies dans le manuel intitulé « *Fonctionnalité de densimétrie avancée Micro Motion : Théorie, configuration et exploitation* ».

Remarque : Dans le manuel de la fonctionnalité de densimétrie avancée, ProLink II est l'outil de configuration standard. Les arborescences de la description EDD étant très similaires aux menus de ProLink II, il est possible d'utiliser les instructions décrites pour ProLink II et de les adapter à l'hôte PROFIBUS utilisé.

Dans la plupart des cas, la procédure de configuration de la fonctionnalité de densimétrie avancée consiste simplement à sélectionner une courbe de densité standard. Pour ce faire, procéder comme suit :

- 1. Régler l'unité de masse volumique du transmetteur pour qu'elle corresponde à celle de la courbe standard désirée (voir le tableau 8-17).
- 2. Régler l'unité de température du transmetteur pour qu'elle corresponde à celle de la courbe standard désirée (voir le tableau 8-17).
- 3. Sélectionner la *Concentration en masse dérivée de la masse volumique* (Mass Conc (Dens)) comme grandeur dérivée (voir le tableau 8-18).
- 4. Sélectionner la courbe de densité standard désirée comme courbe active.

Pour configurer un courbe de densité standard :

- avec ProLink II, voir les figures C-2 et C-3.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-8 pour régler les unités de mesure et la figure C-11 pour sélectionner la grandeur dérivée et la courbe active :
  - a. Pour sélectionner la grandeur dérivée, configurer le paramètre ED setup data > ED global configuration > Derived variable.
  - b. Pour sélectionner la courbe active, configurer le paramètre ED setup data > ED global configuration > Active calculation curve.
- avec les paramètres de bus PROFIBUS, utiliser le bloc Mesurage (voir le tableau D-2) pour régler les unités de mesure et le bloc Densimétrie avancée (voir le tableau D-8) pour sélectionner la grandeur dérivée (Index 24) et la courbe active (Index 25).

# Chapitre 9 Correction en pression et en température

## 9.1 Sommaire

Ce chapitre explique comment :

- corriger l'influence de la pression sur les mesures de débit et de masse volumique (voir la section 9.2)
- configurer la correction en température avec un signal de température externe pour les fonctionnalités de mesurage de produits pétroliers et de densimétrie avancée (voir la section 9.3)
- acquérir les données de pression et de température externes (voir la section 9.4)

*Remarque : Toutes les procédures décrites dans ce chapitre présument que la communication avec le transmetteur Modèle 2400S DP est établie et que les règles de sécurité en vigueur sur le site sont respectées.* 

*Remarque : L'interface utilisateur de Pocket ProLink est similaire à celle du logiciel ProLink II décrite dans ce chapitre.* 

### 9.2 Correction en pression

Le transmetteur Modèle 2400S DP permet de corriger l'influence de la pression sur les tubes de mesure du capteur. L'*influence de la pression* est déterminée par la variation de sensibilité au débit massique et à la masse volumique du capteur résultant de l'écart entre les pressions de service et d'étalonnage.

Remarque : La correction en pression est une procédure optionnelle. Elle ne doit être effectuée que si le capteur est sujet à l'influence de la pression et si la pression de service est différente de la pression d'étalonnage du capteur.

### 9.2.1 Options

Il existe deux méthodes de correction en pression :

- Si la pression de service fluctue de façon importante, la correction se fait par ajustage continu des valeurs de débit et de masse volumique à l'aide d'un signal de pression externe issu d'un module de sortie. Voir la section 9.4.
- Si la pression de service est connue et reste relativement constante, la correction peut se faire simplement en spécifiant la pression de service moyenne dans la mémoire du transmetteur.

Remarque : S'assurer que la valeur de pression spécifiée est précise et qu'elle correspond bien à la pression de service. Si la correction se fait en continu avec un signal externe de pression, s'assurer que la mesure de pression est précise et fiable.

## 9.2.2 Facteurs de correction en pression

Pour configurer la correction en pression, il faut spécifier la pression d'étalonnage, c'est à dire la pression à laquelle le débitmètre a été étalonné en débit (ce qui définit la pression de référence à laquelle la pression n'a aucun effet sur les mesures). Entrer la valeur mentionnée sur le certificat d'étalonnage du capteur. Si la pression d'étalonnage n'est pas connue, entrer **1,4 bar**.

Deux facteurs d'influence doivent aussi être fournis : un pour le débit et un pour la masse volumique. Ces facteurs sont définis comme suit :

- Facteur d'influence sur la mesure de débit : ce facteur représente le pourcentage de variation du débit indiqué par psi d'écart
- Facteur d'influence sur la mesure de masse volumique : ce facteur représente la variation de la masse volumique indiquée par psi d'écart, en g/cm<sup>3</sup>/psi

Seuls certains capteurs et certaines applications nécessitent une correction en pression. Pour obtenir les facteurs d'influence, consulter la fiche de spécifications du capteur. Utiliser les valeurs indiquées en %/psi pour le débit et en g/cm<sup>3</sup>/psi pour la masse volumique, et inverser le signe (par exemple, si le facteur d'influence en débit inscrit sur la fiche de spécification est 0,000004 % par PSI, entrer un facteur de correction en pression du débit de – 0,000004 % par PSI).

# 9.2.3 Configuration

Pour activer et configurer la correction en pression :

- avec ProLink II, voir la figure 9-1.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure 9-2.
- avec les paramètres de bus PROFIBUS, voir la figure 9-3.

Terminé





### Figure 9-1 Configuration de la correction en pression avec ProLink II

Manuel de configuration et d'utilisation

### Figure 9-2 Configuration de la correction en pression avec un hôte PROFIBUS et la description EDD



(1) L'unité de pression configurée doit être identique à celle utilisée par le transmetteur de pression externe ou à celle de la valeur de pression de service spécifiée. Voir la section 6.3.
(2) Voir la section 9.4.

### Figure 9-3 Configuration de la correction en pression avec les paramètres de bus PROFIBUS



- (1) Voir le tableau D-3 pour plus d'informations sur les paramètres de bus.
- (2) L'unité de pression configurée doit être identique à celle utilisée par le transmetteur de pression externe ou à celle de la valeur de pression de service spécifiée.
- (3) Voir la section 9.4.

Valeurs par défaut

### 9.3 Correction en température avec un signal externe de température

Les fonctionnalités de mesurage de produits pétroliers et de densimétrie avancée peuvent utiliser un signal de température externe pour la correction en température.

- Si la correction avec un signal de température externe est activée, le signal de température externe (ou la valeur de température moyenne spécifiée) est utilisé uniquement pour les calculs de la fonctionnalité de densimétrie avancée ou de mesurage de produits pétroliers. Le signal de température du capteur Coriolis est utilisé pour tous les autres calculs.
- Si la correction avec le signal de température externe est désactivée, le signal de température du capteur Coriolis est utilisé pour tous les calculs.

Il existe deux méthodes pour mettre en œuvre la correction en température externe :

- Si la température de service fluctue, utiliser un module de sortie pour obtenir des données de température issues d'une sonde de température raccordée au bus de terrain. Voir la section 9.4.
- Si la température de service est connue et stable, la correction peut se faire simplement en spécifiant la température de service moyenne dans le logiciel du transmetteur.

Remarque : Si une température fixe est spécifiée, s'assurer qu'elle est précise et qu'elle correspond bien à la température de service. Si la correction se fait en continu avec un signal externe de température, s'assurer que la mesure de température externe est précise et fiable.

Pour activer et configurer la correction en température externe :

- avec ProLink II, voir la figure 9-4.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure 9-5.
- avec les paramètres de bus PROFIBUS, voir la figure 9-6.

### Figure 9-4 Configuration de la correction en température externe avec ProLink II







### Figure 9-6 Configuration de la correction en température avec les paramètres de bus PROFIBUS



(1) Voir les tableaux D-3 et D-2 pour plus d'informations sur les paramètres de bus.

- (2) L'unité de température configurée doit être identique à celle utilisée par le transmetteur de température externe ou à celle de la valeur de température de service spécifiée. Voir la section 6.3.
- (3) Voir la section 9.4.

# Correction en pression et en température

# 9.4 Acquisition des données de pression et de température externes

Les modules de sorties utilisés pour acquérir les valeurs de pression et/ou de température externes sont listés au tableau 9-1. Mettre en œuvre la connexion requise à l'aide des méthodes standard du bus de terrain PROFIBUS.

# Tableau 9-1 Modules de sorties utilisés pour la correction en pression ou en température

| Numéro du module | Nom du module       | Taille   |
|------------------|---------------------|----------|
| 34               | Pression externe    | 4 octets |
| 35               | Température externe | 4 octets |

# Chapitre 10 Performance métrologique

### 10.1 Sommaire

Ce chapitre décrit les procédures suivantes :

- Validation du capteur (voir la section 10.3)
- Vérification d'étalonnage et réglage des facteurs d'ajustage (voir la section 10.4)
- Ajustage du zéro (voir la section 10.5)
- Etalonnage en masse volumique (voir la section 10.6)
- Etalonnage en température (voir la section 10.7)

*Remarque : Toutes les procédures décrites dans ce chapitre présument que la communication avec le transmetteur Modèle 2400S DP est établie et que les règles de sécurité en vigueur sur le site sont respectées.* 

*Remarque : L'interface utilisateur de Pocket ProLink est similaire à celle du logiciel ProLink II décrite dans ce chapitre.* 

### 10.2 Validation du débitmètre, vérification de l'étalonnage et étalonnage

Le transmetteur Modèle 2400S permet d'évaluer et de garantir les performances métrologiques du débitmètre grâce aux procédures suivantes :

- *Validation du débitmètre* : procédure permettant d'évaluer les performances métrologiques du débitmètre par analyse de l'évolution de certaines caractéristiques de base du capteur liées au mesurage du débit et de la masse volumique.
- *Vérification de l'étalonnage* : vérification des performances métrologiques du débitmètre par comparaison avec une mesure étalon.
- *Etalonnage* : procédure permettant d'établir la relation entre une grandeur mesurée (débit, masse volumique, température) et le signal produit par le capteur.

Les procédures de vérification de l'étalonnage et d'étalonnage sont réalisables sur tous les transmetteurs Modèle 2400S DP. La procédure de validation du débitmètre n'est réalisable que si le transmetteur a été commandé avec la fonctionnalité de validation.

Ces trois procédures sont décrites et comparées aux sections 10.2.1 à 10.2.4. Avant d'effectuer l'une de ces procédures, passer en revue ces sections et s'assurer que la procédure choisie convient à la situation.

## 10.2.1 Validation du débitmètre

La procédure de validation du débitmètre évalue l'intégrité structurelle des tubes du capteur en comparant la raideur actuelle des tubes de mesure aux valeurs de référence mesurées en usine. La raideur est définie comme le quotient de la charge par le degré de flexion du tube, ou encore comme le quotient de la force par le déplacement. Puisqu'un changement de l'intégrité structurelle du capteur affecte sa réponse à la masse et à la masse volumique, la raideur peut être utilisée pour déceler une dégradation des performances métrologiques. Les changements de raideur des tubes de mesure sont généralement causés par l'abrasion, la corrosion ou la dégradation des tubes.

Remarque : Micro Motion recommande d'effectuer la procédure de validation à intervalle régulier.

Il existe deux versions de la fonctionnalité de validation du débitmètre : la version d'origine et la version évoluée. Le tableau 10-1 indique les versions requises des divers éléments pour la version d'origine et la version évoluée de la fonctionnalité de validation. Le tableau 10-2 compare les deux versions.

Remarque : Si une version antérieure de ProLink II ou de la description d'appareil (DD) de l'interface de communication est utilisée, il ne sera pas possible d'accéder aux fonctionnalités additionnelles qu'offre la version évoluée. Si une version postérieure de ProLink II ou de la description d'appareil de l'interface de communication est utilisée avec la version d'origine de la fonctionnalité de validation, les procédures d'exécution de la validation seront légèrement différentes de celles décrites dans ce manuel.

### Tableau 10-1 Versions requises pour la fonctionnalité de validation du débitmètre

| Elément               | Version d'origine          | Version évoluée            |
|-----------------------|----------------------------|----------------------------|
| Transmetteur          | v1.0                       | v1.4                       |
| Version de ProLink II | v2.5                       | v2.9                       |
| Version de la EDD     | Dossier 2400SDP_pdmrev1_00 | Dossier 2400SDP_pdmrev1_40 |

#### Fonctionnalité de validation du débitmètre

# Tableau 10-2 Comparaison des caractéristiques et des fonctions entre la version d'origine et la version évoluée de la fonctionnalité de validation du débitmètre

| Caractéristique ou fonction     | Fonctionnalité de validation du déplimetre                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                 | Version d'origine                                                                                                                   | Version évoluée                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Interruption du procédé         | Il n'est pas nécessaire d'interrompre<br>l'écoulement                                                                               | Il n'est pas nécessaire d'interrompre l'écoulement                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Interruption des<br>mesures     | Trois minutes. Les sorties sont figées<br>au choix sur :<br>• la dernière valeur mesurée<br>• le niveau de défaut configuré         | <ul> <li>Option sélectionnée par l'utilisateur :</li> <li>Continuer le mesurage. Les mesures ne sont pas<br/>interrompues. Le test dure environ 90 secondes.</li> <li>Dernière valeur mesurée. Les sorties sont figées et<br/>les mesures sont interrompues pendant environ<br/>140 secondes.</li> <li>Niveau de défaut. Les sorties sont figées à leur<br/>niveau de défaut et les mesures sont interrompues<br/>pendant environ 140 secondes.</li> </ul> |  |
| Enregistrement des<br>résultats | Les résultats des tests ne sont<br>sauvegardés que s'ils sont effectués<br>avec ProLink II et sont enregistrés sur<br>l'ordinateur. | Les vingt résultats les plus récents sont gardés dans<br>la mémoire du transmetteur, quel que soit l'outil utilisé<br>pour effectué la procédure. Si le test est réalisé avec<br>ProLink II, des données supplémentaires sont<br>enregistrées sur l'ordinateur.                                                                                                                                                                                            |  |

# Tableau 10-2 Comparaison des caractéristiques et des fonctions entre la version d'origine et la version évoluée de la fonctionnalité de validation du suitedébitmètre

| Caractéristique ou<br>fonction                              |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                 |  |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                             | Version d'origine                                                                                                                                                                                                                                                                                                                                                  | Version évoluée                                                                                                                                                                                                                                                                                                                                                 |  |
| Affichage des résultats sur l'indicateur                    | Message indiquant si le test de<br>validation en cours a réussi, échoué<br>ou été interrompu                                                                                                                                                                                                                                                                       | Pour tous les résultats en mémoire dans le<br>transmetteur :<br>• Réussite/Echec/Interruption<br>• Code d'interruption (le cas échéant)<br>• Raideur au niveau des détecteurs droit et gauche                                                                                                                                                                   |  |
| Affichage des résultats<br>sur un hôte PROFIBUS<br>avec EDD | Message indiquant si le test de<br>validation en cours a réussi, échoué<br>ou été interrompu                                                                                                                                                                                                                                                                       | Pour tous les résultats en mémoire dans le<br>transmetteur :<br>• Réussite/Echec/Interruption<br>• Code d'interruption (le cas échéant)<br>• Raideur au niveau des détecteurs droit et gauche<br>• Table de comparaison des résultats mémorisés<br>• Graphique comparatif des résultats mémorisés                                                               |  |
| Affichage des résultats<br>dans ProLink II                  | Pour tous les résultats en mémoire<br>dans l'ordinateur :<br>• Réussite/Echec/Interruption<br>• Code d'interruption (le cas échéant)<br>• Raideur au niveau des détecteurs<br>droit et gauche<br>• Données auxiliaires sur l'exécution<br>du test<br>• Graphiques comparatifs<br>• Rapports de test<br>• Capacités d'exportation et de<br>manipulation des données | Pour tous les résultats en mémoire dans le<br>transmetteur :<br>• Réussite/Echec/Interruption<br>• Code d'interruption (le cas échéant)<br>• Raideur au niveau des détecteurs droit et gauche<br>• Données auxiliaires sur l'exécution du test<br>• Graphiques comparatifs<br>• Rapports de test<br>• Capacités d'exportation et de manipulation des<br>données |  |
| Méthodes de<br>lancement de la<br>procédure                 | Manuelle                                                                                                                                                                                                                                                                                                                                                           | Manuelle<br>Programmée<br>Evénement                                                                                                                                                                                                                                                                                                                             |  |

### Fonctionnalité de validation du débitmètre

# 10.2.2 Vérification de l'étalonnage et facteurs d'ajustage de l'étalonnage

La procédure de vérification de l'étalonnage compare la mesure indiquée par le transmetteur à une mesure étalon. Cette procédure nécessite la configuration d'un point de données.

Remarque : Pour que l'opération de vérification de l'étalonnage soit correcte, l'étalon de mesure doit être plus précis que le débitmètre. Consulter la fiche de spécifications du capteur pour déterminer son incertitude nominale.

Si la masse, le volume ou la masse volumique indiqué(e) par le transmetteur est différent(e) de la valeur indiquée par la mesure étalon, il peut être nécessaire de modifier les facteurs d'ajustage de l'étalonnage. Un facteur d'ajustage est une valeur par laquelle le transmetteur multiplie la valeur de la grandeur mesurée. La valeur par défaut des facteurs d'ajustage de l'étalonnage est **1,0**, valeur qui n'engendre aucune différence entre la valeur mesurée par le capteur et celle indiquée par les sorties du débitmètre.

Les facteurs d'ajustage de l'étalonnage servent généralement à ajuster l'étalonnage du débitmètre lors des vérifications périodiques de l'étalonnage exigées par les organismes de métrologie légale.

### 10.2.3 Etalonnage

Le débitmètre mesure les grandeurs du procédé par rapport à des points de référence fixes. L'étalonnage est l'opération qui sert à déterminer ces points de référence. Trois types d'étalonnage peuvent être effectués :

- L'ajustage du zéro
- L'étalonnage en masse volumique
- L'étalonnage en température

Les étalonnages en masse volumique et en température requièrent chacun deux points de données et une mesure étalon externe pour chacun de ces points. L'ajustage du zéro requiert un seul point de données. La procédure d'étalonnage entraîne un ajustage du décalage à l'origine et de la pente de la droite qui représente la relation entre la valeur réelle de la grandeur et la valeur indiquée par le transmetteur.

*Remarque : Les mesures étalons de masse volumique ou de température doivent être précises pour que l'étalonnage soit correct.* 

Les débitmètres Micro Motion équipés d'un transmetteur Modèle 2400S sont étalonnés à l'usine et ne requièrent en principe aucun étalonnage sur site. N'effectuer l'étalonnage que s'il est requis par un organisme de métrologie légale. Contacter le service après-vente avant d'étalonner le débitmètre.

*Remarque : Micro Motion recommande d'utiliser les facteurs d'ajustage de l'étalonnage plutôt que de réétalonner le débitmètre.* 

### 10.2.4 Comparaison et recommandations

Avant d'effectuer une procédure de validation, de vérification de l'étalonnage ou d'étalonnage du débitmètre, prendre en compte les points suivants :

- Interruption du procédé et des mesures
  - La procédure de validation évoluée fournie une option qui permet de continuer les mesures sur le procédé pendant la durée du test.
  - La procédure de validation d'origine nécessite environ trois minutes. Pendant ces trois minutes, le procédé peut continuer à s'écouler (à condition que le débit soit relativement stable), mais les mesures sont interrompues.
  - La vérification de l'étalonnage en masse volumique n'interrompt pas le procédé ou le mesurage. En revanche, les procédures de vérification de l'étalonnage en masse et en volume nécessitent l'arrêt du procédé pendant toute la durée du test.
  - L'étalonnage du débitmètre nécessite l'arrêt du procédé. En outre, les étalonnages en masse volumique et en température nécessitent le remplacement du fluide mesuré par des fluides d'étalonnage de faible et de forte densité pour l'étalonnage en masse volumique, et des fluides de basse et de haute température pour l'étalonnage en température. La procédure d'ajustage du zéro nécessite l'arrêt de l'écoulement dans le capteur.

Valeurs par défaut

### Performance métrologique

- Exigences de mesures externes
  - Aucune des procédures de validation ne nécessite une mesure externe.
  - La procédure d'ajustage du zéro ne nécessite aucune mesure externe.
  - Les procédures d'étalonnage en masse volumique, d'étalonnage en température, ou de vérification de l'étalonnage nécessitent toutes des mesures étalons externes. Pour de bons résultats, ces mesures étalons doivent être très précises.
- Ajustage des mesures
  - La procédure de validation donne une indication de l'intégrité structurelle du capteur, mais elle ne modifie pas les mesures effectuées par le débitmètre.
  - La vérification de l'étalonnage en elle-même ne modifie pas les performances métrologiques du débitmètre. Si l'opérateur décide de modifier un facteur d'ajustage suite à la procédure de vérification de l'étalonnage, seule l'indication de la grandeur est altérée – la mesure de base n'est pas affectée. Il est toujours possible de retourner au réglage précédent en rétablissant le facteur d'ajustage à sa valeur précédente.
  - L'étalonnage modifie l'interprétation des signaux primaires issus du capteur et change donc la mesure de base du transmetteur. Dans le cas d'un ajustage du zéro, il est possible de rétablir la valeur d'ajustage précédente ou bien l'ajustage d'origine à la sortie de l'usine. En revanche, dans le cas d'un étalonnage en masse volumique ou en température, il est impossible de rétablir les coefficients d'étalonnage précédents s'ils n'ont pas été sauvegardés manuellement.

Il est vivement recommandé d'acquérir la fonctionnalité de validation du débitmètre et d'effectuer régulièrement la procédure de validation.

### 10.3 Procédure de validation du débitmètre

### 10.3.1 Préparation au test de validation du débitmètre

### Fluide process et conditions de service

La procédure de validation peut être effectuée sur n'importe quel fluide. Il n'est pas nécessaire de reproduire les conditions de mesure de l'usine.

Au cours du test, les conditions de service doivent être stables. Pour maximiser la stabilité :

- Maintenir la température et la pression constantes.
- Eviter les changements de composition du fluide (écoulement biphasique, sédimentation, etc.).
- Maintenir un débit constant. Pour une meilleure précision du test, réduire ou arrêter l'écoulement.

Si la stabilité fluctue en dehors des limites autorisées pour le test, la procédure de validation sera interrompue. Si cela se produit, vérifier la stabilité du procédé et relancer la procédure.

### Configuration du transmetteur

La procédure de validation n'est affectée par aucun paramètre de configuration du débit, de la masse volumique ou de la température. Il n'est pas nécessaire de modifier la configuration du transmetteur.

### Boucles de régulation et mesurage du procédé

Si les sorties du transmetteur sont figées sur la dernière valeur mesurée ou à leur niveau de défaut configuré au cours de la procédure de validation, les sorties du transmetteur seront figées pendant environ deux minutes (version évoluée) ou trois minutes (version d'origine), suivant le choix de l'opérateur. Désactiver toutes les boucles de régulation pendant la durée de la procédure, et vérifier que les données transmises par le débitmètre sont traitées correctement pendant cette durée.

### Ecart maximum admissible et résultat du test

Le résultat du test de validation est un pourcentage d'écart de la raideur des tubes de mesure par rapport aux valeurs de référence établies à l'usine. Si les variations sont inférieures à l'écart maximum admissible, le test de validation est réussi. Si les variations sont supérieures à l'écart maximum admissible, le test échoue.

- Avec la version évoluée de la fonctionnalité de validation du débitmètre, l'écart maximum admissible est réglé à l'usine et ne peut pas être modifié.
- Avec la version d'origine de la fonctionnalité de validation du débitmètre, l'écart maximum admissible peut être configuré par l'opérateur. Toutefois, Micro Motion recommande d'utiliser la valeur par défaut. Contacter le service après-vente de Micro Motion avant de modifier l'écart maximum admissible.

### 10.3.2 Lancement d'un test de validation de débitmètre, version d'origine

Pour effectuer un test de validation :

- avec ProLink II, suivre la procédure illustrée à la figure 10-1.
- avec l'indicateur, suivre la procédure illustrée à la figure 10-2. Pour l'arborescence complète du menu de validation du débitmètre de l'indicateur, voir la figure C-17.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-7 et suivre la procédure illustrée à la figure 10-3.
- avec les paramètres de bus PROFIBUS, consulter le tableau D-4 (bloc Diagnostics) et suivre la procédure illustrée à la figure 10-4.

Remarque : Si le test de validation est lancé à distance, le transmetteur affiche le message suivant :







# Figure 10-1 Procédure de validation du débitmètre, version d'origine, avec ProLink II

- l'appui sur Précédent permet de retourner au début de la
- (2) Les résultats du test de validation ne sont enregistrés qu'au moment où l'on clique sur Terminer



# Figure 10-2 Procédure de validation du débitmètre, version d'origine, avec l'indicateur



# Figure 10-3 Procédure de validation du débitmètre, version d'origine, avec un hôte PROFIBUS et la description EDD






### Tableau 10-3 Interface des paramètres de bus pour la procédure de validation du débitmètre (version d'origine)

| Numéro<br>d'étape | Description                                                  | Interface <sup>(1)</sup>            |
|-------------------|--------------------------------------------------------------|-------------------------------------|
| 1                 | Sélection du niveau de forçage des grandeurs mesurées        | Bloc Diagnostics (Slot 3), Index 54 |
| 2                 | Réglage de l'écart maximum admissible                        | Bloc Diagnostics (Slot 3), Index 55 |
| 3                 | Lancement / Interruption de la procédure                     | Bloc Diagnostics (Slot 3), index 53 |
| 4                 | Vérification du stade d'avancement de la procédure           | Bloc Diagnostics (Slot 3), Index 56 |
| 5                 | Visualisation du pourcentage d'exécution                     | Bloc Diagnostics (Slot 3), Index 61 |
| 6                 | Vérification de l'état du bit d'interruption de la procédure | Bloc Diagnostics (Slot 3), Index 58 |
| 7                 | Contrôle de la raideur à l'entrée du capteur                 | Bloc Diagnostics (Slot 3), Index 59 |
| 8                 | Contrôle de la raideur à la sortie du capteur                | Bloc Diagnostics (Slot 3), Index 60 |
| 9                 | Lecture du code d'interruption de la procédure               | Bloc Diagnostics (Slot 3), Index 57 |

(1) Pour des informations détaillées, voir le tableau D-4.

#### 10.3.3 Lancement d'un test de validation, version évoluée

Pour effectuer un test de validation évoluée :

- avec ProLink II, voir la figure 10-5.
- avec l'indicateur, voir les figures 10-6 et 10-7.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-7 et suivre la procédure illustrée à la figure 10-8.
- avec les paramètres de bus PROFIBUS, consulter le tableau D-4 (bloc Diagnostics) et suivre la procédure illustrée à la figure 10-9.

*Remarque : Si le test de validation évoluée est lancé à l'aide de ProLink II ou de l'hôte PROFIBUS et que les sorties sont figées sur Dernière valeur mesurée ou Niveau de défaut, le transmetteur affiche le message suivant :* 

CAPTEUR VALID/*x*%



Figure 10-5 Test de validation du débitmètre, version évoluée, avec ProLink II



### Figure 10-6 Test de validation du débitmètre, version évoluée, avec l'indicateur (menu principal)





# Figure 10-8 Test de validation du débitmètre, version évoluée, avec un hôte PROFIBUS et la description EDD



## Figure 10-9 Test de validation du débitmètre, version évoluée, avec les paramètres de bus PROFIBUS



| Numéro<br>d'étape | Description                                                  | Interface <sup>(1)</sup>                         |
|-------------------|--------------------------------------------------------------|--------------------------------------------------|
| 1                 | Sélection du comportement des sorties                        | Bloc Diagnostics (Slot 3)                        |
|                   | Défaut ou Dernière Valeur Mesurée                            | Index 54                                         |
|                   | Continuer les mesures                                        | Index 53                                         |
| 2                 | Lancement / Interruption du test                             | Bloc Diagnostics (Slot 3)                        |
|                   | Défaut ou Dernière Valeur Mesurée                            | Index 53                                         |
|                   | Continuer les mesures                                        | Non applicable (test lancé à l'étape précédente) |
| 3                 | Vérification du stade d'avancement de la procédure           | Bloc Diagnostics (Slot 3)<br>Index 56            |
| 4                 | Visualisation du pourcentage d'exécution                     | Bloc Diagnostics (Slot 3)<br>Index 61            |
| 5                 | Vérification de l'état du bit d'interruption de la procédure | Bloc Diagnostics (Slot 3)<br>Index 58            |
| 6                 | Contrôle de la raideur à l'entrée du capteur                 | Bloc Diagnostics (Slot 3)<br>Index 59            |
| 7                 | Contrôle de la raideur à la sortie du capteur                | Bloc Diagnostics (Slot 3)<br>Index 60            |
| 8                 | Lecture du code d'interruption de la procédure               | Bloc Diagnostics (Slot 3)<br>Index 57            |

# Tableau 10-4 Interface des paramètres de bus pour la procédure de validation du débitmètre (version évoluée)

(1) Pour des informations détaillées, voir le tableau D-4.

#### 10.3.4 Lecture et interprétation des résultats du test de validation du débitmètre

#### **Réussite/Echec/Interruption**

La procédure de validation s'achève sur l'un des trois résultats suivants (les mots entre parenthèses représentent les résultats tels qu'ils s'affichent sur l'indicateur) :

- *La validation est réussie (OK)* Les résultats du test sont dans les limites définies. Si l'ajustage du zéro et la configuration du transmetteur n'ont pas été modifiés, les mesures de débit et de masse volumique seront conformes aux spécifications constructeur. En principe, le débitmètre doit réussir le test de validation à chaque fois qu'il est effectué.
- *La validation a échoué (ATTENTION)* Les résultats du test ne sont pas dans les limites définies. Micro Motion recommande d'effectuer immédiatement un autre test de validation.
  - Si le second test réussit, le résultat du premier test peut être ignoré.
  - Si le second test échoue également, il est possible que les tubes du capteur soient endommagés. Analyser le procédé pour déterminer l'origine du problème et prendre les mesures qui s'imposent (mise hors service du débitmètre, inspection physique des tubes de mesure, etc.). Si le débitmètre est maintenu en service, vérifier le facteur d'étalonnage en débit et l'ajuster si nécessaire et effectuer un étalonnage en masse volumique.
- *Interruption de la procédure (ABAND)* un problème s'est produit lors de la procédure de validation (p.e. instabilité du procédé) et celle-ci n'a pas pu s'achever. Les codes d'interruption sont décrits au tableau 10-5, et les actions recommandées sont indiquées pour chaque code.

| Code d'interruption | Description                                                                                  | Action recommandée                                                                                                                               |
|---------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                   | Interruption initiée par l'opérateur                                                         | Aucune action requise. Attendre 15 secondes avec de lancer un autre test.                                                                        |
| 3                   | Dérive en fréquence                                                                          | S'assurer que la température, le débit et la masse volumique sont stables, puis relancer le test.                                                |
| 5                   | Niveau d'excitation élevé                                                                    | S'assurer que le débit est stable, réduire la quantité de gaz entraîné, puis relancer le test.                                                   |
| 8                   | Débit instable                                                                               | Voir les suggestions pour stabiliser le débit à la section 10.3.1 puis relancer le test.                                                         |
| 13                  | Aucunes données de référence<br>d'usine pour le test de validation<br>effectué avec de l'air | Contacter le service après-vente de Micro Motion et fournir le code d'interruption.                                                              |
| 14                  | Aucunes données de référence<br>d'usine pour le test de validation<br>effectué avec de l'eau | Contacter le service après-vente de Micro Motion et fournir le code d'interruption.                                                              |
| 15                  | Aucunes données de configuration<br>pour la validation du débitmètre                         | Contacter le service après-vente de Micro Motion et fournir le code d'interruption.                                                              |
| Autre               | Interruption générale.                                                                       | Relancer le test. Si le test est à nouveau interrompu,<br>contacter le service après-vente de Micro Motion et<br>fournir le code d'interruption. |

#### Tableau 10-5 Codes d'interruption du test de validation du débitmètre

#### Affichage du résultat des tests de validation dans ProLink II

Pour chaque test, les données suivantes sont enregistrées dans la mémoire du transmetteur :

- Le nombre d'heures sous tension au moment où le test a été effectué (version évoluée)
- Le résultat du test
- La raideur au niveau des détecteurs gauche et droit, indiquée comme un pourcentage de variation par rapport aux valeurs de référence établies en usine. Si le test est interrompu, la valeur enregistrée est 0.
- Le code d'interruption, le cas échéant

ProLink II enregistre des informations complémentaires pour chaque test dans une base de données sur l'ordinateur, y compris :

- Horodatage avec l'horloge interne de l'ordinateur
- Données d'identification du débitmètre
- Valeur actuelle des paramètres de configuration du débit et de la masse volumique
- Valeurs actuelles de réglage du zéro
- Valeur actuelle du débit massique, du débit volumique, de la masse volumique, de la température et de la pression externe
- Informations descriptives sur le test et l'opérateur (optionnel)

Si le transmetteur est équipé de la fonctionnalité de validation évoluée et que le test de validation est lancé avec ProLink II, ProLink II vérifie d'abord si de nouveaux résultats de tests ont été mémorisés par le transmetteur, puis synchronise la base de données si nécessaire. Pendant cette opération, ProLink II affiche le message suivant :

#### Synchronisation de x sur y en cours Veuillez patienter

Valeurs par défaut

#### Performance métrologique

Remarque : Si vous lancez une commande pendant la synchronisation, ProLink II affiche un message pour vous demander si vous désirez laisser la synchronisation s'achever. Si vous choisissez Non, la base de données de ProLink II risque de ne pas contenir les derniers résultats en mémoire dans le transmetteur.

Les résultats des tests sont disponibles à la fin de chaque test sous les formes suivantes :

- Un graphique montrant le résultat des tests (voir la figure 10-10).
- Un rapport de test comprenant une description du test effectué, le graphique de résultat du test, ainsi que des informations complémentaires sur la procédure de validation du débitmètre. Ce rapport peut être exporté vers un fichier HTML ou être imprimé avec l'imprimante sélectionnée par défaut.

Remarque : Pour visualiser le graphique et le rapport de tests antérieurs sans effectuer un nouveau test, cliquer sur « Voir les résultats des tests précédents et imprimer le rapport » dans le premier panneau de la fonctionnalité de validation. Voir la figure 10-5. Les rapports de test ne sont disponibles que pour les tests qui ont été effectués à l'aide de ProLink II.

#### Figure 10-10 Graphique de résultat des tests



Ce graphique montre les résultats de tous les tests présents dans la base de données de ProLink II, et indique où le résultat se situe par rapport aux limites de l'écart maximum admissible. Pour chaque test, le résultat est représenté par deux points qui correspondent à la raideur des tubes de mesure au niveau des branches entrantes et sortantes du capteur. Ceci permet de déterminer si la modification structurelle des tubes de mesure est localisée ou généralisée.

Cette représentation historique montre l'évolution des résultats des tests de validation, ce qui permet de détecter les problèmes de détérioration des tubes du capteur avant qu'ils deviennent sérieux.

Remarques :

- Le graphique ne montre pas nécessairement les résultats de tous les tests, et le comptage des tests peut ne pas être continu. ProLink II enregistre tous les résultats des tests initiés depuis ProLink II et de tous les tests disponibles dans la mémoire du transmetteur lorsque la base de données des tests est synchronisée. Toutefois, le transmetteur ne garde en mémoire que les vingt résultats de tests les plus récents. Pour s'assurer de d'avoir l'ensemble des résultats dans la base de données, toujours utiliser ProLink II pour initier les tests de validation, ou synchroniser la base de données de ProLink II avant que les anciens test présents dans la mémoire du transmetteur ne soient effacés.
- Le graphique utilise différents symboles pour faire la distinction entre les tests initiés avec ProLink II et les tests initiés avec un autre outil. Les rapports de tests ne sont disponibles que pour les tests qui ont été initiés avec ProLink II.
- Il est possible de modifier l'apparence de ce graphique en double-cliquant dessus (changement du titre, changement des polices de caractères, couleurs, bords et quadrillage, etc.), et d'exporter le graphique sous différentes formes (y compris vers l'imprimante).
- Vous pouvez exporter ce graphique dans un fichier CSV pour utilisation avec un autre logiciel.

#### Affichage du résultat des tests de validation sur l'indicateur

*Remarque : Nécessite la version évoluée de la fonctionnalité de validation. Les données détaillées sur les tests ne sont pas disponibles avec la version d'origine de la fonctionnalité de validation.* 

Pour chaque test de validation évolué, les informations suivantes sont mémorisées par le transmetteur :

- Le nombre d'heures sous tension au moment où le test a été effectué
- Le résultat du test
- La raideur au niveau des détecteurs gauche et droit, indiquée comme un pourcentage de variation par rapport aux valeurs de référence établies en usine. Si le test est interrompu, la valeur enregistrée est 0.
- Le code d'interruption, le cas échéant

Pour afficher ces données, voir les figures 10-6 et 10-11.

## Figure 10-11 Affichage du résultat des tests de validation sur l'indicateur



# Affichage du résultat des tests de validation sur un hôte PROFIBUS doté de la description EDD de l'appareil

*Remarque : Nécessite la version évoluée de la fonctionnalité de validation. Les données détaillées sur les tests ne sont pas disponibles avec la version d'origine de la fonctionnalité de validation.* 

Pour chaque test de validation évolué, les informations suivantes sont mémorisées par le transmetteur :

- Le nombre d'heures sous tension au moment où le test a été effectué
- Le résultat du test
- La raideur au niveau des détecteurs gauche et droit, indiquée comme un pourcentage de variation par rapport aux valeurs de référence établies en usine. Si le test est interrompu, la valeur enregistrée est 0.
- Le code d'interruption, le cas échéant

Pour afficher ces données, voir la figure 10-12.

Figure 10-12 Affichage du résultat des tests de validation sur un hôte PROFIBUS avec description EDD



#### Affichage du résultat des tests de validation avec les paramètres de bus PROFIBUS

*Remarque : Nécessite la version évoluée de la fonctionnalité de validation. Les données détaillées sur les tests ne sont pas disponibles avec la version d'origine de la fonctionnalité de validation.* 

Pour chaque test de validation évolué, les informations suivantes sont mémorisées par le transmetteur :

- Le nombre d'heures sous tension au moment où le test a été effectué
- Le résultat du test
- La raideur au niveau des détecteurs gauche et droit, indiquée comme un pourcentage de variation par rapport aux valeurs de référence établies en usine. Si le test est interrompu, la valeur enregistrée est 0.

Voir le tableau 10-6.

• Le code d'interruption, le cas échéant

Pour afficher ces données, voir la figure 10-13.

#### Figure 10-13 Affichage du résultat des tests de validation avec les paramètres de bus PROFIBUS



# Tableau 10-6 Interface des paramètres de bus pour les résultats du test de validation du débitmètre (version évoluée)

| Numéro d'étape | Description                       | Interface <sup>(1)</sup>              |
|----------------|-----------------------------------|---------------------------------------|
| 1              | Sélectionner l'index              | Bloc Diagnostics (Slot 3)<br>Index 87 |
| 2              | Lire le compteur de test          | Bloc Diagnostics (Slot 3)<br>Index 88 |
| 3              | Lire l'heure de démarrage du test | Bloc Diagnostics (Slot 3)<br>Index 89 |

| Numéro d'étape | Description                                   | Interface <sup>(1)</sup>              |
|----------------|-----------------------------------------------|---------------------------------------|
| 4              | Lire le résultat du test                      | Bloc Diagnostics (Slot 3)<br>Index 90 |
| 5              | Lire la raideur au niveau du détecteur gauche | Bloc Diagnostics (Slot 3)<br>Index 91 |
| 6              | Lire la raideur au niveau du détecteur droit  | Bloc Diagnostics (Slot 3)<br>Index 92 |

#### Tableau 10-6 Interface des paramètres de bus pour les résultats du test de validation du débitmètre (version évoluée) suite

(1) Pour des informations détaillées, voir le tableau D-4.

#### 10.3.5 Programmation de l'exécution automatique ou à distance d'un test de validation

*Remarque : Nécessite la version évoluée de la fonctionnalité de validation. La programmation n'est pas disponible avec la version d'origine de la fonctionnalité de validation.* 

Il y a trois façons de lancer un test de validation automatiquement :

- L'affecter à un événement
- Programmer l'exécution automatique d'un seul test
- Programmer une exécution automatique récurrente

Ces différentes méthodes peuvent être combinées. Vous pouvez ainsi configurer le transmetteur pour que le test de validation se fasse dans trois heures, toutes les 24 heures, et à chaque fois qu'un événement TOR spécifique se produit.

- Pour affecter la validation du débitmètre à un événement, voir la section 8.6.
- Pour programmer une exécution automatique unique, programmer une exécution récurrente, visualiser le nombre d'heures restantes avant le prochain test automatique, ou effacer la programmation :
  - avec ProLink II, cliquer sur Outils > Validation du débitmètre > Programmer la validation.
  - avec l'indicateur, voir les figures 10-6 et 10-14.
  - avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure 10-15.
  - avec les paramètres de bus PROFIBUS, voir la figure 10-16.

Noter les points suivants :

- Pour programmer une exécution automatique unique, spécifier l'heure de démarrage en nombre d'heures à partir de l'heure actuelle. Par exemple, si l'heure actuelle est 14h00 et que vous spécifiez 3,5 heures, le test démarrera à 17h30.
- Pour programmer une exécution récurrente, spécifier le nombre d'heures devant s'écouler entre chaque test. Le premier test se produira lorsque le nombre d'heures spécifié se sera écoulé, et les tests continueront de se produire avec le même intervalle jusqu'à ce que la programmation soit effacée par l'utilisateur. Par exemple, si l'heure actuelle est 14h00 et que vous spécifiez un intervalle de 2 heures, le premier test démarrera à 16h00, le suivant à 18h00, et ainsi de suite.
- Si la programmation est effacée, l'exécution unique et l'exécution récurrente sont toutes deux effacées.







# Figure 10-15 Programmation de l'exécution automatique d'un test de validation avec un hôte PROFIBUS et la description EDD



#### Figure 10-16 Programmation de l'exécution automatique d'un test de validation avec les paramètres de bus PROFIBUS



Voir le tableau 10-7.

#### Tableau 10-7 Interface des paramètres de bus pour la programmation de l'exécution automatique d'un test de validation

| Numéro d'étape | Description                                                         | Interface <sup>(1)</sup>              |
|----------------|---------------------------------------------------------------------|---------------------------------------|
| 1              | Spécifier le nombre d'heures devant s'écouler avant le premier test | Bloc Diagnostics (Slot 3)<br>Index 93 |
| 2              | Spécifier le nombre d'heures entre<br>chaque test                   | Bloc Diagnostics (Slot 3)<br>Index 94 |

(1) Pour des informations détaillées, voir le tableau D-4.

#### 10.4 Vérification de l'étalonnage

Pour vérifier l'étalonnage du débitmètre, mesurer un échantillon du fluide process à l'aide d'un étalon de référence et comparer sa valeur avec la valeur indiquée par le débitmètre.

Utiliser la formule suivante pour calculer un facteur d'ajustage :

Nouveau facteur d'ajustage = Facteur d'ajustage existant × Mesure étalon Mesure du transmetteur

La valeur doit être comprise entre **0,8** et **1,2**. Si la valeur calculée du facteur d'ajustage est en dehors de ces limites, contacter le service après-vente de Micro Motion.

Pour configurer les facteurs d'ajustage de l'étalonnage :

- avec ProLink II, voir la figure C-2 et configurer les facteurs d'ajustage sous l'onglet Débit.
- avec l'indicateur, voir la figure C-15 et utiliser le menu FACAJ.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-8 et configurer les paramètres **Mass factor**, **Density factor** et/ou **Volume factor**.
- avec les paramètres de bus PROFIBUS, configurer les index 15, 16 et 17 du bloc Mesurage (voir le tableau D-2).

| Exemple | Le débitmètre vient d'être installé et une vérification de l'étalonnage est effectuée.<br>Le débitmètre affiche un total de 250,27 kg alors que la mesure étalon indique<br>un total de 250 kg. Le facteur d'ajustage en masse est calculé comme suit : |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|         | Facteur d'ajustage en masse = $1 \times \frac{250}{250,27} = 0,9989$                                                                                                                                                                                    |  |
|         | Le facteur d'ajustage initial est 0,9989.                                                                                                                                                                                                               |  |
|         | Un an plus tard, l'étalonnage du débitmètre est à nouveau vérifié. Le débitmètre affiche un total de 250,07 kg alors que la mesure étalon indique un total de 250,25 kg. Le nouveau facteur d'ajustage en masse est calculé comme suit :                |  |
|         | Facteur d'ajustage en masse = $0,9989 \times \frac{250,25}{250,07} = 0,9996$                                                                                                                                                                            |  |
|         | Le nouveau facteur d'ajustage est 0,9996.                                                                                                                                                                                                               |  |

# 10.5 Ajustage du zéro

L'ajustage du zéro permet d'établir le point de référence du débitmètre à débit nul. Cet ajustage est effectué à l'usine et il n'est en principe pas nécessaire de le refaire sur le site. N'effectuer un ajustage du zéro sur site que si celui-ci est requis par la réglementation en vigueur, ou pour confirmer la validité de l'ajustage d'usine.

Avant de lancer la procédure, il peut être nécessaire de modifier la *durée de l'ajustage*. Ce paramètre représente le temps alloué au transmetteur pour calculer le point d'ajustage du zéro. La valeur par défaut est 20 secondes.

- Une durée d'ajustage plus *longue* peut améliorer la précision de l'ajustage du zéro, mais risque d'entraîner un échec de l'ajustage du fait d'une plus forte probabilité de bruit sur le signal.
- Une durée d'ajustage plus *courte* réduit le risque d'échec de l'ajustage, mais peut entraîner un ajustage moins précis du zéro.

La valeur par défaut de la durée d'ajustage du zéro convient à la plupart des applications.

*Remarque : Ne pas effectuer l'ajustage du zéro en présence d'une alarme critique. Corriger le problème avant de lancer la procédure d'ajustage. Il est possible d'effectuer l'ajustage en présence d'une alarme d'exploitation non critique. Voir la section 7.6 pour plus d'informations sur la visualisation de l'état du transmetteur et des alarmes.* 

Deux fonctions de rétablissement sont possibles si la procédure d'ajustage du zéro échoue :

- Rétablissement de l'ajustage précédent, réalisable uniquement à l'aide de ProLink II et uniquement lors de la procédure d'ajustage en cours. Une fois que la boîte de dialogue Ajustage du zéro est fermée ou que le transmetteur est déconnecté, il n'est plus possible de rétablir l'ajustage précédent.
- Rétablissement de l'ajustage d'usine, réalisable via :
  - l'indicateur (voir la figure C-16)
  - ProLink II (voir la figure C-1)
  - un hôte PROFIBUS doté de la description EDD de l'appareil (voir la figure C-7 : Device > Zero Calibration > Restore factory zero).
  - les paramètres de bus PROFIBUS (index 42 du bloc Etalonnage ; voir le tableau D-3).

Si nécessaire, utilisez une de ces fonctions pour remettre le débitmètre en exploitation pendant que vous recherchez la cause de l'échec de l'ajustage (voir la section 11.8).

#### 10.5.1 Préparation pour l'ajustage du zéro

Pour préparer la procédure d'ajustage du zéro :

- 1. Mettre le transmetteur sous tension et le laisser chauffer pendant environ 20 minutes.
- 2. Faire circuler le fluide procédé dans le capteur jusqu'à ce que la température du capteur atteigne la température de service du fluide.
- 3. Fermer la vanne d'arrêt en aval du capteur.
- 4. S'assurer que le capteur est complètement rempli de fluide.
- 5. S'assurer de l'arrêt complet de l'écoulement à l'intérieur du capteur.

# 

Tout écoulement de fluide dans le capteur au cours de la procédure d'ajustage risque d'entraîner un mauvais ajustage du zéro et de fausser les mesures du débitmètre.

Pour effectuer un ajustage précis du zéro et garantir la précision des mesures, s'assurer que le débit est nul lors de l'ajustage du zéro.

### 10.5.2 Procédure d'ajustage du zéro

Pour ajuster le zéro :

- avec le bouton d'ajustage du zéro, voir la figure 10-17.
- avec l'indicateur, voir la figure 10-18. Pour une illustration de l'arborescence complète du menu d'ajustage du zéro de l'indicateur, voir la figure C-16.
- avec ProLink II, voir la figure 10-19.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, suivre la procédure illustrée à la figure 10-20.
- avec les paramètres de bus PROFIBUS, suivre la procédure illustrée à la figure 10-21.

Noter les points suivants :

- Si le transmetteur est doté d'un indicateur :
  - Le transmetteur n'a pas de bouton d'ajustage du zéro.
  - Si l'accès au menu de maintenance (off-line) de l'indicateur a été désactivé, il ne sera pas possible d'effectuer l'ajustage du zéro avec l'indicateur. Pour activer ou désactiver les fonctionnalités de l'indicateur, voir la section 8.9.5.
  - Il n'est pas possible de modifier la durée de l'ajustage avec l'indicateur. Si la durée de l'ajustage doit être modifiée, utiliser ProLink II ou un hôte PROFIBUS.
- Si le transmetteur n'a pas d'indicateur, il est doté d'un bouton d'ajustage du zéro.
  - Il n'est pas possible de modifier la durée de l'ajustage avec le bouton d'ajustage du zéro.
     Si la durée de l'ajustage doit être modifiée, utiliser ProLink II ou un hôte PROFIBUS.
  - Le bouton d'ajustage du zéro se trouve sur la carte de l'interface utilisateur, sous le couvercle du transmetteur (voir la figure 3-1). Pour enlever le couvercle du transmetteur, voir les instructions à la section 3.3).
  - Pour appuyer sur le bouton, insérer un petit objet pointu qui rentre dans l'orifice (3,5 mm).
     Maintenir le bouton enfoncé jusqu'à ce que le voyant d'état situé sur la face avant du transmetteur se mette à clignoter en jaune.
- Le voyant STATUS qui se trouve sur l'interface utilisateur clignote en jaune pendant toute la durée de l'ajustage.

#### Figure 10-17 Procédure d'ajustage du zéro avec le bouton d'ajustage du zéro





# Figure 10-18 Procédure d'ajustage du zéro avec l'indicateur



#### Figure 10-19 Procédure d'ajustage du zéro avec ProLink II

#### Figure 10-20 Procédure d'ajustage du zéro avec un hôte PROFIBUS et la description EDD







#### 10.6 Etalonnage en masse volumique

L'étalonnage en masse volumique comprend les points suivants :

- Pour tous les capteurs :
  - Premier point sur fluide de faible masse volumique D1
  - Deuxième point sur fluide de forte masse volumique D2
- Pour les capteurs Série T uniquement :
  - Troisième point sur fluide d'étalonnage D3 (optionnel)
  - Quatrième point sur fluide d'étalonnage D4 (optionnel)

Avec les capteurs Série T, les points d'étalonnage D3 et D4 peuvent améliorer la précision des mesures de masse volumique. Si les étalonnages sur D3 et D4 sont réalisés :

- Ne pas effectuer l'étalonnage sur les points D1 ou D2.
- Effectuer uniquement l'étalonnage sur D3 si un seul fluide d'étalonnage est disponible.
- Effectuer les étalonnages sur D3 et D4 si deux fluides d'étalonnage sont disponibles (autres que l'air et l'eau).

Les procédures d'étalonnage doivent être effectuées dans l'ordre indiqué, sans interruption.

Remarque : Avant d'effectuer l'étalonnage, noter les coefficients d'étalonnage en masse volumique actuels. Avec le logiciel ProLink II, il est possible de sauvegarder la configuration dans un fichier sur l'ordinateur. Si l'étalonnage échoue, rétablir les coefficients d'origine.

L'étalonnage en masse volumique peut être effectué avec ProLink II, un hôte PROFIBUS doté de la description EDD de l'appareil, ou les paramètres de bus PROFIBUS.

#### 10.6.1 Préparation pour l'étalonnage en masse volumique

Avant d'effectuer un étalonnage en masse volumique, passer en revue les informations contenues dans cette section.

#### **Exigences pour le capteur**

Pendant la procédure d'étalonnage, les tubes du capteur doivent être complètement remplis avec le fluide d'étalonnage et celui-ci doit circuler au débit minimum que permet l'application. Ceci se fait généralement en fermant la vanne d'arrêt située en aval du capteur et en remplissant le capteur avec le fluide d'étalonnage approprié.

#### Fluides d'étalonnage

L'étalonnage sur D1 (faible masse volumique) et D2 (forte masse volumique) requiert l'utilisation de deux fluides d'étalonnage de densité connue, en principe de l'air et de l'eau. Si le capteur est un modèle Série T, le fluide doit impérativement être de l'air pour D1 et de l'eau pour D2.

# 

Avec les capteurs Série T, le premier point d'étalonnage (D1) doit être effectuer sur de l'air et le deuxième point (D2) doit être effectué sur de l'eau.

Pour le troisième point d'étalonnage, le fluide D3 doit répondre aux spécifications suivantes :

- Masse volumique minimum de 600 kg/m<sup>3</sup>
- La différence entre la masse volumique du fluide D3 et celle de l'eau doit être au moins 100 kg/m<sup>3</sup>. La masse volumique du fluide D3 peut être soit supérieure, soit inférieure à la masse volumique de l'eau.

Pour le quatrième point d'étalonnage, le fluide D4 doit répondre aux spécifications suivantes :

- Masse volumique minimum de 600 kg/m<sup>3</sup>
- La différence entre la masse volumique des fluides D3 et D4 doit être au moins 100 kg/m<sup>3</sup>. La masse volumique du fluide D4 doit être supérieure à celle du fluide D3
- La différence entre la masse volumique du fluide D4 et celle de l'eau doit être au moins 100 kg/m<sup>3</sup>. La masse volumique du fluide D4 peut être soit supérieure, soit inférieure à la masse volumique de l'eau.

#### 10.6.2 Procédures d'étalonnage en masse volumique

Pour effectuer un étalonnage en masse volumique sur les points D1 et D2 :

- avec ProLink II, voir la figure 10-22.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure 10-23.
- avec les paramètres de bus PROFIBUS, voir la figure 10-24.

Pour effectuer un étalonnage en masse volumique sur le point D3 ou sur les points D3 et D4 :

- avec ProLink II, voir la figure 10-25.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure 10-26.
- avec les paramètres de bus PROFIBUS, voir la figure 10-27.



## Figure 10-22 Procédure d'étalonnage sur D1 et D2 avec ProLink II

#### Figure 10-23 Procédure d'étalonnage sur D1 et D2 avec un hôte PROFIBUS et la description EDD



(1) Les valeurs de K1 et K2 sont affichées dans la section Density du menu Configuration Parameters. Il peut être nécessaire de recharger les valeurs du transmetteur pour voir les résultats de la procédure d'étalonnage en masse volumique.



# Figure 10-24 Procédure d'étalonnage sur D1 et D2 avec les paramètres de bus PROFIBUS

Figure 10-25 Procédure d'étalonnage sur D3 ou D3 et D4 avec ProLink II





#### Figure 10-26 Procédure d'étalonnage sur D3 ou D3 et D4 avec un hôte PROFIBUS et la description EDD

(1) Les valeurs de K3 et K4 sont affichées dans la section Density du menu Configuration Parameters. Il peut être nécessaire de recharger les valeurs du transmetteur pour voir les résultats de la procédure d'étalonnage en masse volumique.

#### Figure 10-27 Procédure d'étalonnage sur D3 ou D3 et D4 avec les paramètres de bus PROFIBUS





#### 10.7 Etalonnage en température

L'étalonnage en température est une procédure d'étalonnage à deux points (décalage et pente). La procédure complète doit être réalisée sans interruption.

L'étalonnage en température ne peut être effectué qu'avec le logiciel ProLink II. Voir la figure 10-28.





# Chapitre 11 Diagnostic des pannes

### 11.1 Sommaire

Ce chapitre explique comment diagnostiquer les pannes du débitmètre. Il décrit les procédures permettant de :

- déterminer l'origine du problème ;
- déterminer s'il est possible ou non de résoudre le problème ;
- si possible, résoudre le problème ;
- contacter le service après-vente

*Remarque : Toutes les procédures décrites dans ce chapitre présument que la communication avec le transmetteur Modèle 2400S DP est établie et que les règles de sécurité en vigueur sur le site sont respectées.* 

*Remarque : L'interface utilisateur de Pocket ProLink est similaire à celle du logiciel ProLink II décrite dans ce chapitre.* 

# AVERTISSEMENT

L'utilisation des pattes du port service pour communiquer avec le transmetteur en atmosphère explosive peut causer une explosion.

En zone dangereuse, s'assurer de l'absence d'atmosphère explosive avant d'utiliser les pattes du port service pour communiquer avec le transmetteur.

#### 11.2 Liste des sujets de diagnostic abordés dans ce chapitre

Le tableau 11-1 indique tous les sujets de diagnostic qui sont abordés dans ce chapitre.

#### Tableau 11-1 Sujets de diagnostic et section à consulter

| Section        | Sujet                                          |
|----------------|------------------------------------------------|
| section 11.4   | Le transmetteur ne fonctionne pas              |
| section 11.5   | Panne de communication                         |
| section 11.6   | Vérification de l'appareil de communication    |
| section 11.7   | Diagnostic des problèmes de câblage            |
| section 11.7.1 | Vérification du câblage de l'alimentation      |
| section 11.7.2 | Vérification du câblage au réseau PROFIBUS     |
| section 11.7.3 | Vérification de la mise à la terre             |
| section 11.8   | Echec de l'ajustage du zéro ou de l'étalonnage |
| section 11.9   | Défauts de fonctionnement                      |

#### **Diagnostic des pannes**

| Section       | Sujet                                                      |
|---------------|------------------------------------------------------------|
| section 11.10 | Mode de simulation des grandeurs mesurées                  |
| section 11.11 | Voyants du transmetteur                                    |
| section 11.12 | Codes d'alarme                                             |
| section 11.13 | Vérifier la valeur des grandeurs mesurées                  |
| section 11.14 | Ecoulement biphasique                                      |
| section 11.15 | Vérification de l'intégrité des tubes de mesure du capteur |
| section 11.16 | Vérification de la configuration pour la mesure du débit   |
| section 11.17 | Vérification de la caractérisation                         |
| section 11.18 | Vérification de l'étalonnage                               |
| section 11.20 | Vérification des points de test                            |
| section 11.21 | Vérification des circuits du capteur                       |

#### Tableau 11-1 Sujets de diagnostic et section à consulter suite

#### 11.3 Service après-vente de Micro Motion

Si vous désirez parler à un technicien, contactez le service après-vente de Micro Motion. Voir les numéros de téléphone à la section 1.10.

Avant de contacter le service après-vente, nous vous conseillons de passer en revue les informations et les procédures de diagnostic contenues dans ce chapitre. Veuillez nous communiquer les résultats de vos recherches lors de votre appel.

### 11.4 Le transmetteur ne fonctionne pas

Si le transmetteur n'est pas alimenté, les trois voyants situés sur l'interface utilisateur seront éteints.

- 1. Vérifier l'alimentation du transmetteur (voir la section 11.7.1).
- 2. Vérifier la mise à la terre (voir la section 11.7.3).

Si ces procédures ne révèlent aucun problème de câblage, contacter le service après-vente de Micro Motion.

#### 11.5 Panne de communication

Si le transmetteur n'arrive pas à communiquer, il est possible que le câblage soit défectueux ou que l'appareil avec lequel il doit communiquer ne soit pas compatible. Vérifier le câblage et l'appareil de communication.

- Pour les problèmes de communication avec ProLink II ou Pocket ProLink, voir la section 11.6 et le chapitre 4.
- Pour les problèmes de communication avec l'hôte PROFIBUS, voir la section 11.6, la section 11.7.2 et le chapitre 5. Vérifier que l'hôte PROFIBUS est configuré pour utiliser l'adresse de nœud du transmetteur.

Si la communication doit se faire via le port infrarouge, vérifier que le port est activé et qu'il n'y a pas de connexion active via les pattes du port service du transmetteur. Voir la section 8.10.2.

#### 11.6 Vérification de l'appareil de communication

S'assurer que l'appareil de communication est compatible avec le transmetteur.

#### **Diagnostic des pannes**

#### **ProLink II**

La version 2.5 ou plus récente de ProLink II doit être utilisée. Pour vérifier la version de ProLink II :

- 1. Démarrer ProLink II.
- 2. Cliquer sur le menu Aide > A propos de ProLink.

Vérifier que ProLink II est capable de se connecter à d'autres appareils utilisant le même type de connexion (port service). S'il n'est pas possible de se connecter à d'autres appareils, voir le manuel de ProLink II pour diagnostiquer le problème.

#### **Pocket ProLink**

La version 1.3 ou plus récente de Pocket ProLink doit être utilisée. Pour vérifier la version de Pocket ProLink :

- 1. Lancer Pocket ProLink.
- 2. Taper sur l'icône d'information (le point d'interrogation) au bas de l'écran principal.

#### **Hôte PROFIBUS**

Le transmetteur Modèle 2400S DP est compatible avec tous les hôtes PROFIBUS. Vérifiez que l'hôte PROFIBUS est correctement configuré et qu'il est capable d'établir une connexion avec d'autres appareils sur le réseau.

#### 11.7 Diagnostic des problèmes de câblage

Utiliser les procédures décrites dans cette section pour diagnostiquer les problèmes de câblage du transmetteur.

# 

Le retrait du couvercle en atmosphère explosive lorsque le transmetteur est sous tension risque d'entraîner une explosion.

Si le transmetteur est installé en atmosphère explosive, couper l'alimentation et attendre cinq minutes avant de retirer le couvercle.

#### 11.7.1 Vérification du câblage de l'alimentation

Pour vérifier le câblage d'alimentation du transmetteur :

- 1. Prendre les mesures nécessaires afin de s'assurer que l'opération de vérification du câblage d'alimentation n'interfère pas avec les boucles de mesurage et de régulation existantes.
- 2. Couper l'alimentation du transmetteur.
- 3. Si le transmetteur se trouve en atmosphère explosive, attendre cinq minutes.
- 4. En se référant à la figure B-1 :
  - a. Desserrer les quatre vis imperdables du couvercle et ouvrir le couvercle du transmetteur.
  - b. Desserrer le deux vis imperdables de fixation du module de l'interface utilisateur.
  - c. Tirer délicatement sur le module de l'interface utilisateur pour le retirer.
- 5. En se référant à la figure B-2 :
  - a. Desserrer la vis du volet de protection.
  - b. Ouvrir le volet.

- 6. S'assurer que les conducteurs d'alimentation sont raccordés aux bonnes bornes. Voir la figure B-2.
- 7. Vérifier que les contacts sont bons au niveau des bornes et que les vis des bornes ne serrent pas sur la gaine isolante des conducteurs.
- 8. Examiner l'étiquette d'alimentation qui se trouve à l'intérieur du compartiment. S'assurer que la tension d'alimentation correspond à la tension spécifiée sur l'étiquette.
- 9. Mesurer la tension d'alimentation aux bornes du transmetteur et vérifier qu'elle se trouve dans les limites spécifiées. S'il s'agit d'une alimentation à courant continu, il peut être nécessaire de calculer la taille des conducteurs en fonction de la distance. Voir les spécifications de l'alimentation dans le manuel d'installation du transmetteur.

#### 11.7.2 Vérification du câblage au réseau PROFIBUS

Pour vérifier le câblage au réseau PROFIBUS :

- 1. Prendre les mesures nécessaires afin de s'assurer que l'opération de vérification du câblage n'interfère pas avec les boucles de mesurage et de régulation existantes.
- 2. En se référant à la figure B-1 :
  - a. Desserrer les quatre vis imperdables du couvercle et ouvrir le couvercle du transmetteur.
  - b. Desserrer le deux vis imperdables de fixation du module de l'interface utilisateur.
  - c. Tirer délicatement sur le module de l'interface utilisateur pour le retirer.
- 3. Inspecter le câble et le connecteur pour voir s'il sont endommagés. S'assurer que les fils sont raccordés aux bonnes bornes (voir la figure B-2), que les contacts sont bons aux deux extrémités, que le câble n'est pas comprimé, et que la gaine du câble n'est pas endommagée. Remplacer le câble si nécessaire.
- 4. Vérifier que le sélecteur de la résistance de terminaison interne est réglé correctement. Voir les figures 3-1 et 3-2.

## 11.7.3 Vérification de la mise à la terre

L'ensemble capteur / transmetteur doit être relié à la terre. Consulter le manuel d'installation du capteur pour les instructions de mise à la terre.

#### 11.8 Echec de l'ajustage du zéro ou de l'étalonnage

Si l'ajustage du zéro ou l'étalonnage échoue, le transmetteur envoie une alarme d'état indiquant la cause de l'échec. Pour les actions correctives, voir la section 11.12.

#### 11.9 Défauts de fonctionnement

Si un défaut de fonctionnement est détecté, déterminer la nature exacte du défaut en contrôlant les alarmes (voir la section 7.6). Une fois que la ou les alarmes associées avec le défaut ont été identifiées, aller à la section 11.12.

Certains problèmes peuvent être corrigés simplement en mettant le transmetteur hors tension pendant quelques secondes. La mise hors tension momentanée du transmetteur peut :

- faire disparaître l'alarme indiquant un échec de l'ajustage du zéro
- réactiver les totalisateurs, si ceux-ci étaient bloqués

# 11.10 Mode de simulation des grandeurs mesurées

Le mode de simulation permet de simuler des valeurs particulières de débit, de température et de masse volumique. Le mode de simulation peut servir à diagnostiquer différents types de problèmes :

- Il peut permettre de déterminer si le problème réside dans le transmetteur ou ailleurs dans le système. Par exemple, il arrive fréquemment que le signal oscille ou soit perturbé par un bruit. Cette perturbation peut être provoquée par l'hôte PROFIBUS, le débitmètre, une mise à la terre défectueuse, ou plusieurs autres facteurs. En paramétrant le signal de simulation pour qu'il produise un signal uniforme, il est possible de déterminer le point où le bruit apparaît.
- Il peut servir à analyser la réponse du système ou à ajuster le fonctionnement de la boucle de régulation.

Lorsque le mode de simulation est activé, les valeurs simulées se substituent aux signaux du capteur. La simulation affectera donc entre autres les valeurs suivantes :

- Toutes les valeurs de débit massique, de température et de masse volumique affichées sur l'indicateur ou transmises par communication numérique.
- Les valeurs des totalisateurs partiels et généraux en masse.
- Tous les calculs et toutes les données de volume affichées et transmises, y compris les totalisations partielles et générales en volume.
- Toutes les valeurs enregistrées par le module d'acquisition de données du ProLink II.

Il est donc important de s'assurer que le procédé est capable de gérer ces effets avant d'activer la simulation et de bien penser à désactiver la simulation une fois les tests terminés.

Remarque : Contrairement aux mesures réelles du débit massique et de la masse volumique, les valeurs simulées ne sont pas corrigées en température.

La simulation ne modifie aucune valeur de diagnostic.

Le mode de simulation est accessible uniquement avec ProLink II. Pour mettre en œuvre la simulation, voir la figure C-3 et procéder comme suit :

- 1. Activer le mode de simulation.
- 2. Pour simuler la mesure de débit massique :
  - a. Spécifier le type de simulation désiré : valeur fixe, dent de scie (signal triangulaire) ou signal sinusoïdal.
  - b. Entrer les valeurs requises.
    - S'il s'agit d'une valeur de simulation fixe, entrer cette valeur.
    - S'il s'agit d'un signal de simulation en dent de scie ou sinusoïdal, entrer la valeur minimum, la valeur maximum et la période du signal. Les valeurs minimum et maximum doivent être entrées dans l'unité de mesure configurée de la grandeur ; la période du signal est entrée en secondes.
- 3. Répéter l'étape 2 pour simuler les mesures de la température et de la masse volumique.

Pour utiliser le mode de simulation afin de déterminer l'origine du problème, activer le mode de simulation et vérifier le signal à différents points entre le transmetteur et le récepteur.

#### 11.11 Voyants du transmetteur

Le module de l'interface utilisateur est doté de trois voyants LED :

- Un voyant STATUS (Etat). Les différents états du voyant STATUS sont décrits au tableau 7-3. Si l'état du voyant indique la présence d'une alarme :
  - a. Visualiser le code de l'alarme en suivant la procédure décrite à la section 7.6.
  - b. Identifier l'alarme (voir la section 11.12).
  - c. Corriger le problème.
  - d. Si nécessaire, acquitter l'alarme comme décrit à la section 7.7.
- Un voyant NETWORK (Réseau). Les différents états du voyant NETWORK sont décrits au tableau 7-1. Le voyant NETWORK indique l'interaction de l'appareil avec le réseau ; il n'indique pas l'état de fonctionnement interne du transmetteur. La recherche des pannes doit donc se concentrer sur le réseau plutôt que sur l'appareil lui-même.
- Un voyant S/W ADDR (Adresse). Les différents états du voyant S/W ADDR sont décrits au tableau 7-2. Il peut être nécessaire de régler l'adresse de nœud du transmetteur Modèle 2400S DP, ou bien de configurer l'hôte PROFIBUS pour qu'il utilise l'adresse de nœud existante du transmetteur.

#### 11.12 Codes d'alarme

Les alarmes peuvent être visualisées sur l'indicateur (si le transmetteur est équipé d'un indicateur), avec ProLink II ou avec un hôte PROFIBUS. Le tableau 11-2 décrit les différents codes d'alarmes, les messages correspondants de ProLink II et de l'hôte PROFIBUS, les causes possibles, ainsi que les actions correctives.

Il est généralement préférable d'acquitter toutes les alarmes avant de commencer les procédures de diagnostic ; ceci permet d'éliminer les alarmes inactives de la liste afin de pouvoir se concentrer sur les alarmes actives.

| Code                        | Message EDD                                     |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| alarme                      | Message ProLink II                              | Cause                                                                                                                                                          | Solution possible                                                                                                                                                                                                                                                                                                                                         |
| A001                        | EEprom Checksum<br>Error (Core Processor)       | Détection d'un<br>désaccord non<br>corrigible du total<br>de contrôle                                                                                          | Mettre le transmetteur hors tension pendant quelques instants.                                                                                                                                                                                                                                                                                            |
|                             | Erreur Total de contrôle<br>EEPROM (PP)         |                                                                                                                                                                | Le transmetteur est peut-etre en panne. Contacter le service après-vente.                                                                                                                                                                                                                                                                                 |
| A002                        | RAM Test Error (Core<br>Processor)              | Erreur total de contrôle<br>ROM ou impossibilité<br>d'écrire dans la<br>mémoire RAM                                                                            | Mettre le transmetteur hors tension pendant quelques instants.                                                                                                                                                                                                                                                                                            |
|                             | Erreur RAM (PP)                                 |                                                                                                                                                                | Le transmetteur est peut-être en panne. Contacter le<br>service après-vente.                                                                                                                                                                                                                                                                              |
| A003 Se<br>Re<br>Inte<br>Pa | Sensor Not<br>Responding (No Tube<br>Interrupt) | Panne de continuité du<br>circuit d'excitation ou<br>de détection droit ou<br>gauche, ou déséquilibre<br>entre les bobines de<br>détection gauche et<br>droite | <ul> <li>S'assurer qu'il n'y a pas d'écoulement biphasique. Voir la section 11.14.</li> <li>Vérifier les points de test. Voir la section 11.20.</li> <li>Vérifier les circuits du capteur. Voir la section 11.21.</li> <li>Vérifier si les tubes du capteur sont colmatés.</li> <li>Si le problème persiste, contacter le service après-vente.</li> </ul> |
|                             | Panne du capteur                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                           |
| A004                        | Temperature sensor out of range                 | Combinaison des<br>alarmes A016 et A017                                                                                                                        | • Vérifier le circuit de la sonde de température du capteur.<br>Voir la section 11.21.                                                                                                                                                                                                                                                                    |
|                             | Panne sonde<br>de température                   |                                                                                                                                                                | <ul> <li>S'assurer que la température du procédé est dans les<br/>limites du capteur et du transmetteur.</li> <li>Si le problème persiste, contacter le service après-vente.</li> </ul>                                                                                                                                                                   |

#### Tableau 11-2 Codes d'alarmes et actions correctives

# Tableau 11-2 Codes d'alarmes et actions correctives suite

| Codo   | Message EDD                                                              |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| alarme | Message ProLink II                                                       | Cause                                                                                                                                                                                 | Solution possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A005   | Input Over-Range<br>Entrée hors limites                                  | Le débit mesuré<br>- excède le débit<br>maximum du capteur<br>(ΔT > 200 μs)                                                                                                           | <ul> <li>Si d'autres alarmes sont présentes (généralement A003, A006, A008, A102 ou A105), corriger ces alarmes en premier. Si l'alarme A005 persiste, continuer avec les suggestions qui suivent.</li> <li>Vérifier le procédé et s'assurer qu'il n'y a pas d'écoulement biphasique. Voir la section 11.14.</li> <li>Vérifier les points de test. Voir la section 11.20.</li> <li>Vérifier les circuits du capteur. Voir la section 11.21.</li> <li>Vérifier si les tubes du capteur sont abrasés. Voir la section 11.15.</li> <li>Si le problème persiste, contacter le service après-vente.</li> </ul>                                                                                                                                         |
| A006   | Transmitter Not<br>Characterized                                         | Combinaison des<br>alarmes A020 et A021                                                                                                                                               | Vérifier la caractérisation du débitmètre, notamment les valeurs FCF et K1. Voir la section 6.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | Non configuré                                                            | -                                                                                                                                                                                     | • Si le probleme persiste, contacter le service apres-vente.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A008   | Density Outside Limits<br>Masse volumique hors<br>limites                | La masse volumique<br>- du fluide mesuré<br>est supérieure à<br>10 000 kg/m <sup>3</sup>                                                                                              | <ul> <li>Si d'autres alarmes sont présentes (généralement A003, A006, A102 ou A105), corriger ces alarmes en premier. Si l'alarme A008 persiste, continuer avec les suggestions qui suivent.</li> <li>Vérifier le procédé. Vérifier les tubes du capteur (présence d'air, tubes partiellement remplis, tubes bouchés ou colmatés). Voir la section 11.15.</li> <li>S'assurer qu'il n'y a pas d'écoulement biphasique. Voir la section 11.14.</li> <li>Vérifier les circuits du capteur. Voir la section 11.21.</li> <li>Vérifier la configuration des coefficients d'étalonnage. Voir la section 6.2.</li> <li>Vérifier les points de test. Voir la section 11.20.</li> <li>Si le problème persiste, contacter le service après-vente.</li> </ul> |
| A009   | Transmitter Initializing /<br>Warming Up                                 | Le transmetteur vient<br>d'être mis sous tension.                                                                                                                                     | <ul> <li>Laisser chauffer le transmetteur (pendant environ<br/>30 secondes). L'alarme doit disparaître après quelques<br/>instants lorsque le transmetteur est prêt à fonctionner.</li> <li>Si l'alarme ne disparaît pas, s'assurer que les tubes du<br/>capteur sont complètement remplis ou complètement<br/>vides.</li> <li>Vérifier les circuits du capteur. Voir la section 11.21.</li> </ul>                                                                                                                                                                                                                                                                                                                                                |
|        | Initialisation du<br>transmetteur                                        |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| A010   | Calibration Failure                                                      | Ajustage du zéro : la                                                                                                                                                                 | Si cette alarme apparaît lors d'un ajustage du zéro,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | Echec de l'étalonnage                                                    | <ul> <li>valeur d'ajustement<br/>du zéro était supérieure<br/>à 3 μs.</li> <li>Etalonnage en tempé-<br/>rature ou masse<br/>volumique : nombreu-<br/>ses causes possibles.</li> </ul> | <ul> <li>s'assurer que le débit est complètement arrêté, puis<br/>relancer la procédure d'ajustage du zéro.</li> <li>Mettre le transmetteur hors tension pendant quelques<br/>instants, puis ressayer.</li> <li>Au besoin, rétablir l'ajustage du zéro d'origine pour<br/>remettre le débitmètre en service.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A011   | Excess Calibration<br>Correction, Zero too<br>Low<br>Débit < 0 excessif  | Voir A010<br>-                                                                                                                                                                        | <ul> <li>S'assurer que le débit est complètement arrêté, puis<br/>relancer la procédure d'ajustage du zéro.</li> <li>Mettre le transmetteur hors tension pendant quelques<br/>instants, puis ressayer.</li> <li>Au besoin, rétablir l'ajustage du zéro d'origine pour<br/>remettre le débitmètre en service.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A012   | Excess Calibration<br>Correction, Zero too<br>High<br>Débit > 0 excessif | Voir A010                                                                                                                                                                             | <ul> <li>S'assurer que le débit est complètement arrêté, puis<br/>relancer la procédure d'ajustage du zéro.</li> <li>Mettre le transmetteur hors tension pendant quelques<br/>instants, puis ressayer.</li> <li>Au besoin, rétablir l'ajustage du zéro d'origine pour<br/>remettre le débitmètre en service.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                           |

Valeurs par défaut

| Code   | Message EDD                               |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|--------|-------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| alarme | Message ProLink II                        | Cause                                                                    | Solution possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| A013   | Process too Noisy to<br>Perform Auto Zero | Voir A010                                                                | <ul> <li>Eliminer ou réduire les sources de bruit<br/>électromécaniques, puis ressayer. Les sources de bruit<br/>les plus communes sont : <ul> <li>les pompes mécaniques</li> <li>les contraintes mécaniques au niveau des raccords<br/>du capteur</li> <li>les interférences électriques</li> <li>les vibrations de machines proches du capteur</li> </ul> </li> <li>Mettre le transmetteur hors tension pendant quelques<br/>instants, puis ressayer.</li> <li>Au besoin, rétablir l'ajustage du zéro d'origine pour<br/>remettre le débitmètre en service.</li> </ul> |  |
|        | Débit trop instable                       |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| A014   | Transmitter Failed                        | Nombreuses causes                                                        | Mettre le transmetteur hors tension pendant quelques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|        | Panne du transmetteur                     | possibles                                                                | <ul> <li>Le transmetteur est peut-être en panne. Contacter le service après-vente.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| A016   | Line RTD Temperature<br>Out-Of-Range      | La valeur de résistance<br>calculée pour la sonde<br>de température du   | Vérifier le circuit de la sonde de température du capteur.<br>Voir la section 11.21.     Sasurar que la température du procédé est dans les                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|        | Temp Pt100 capteur<br>hors limites        | capteur est hors limites                                                 | <ul><li>Imites du capteur et du transmetteur.</li><li>Si le problème persiste, contacter le service après-vente.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| A017   | Meter RTD                                 | La valeur de résistance                                                  | Vérifier le circuit de la sonde de température du capteur.     Voir la section 11.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|        | Out-Of-Range                              | de température du                                                        | <ul> <li>S'assurer que la température du procédé est dans les limites du capteur et du transmetteur.</li> <li>Vérifier la caractérisation du débitmètre, notamment les valeurs FCF et K1. Voir la section 6.2.</li> <li>Si le problème persiste, contacter le service après-vente.</li> </ul>                                                                                                                                                                                                                                                                            |  |
|        | Temp Pt100 Série T<br>hors limites        | boitier est hors limites                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| A020   | Calibration Factors<br>Unentered          | s Le coefficient d'étalon-<br>nage en débit et/ou                        | Vérifier la caractérisation du débitmètre, notamment<br>valeurs FCF et K1. Voir la section 6.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|        | Coefficient<br>d'étalonnage absent        | après une réinitialisa-<br>tion générale.                                | • Si le probleme persiste, contacter le service apres-vente.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| A021   | Unrecognized/<br>Unentered Sensor<br>Type | Le capteur détecté est<br>de type monotube droit<br>mais la valeur de K1 | <ul> <li>Vérifier la caractérisation du débitmètre, notamment les valeurs FCF et K1. Voir la section 6.2.</li> <li>Vérifier le circuit de la sonde de température du capteur.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 |  |
|        | <i>Type de capteur<br/>incorrect (K1)</i> | capteur à tubes<br>courbes, ou vice versa.                               | <ul> <li>• Si le problème persiste, contacter le service après-vente.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| A029   | Internal<br>Communication Failure         | Panne de l'électronique<br>du transmetteur                               | Mettre le transmetteur hors tension pendant quelques instants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|        | Défaut de comm.<br>PIC/carte              |                                                                          | Contacter le service apres-vente. voir la section 11.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| A030   | Hardware/Software<br>Incompatible         | Le logiciel téléchargé<br>n'est pas compatible                           | Contacter le service après-vente. Voir la section 11.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|        | Type de carte incorrect                   | avec le type de carte                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| A031   | Undefined                                 | La tension                                                               | Vérifier l'alimentation du transmetteur. Voir la section 11.7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|        | Tension d'alimentation trop faible        | transmetteur est<br>trop faible                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |

## Tableau 11-2 Codes d'alarmes et actions correctives suite
# Tableau 11-2 Codes d'alarmes et actions correctives suite

| Code                                              | Message EDD                                               |                                                                                                          |                                                                                                                                                                                                                                                           |  |  |
|---------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| alarme                                            | Message ProLink II                                        | Cause                                                                                                    | Solution possible                                                                                                                                                                                                                                         |  |  |
| A032 <sup>(1)</sup>                               | Meter Verification Fault<br>Alarm                         | Procédure de validation<br>du débitmètre en cours                                                        | <ul> <li>Attendre que la procédure se termine.</li> <li>Si nécessaire, interrompre la procédure et la relancer</li> </ul>                                                                                                                                 |  |  |
|                                                   | Validation débitmètre /<br>sorties = niveau de<br>forçage | sorties forcées à leur<br>valeur de défaut                                                               | avec les sorties forcees sur la dernière valeur mesurée.                                                                                                                                                                                                  |  |  |
| A032 <sup>(2)</sup>                               | Outputs Fixed during<br>Meter Verification                | Procédure de validation<br>du débitmètre en cours                                                        | <ul> <li>Attendre que la procédure se termine.</li> <li>Si nécessaire, interrompre la procédure et la relancer<br/>avec les sorties non figées afin de ne pas interrompre le<br/>mesurage.</li> </ul>                                                     |  |  |
|                                                   | Validation en cours<br>avec sorties figées                | o execution avec les<br>sorties forcées à leur<br>valeur de défaut ou à la<br>dernière valeur<br>mesurée |                                                                                                                                                                                                                                                           |  |  |
| A033                                              | Sensor OK, Tubes<br>Stopped by Process                    | Aucun signal en<br>provenance des                                                                        | Vérifier le procédé. Vérifier les tubes du capteur<br>(présence d'air, tubes partiellement remplis, tubes                                                                                                                                                 |  |  |
|                                                   | Capteur OK /<br>Tubes bloqués par le<br>procédé           | droite et gauche, ce qui<br>suggère que les tubes<br>du capteur ne vibrent<br>pas.                       | bouches ou colmates). Voir la section 11.15.                                                                                                                                                                                                              |  |  |
| A034 <sup>(2)</sup>                               | Meter Verification<br>Failed                              | Les résultats du test ne sont pas dans les                                                               | Refaire le test. Si le test échoue à nouveau, voir la section 10.3.4.                                                                                                                                                                                     |  |  |
|                                                   | Echec de validation du<br>débitmètre                      | maximum admissible.                                                                                      |                                                                                                                                                                                                                                                           |  |  |
| A035 <sup>(2)</sup> Meter Verification<br>Aborted |                                                           | Le test ne s'est pas<br>achevé, peut-être à                                                              | Si nécessaire, lire le code d'interruption (voir la section 10.3.4) et effectuer l'action appropriée.                                                                                                                                                     |  |  |
|                                                   | Validation du<br>débitmètre interrompue                   | interruption manuelle.                                                                                   |                                                                                                                                                                                                                                                           |  |  |
| A102                                              | Drive Over-Range/<br>Partially Full Tube                  | La puissance<br>d'excitation                                                                             | Gain d'excitation des tubes du capteur trop élevé. Voir la section 11.20.3.                                                                                                                                                                               |  |  |
|                                                   | Excitation hors<br>limites/Tube non rempli                | son maximum                                                                                              | <ul> <li>Verifier les circuits du capteur. Voir la section 11.21.</li> <li>Si cette alarme apparaît seule, elle peut être ignorée.<br/>Si nécessaire, reconfigurer le niveau de gravité de<br/>l'alarme sur « Ignorer » (voir la section 8.8).</li> </ul> |  |  |
| A104                                              | Calibration-In-<br>Progress                               | Une procédure<br>d'étalonnage est en                                                                     | <ul> <li>Attendre que la procédure d'étalonnage se termine.</li> <li>S'il s'agit d'un ajustage du zéro, il est possible</li> </ul>                                                                                                                        |  |  |
|                                                   | Etalonnage en cours                                       | cours                                                                                                    | paramètre « Durée de l'ajustage » avant de relancer<br>l'ajustage.                                                                                                                                                                                        |  |  |
| A105                                              | Slug Flow                                                 | La masse volumique du                                                                                    | Voir la section 11.14.                                                                                                                                                                                                                                    |  |  |
|                                                   | Ecoulement biphasique                                     | limites d'écoulement<br>biphasique<br>programmées                                                        |                                                                                                                                                                                                                                                           |  |  |
| A107                                              | Power Reset Occurred                                      | Le transmetteur a été                                                                                    | <ul> <li>Aucune action requise.</li> <li>Si nécessaire, reconfigurer le niveau de gravité de<br/>l'alarme sur « Ignorer » (voir la section 8.8).</li> </ul>                                                                                               |  |  |
|                                                   | Coupure d'alimentation                                    | remis sous tension                                                                                       |                                                                                                                                                                                                                                                           |  |  |
| A116                                              | API Temperature<br>Out-of-Limits                          | La température du<br>prodédé est en dehors                                                               | <ul> <li>Vérifier le procédé.</li> <li>Vérifier la configuration de la table et de la température<br/>de référence APL Veir la castien 2 de la</li> </ul>                                                                                                 |  |  |
|                                                   | API : Température hors<br>limites                         | d'extrapolation définies<br>par l'API                                                                    |                                                                                                                                                                                                                                                           |  |  |

| Code                | Message EDD                                                | _                                                                                   |                                                                                                                                                                                                                                                           |  |  |
|---------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| alarme              | Message ProLink II                                         | Cause                                                                               | Solution possible                                                                                                                                                                                                                                         |  |  |
| A117                | API Density<br>Out-of-Limits                               | La masse volumique du procédé est en dehors                                         | <ul> <li>Vérifier le procédé.</li> <li>Vérifier la configuration de la table et de la masse<br/>volumique de référence API. Voir la section 8.14.</li> </ul>                                                                                              |  |  |
|                     | API : Masse volumique<br>hors limites                      | des limites<br>d'extrapolation définies<br>par l'API                                |                                                                                                                                                                                                                                                           |  |  |
| A120                | ED: Unable to fit curve data                               | Les valeurs configurées pour la courbe de                                           | <ul> <li>Vérifier la configuration de la fonctionnalité de<br/>densimétrie avancée. Voir la section 8.15.</li> </ul>                                                                                                                                      |  |  |
|                     | DA : Mise en équation<br>impossible                        | densite ne sont pas<br>conformes au niveau<br>de précision requis                   |                                                                                                                                                                                                                                                           |  |  |
| A121                | ED: Extrapolation alarm                                    | Les calculs de<br>densimétrie avancée                                               | <ul> <li>Vérifier la température du procédé.</li> <li>Vérifier la masse volumique du procédé.</li> <li>Vérifier la configuration de la fonctionnalité de<br/>densimétrie avancée.</li> <li>Si pécessaire, reconfigurer le piveau de gravité de</li> </ul> |  |  |
|                     | DA : Alarme<br>d'extrapolation                             | plage de valeurs                                                                    |                                                                                                                                                                                                                                                           |  |  |
|                     |                                                            | acceptables                                                                         | l'alarme sur Ignorer (voir la section 8.8).                                                                                                                                                                                                               |  |  |
| A131 <sup>(1)</sup> | Meter Verification Info<br>Alarm                           | Procédure de validation<br>du débitmètre en cours                                   | <ul> <li>Attendre que la procédure se termine.</li> <li>Si nécessaire, interrompre la procédure et la relancer<br/>avec les sorties forcées sur leur niveau de défaut.</li> </ul>                                                                         |  |  |
|                     | Validation débitmètre /<br>sorties = dern. val.<br>mesurée | sorties forcées à la<br>dernière valeur<br>mesurée                                  |                                                                                                                                                                                                                                                           |  |  |
| A131 <sup>(2)</sup> | Meter Verification in<br>Progress                          | Procédure de validation<br>du débitmètre en cours                                   | Attendre que la procédure se termine.                                                                                                                                                                                                                     |  |  |
|                     | Validation débitmètre<br>en cours                          | d'exécution avec<br>sorties non figées afin<br>de ne pas interrompre<br>le mesurage |                                                                                                                                                                                                                                                           |  |  |
| A132                | Simulation Mode Active                                     | Le mode de simulation                                                               | Désactiver le mode de simulation. Voir la section 11.10.                                                                                                                                                                                                  |  |  |
|                     | Mode de simulation<br>activé                               | estactive                                                                           |                                                                                                                                                                                                                                                           |  |  |
| A133                | PIC UI EEPROM Error                                        | Les données de la                                                                   | Contacter le service après-vente. Voir la section 11.3.                                                                                                                                                                                                   |  |  |
|                     | Erreur PIC UI<br>EEPROM                                    | module de l'interface<br>utilisateur sont<br>corrompues                             |                                                                                                                                                                                                                                                           |  |  |

#### Tableau 11-2 Codes d'alarmes et actions correctives suite

(1) Cette alarme s'applique uniquement aux transmetteurs dotés de la version d'origine de la fonctionnalité de validation du débitmètre
(2) Cette alarme s'applique uniquement aux transmetteurs dotés de la version évolumée de la fonctionnalité de validation du débitmètre

#### 11.13 Vérifier la valeur des grandeurs mesurées

Il est recommandé de noter la valeur des grandeurs suivantes dans des conditions normales d'exploitation afin de détecter si elles atteignent une valeur anormalement haute ou basse.

- Débit
- Masse volumique
- Température
- Fréquence de vibration des tubes
- Niveau de détection
- Niveau d'excitation

#### **Diagnostic des pannes**

Lors du diagnostic, vérifier la valeur des grandeurs mesurées au débit normal de service et à débit nul, en s'assurant que les tubes de mesure sont toujours complètement remplis de fluide. Mis à part le débit, il doit y avoir peu ou aucun changement des autres grandeurs entre les deux mesures. Si une différence importante est observée, noter ces valeurs et contacter le service après-vente de Micro Motion.

Une valeur anormale d'une grandeur mesurée peut avoir diverses origines. Le tableau 11-3 indique différentes causes et les solutions possibles.

| Symptôme Cause                                                           |                                                                                          | Solution possible                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Le débitmètre indique un débit<br>constant non nul lorsque l'écoulement  | Tuyauterie mal alignée (problème fréquent dans les nouvelles installations)              | Corriger l'alignement de la tuyauterie.                                                                                                                                                                                                                                                                           |
| dans la conduite est nul                                                 | Fuite au niveau de la vanne d'arrêt                                                      | Vérifier la fermeture de la vanne.                                                                                                                                                                                                                                                                                |
|                                                                          | Mauvais ajustage du zéro                                                                 | <ul> <li>Refaire l'ajustage du zéro, ou rétablir<br/>l'ajustage du zéro d'usine ou l'ajustage<br/>précédent. Voir la section 10.5.</li> </ul>                                                                                                                                                                     |
| Le débitmètre indique un débit<br>erratique non nul lorsque l'écoulement | Fuite au niveau d'une vanne ou<br>d'un joint                                             | Vérifier la tuyauterie.                                                                                                                                                                                                                                                                                           |
| dans la conduite est nul                                                 | Ecoulement biphasique                                                                    | Voir la section 11.14.                                                                                                                                                                                                                                                                                            |
|                                                                          | Tube de mesure colmaté                                                                   | <ul> <li>Vérifier le niveau d'excitation et la<br/>fréquence de vibration des tubes.<br/>Nettoyer la paroi interne des tubes<br/>de mesure.</li> </ul>                                                                                                                                                            |
|                                                                          | Mauvaise orientation du capteur                                                          | <ul> <li>Le capteur doit être orienté correcte-<br/>ment en fonction du fluide à mesurer.<br/>Voir le manuel d'installation du capteur.</li> </ul>                                                                                                                                                                |
|                                                                          | Problème de câblage du capteur                                                           | Vérifier les circuits du capteur. Voir la section 11.21.                                                                                                                                                                                                                                                          |
|                                                                          | Vibrations dans la tuyauterie à une<br>fréquence proche de celle des tubes<br>du capteur | <ul> <li>Vérifier l'environnement et éliminer la<br/>source de vibrations.</li> </ul>                                                                                                                                                                                                                             |
|                                                                          | Valeur d'amortissement trop basse                                                        | <ul> <li>Vérifier la configuration. Voir la section 8.4.</li> </ul>                                                                                                                                                                                                                                               |
|                                                                          | Contraintes mécaniques sur le capteur                                                    | <ul> <li>Vérifier le montage du capteur.<br/>S'assurer que : <ul> <li>Le capteur n'est pas utilisé pour<br/>supporter la tuyauterie.</li> <li>Le capteur n'est pas utilisé pour<br/>forcer l'alignement de la tuyauterie.</li> <li>Le capteur n'est pas trop lourd pour<br/>la tuyauterie.</li> </ul> </li> </ul> |
|                                                                          | Couplage parasite                                                                        | <ul> <li>Vérifier si un autre capteur ayant<br/>une fréquence de vibration similaire<br/>(± 0,5 Hz) se trouve à proximité<br/>du capteur.</li> </ul>                                                                                                                                                              |
| Le débitmètre indique un débit                                           | Ecoulement biphasique                                                                    | Voir la section 11.14.                                                                                                                                                                                                                                                                                            |
| erratique lorsque l'ecoulement dans<br>la conduite est stable            | Valeur d'amortissement trop basse                                                        | <ul> <li>Vérifier la configuration. Voir la section 8.4.</li> </ul>                                                                                                                                                                                                                                               |
|                                                                          | Tube de mesure colmaté                                                                   | <ul> <li>Vérifier le niveau d'excitation et la<br/>fréquence de vibration des tubes.<br/>Nettoyer la paroi interne des tubes<br/>de mesure.</li> </ul>                                                                                                                                                            |
|                                                                          | Niveau d'excitation excessif ou erratique                                                | • Voir la section 11.20.3.                                                                                                                                                                                                                                                                                        |
|                                                                          | Problème de câblage de la sortie                                                         | <ul> <li>Vérifier le câblage entre le transmetteur<br/>et l'appareil récepteur. Voir le manuel<br/>d'installation du transmetteur.</li> </ul>                                                                                                                                                                     |
|                                                                          | Appareil récepteur défectueux                                                            | • Essayer un autre appareil récepteur.                                                                                                                                                                                                                                                                            |
|                                                                          | Problème de câblage du capteur                                                           | Vérifier les circuits du capteur. Voir la section 11.21.                                                                                                                                                                                                                                                          |

# Tableau 11-3 Problèmes d'indication des grandeurs mesurées et solutions possibles

| Symptôme                                                                                 | Cause                                                   | Solution possible                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inexactitude des mesures de débit                                                        | Mauvais coefficient d'étalonnage<br>en débit            | Vérifier la caractérisation du capteur.<br>Voir la section 6.2.                                                                                                                                                                                                                             |
|                                                                                          | Unité de mesure inappropriée                            | <ul> <li>Vérifier la configuration. Voir la section 11.16.</li> </ul>                                                                                                                                                                                                                       |
|                                                                                          | Mauvais ajustage du zéro                                | <ul> <li>Refaire l'ajustage du zéro, ou rétablir<br/>l'ajustage du zéro d'usine ou l'ajustage<br/>précédent. Voir la section 10.5.</li> </ul>                                                                                                                                               |
|                                                                                          | Mauvais coefficients d'étalonnage<br>en masse volumique | Vérifier la caractérisation du capteur.<br>Voir la section 6.2.                                                                                                                                                                                                                             |
|                                                                                          | Mauvaise mise à la terre du débitmètre                  | • Voir la section 11.7.3.                                                                                                                                                                                                                                                                   |
|                                                                                          | Ecoulement biphasique                                   | • Voir la section 11.14.                                                                                                                                                                                                                                                                    |
|                                                                                          | Problème de câblage du capteur                          | • Vérifier les circuits du capteur. Voir la section 11.21.                                                                                                                                                                                                                                  |
| Inexactitude des mesures de masse                                                        | Problème avec le fluide procédé                         | Vérifier la qualité du fluide procédé.                                                                                                                                                                                                                                                      |
| volumique                                                                                | Mauvais coefficients d'étalonnage en masse volumique    | Vérifier la caractérisation du capteur.<br>Voir la section 6.2.                                                                                                                                                                                                                             |
|                                                                                          | Problème de câblage du capteur                          | • Vérifier les circuits du capteur. Voir la section 11.21.                                                                                                                                                                                                                                  |
|                                                                                          | Mauvaise mise à la terre du débitmètre                  | • Voir la section 11.7.3.                                                                                                                                                                                                                                                                   |
|                                                                                          | Ecoulement biphasique                                   | • Voir la section 11.14.                                                                                                                                                                                                                                                                    |
|                                                                                          | Couplage parasite                                       | <ul> <li>Vérifier si un autre capteur ayant<br/>une fréquence de vibration similaire<br/>(± 0,5 Hz) se trouve à proximité<br/>du capteur.</li> </ul>                                                                                                                                        |
|                                                                                          | Tube de mesure colmaté                                  | <ul> <li>Vérifier le niveau d'excitation et la<br/>fréquence de vibration des tubes.<br/>Nettoyer la paroi interne des tubes<br/>de mesure.</li> </ul>                                                                                                                                      |
|                                                                                          | Mauvaise orientation du capteur                         | <ul> <li>Le capteur doit être orienté correcte-<br/>ment en fonction du fluide à mesurer.<br/>Voir le manuel d'installation du capteur.</li> </ul>                                                                                                                                          |
|                                                                                          | Sonde de température défectueuse                        | <ul> <li>Vérifier la présence d'alarmes et suivre<br/>les procédures de diagnostic<br/>prescrites pour les alarmes présentes.</li> </ul>                                                                                                                                                    |
|                                                                                          | Les caractéristiques physiques du capteur ont changé.   | <ul> <li>Vérifier si les tubes du capteur sont<br/>corrodés, abrasés ou endommagés.<br/>Voir la section 11.15.</li> </ul>                                                                                                                                                                   |
| Indication de température très<br>différente de la température du<br>fluide mesuré       | Sonde de température défectueuse                        | <ul> <li>Vérifier la présence d'alarmes et suivre<br/>les procédures de diagnostic<br/>prescrites pour les alarmes présentes.</li> <li>Vérifier la configuration du paramètre<br/>« Utiliser l'entrée température »<br/>et le désactiver si nécessaire. Voir la<br/>section 9.3.</li> </ul> |
| Indication de température légèrement<br>différente de la température du<br>fluide mesuré | Perte de chaleur au niveau du capteur                   | Calorifuger le capteur.                                                                                                                                                                                                                                                                     |
| Indication de masse volumique<br>anormalement haute                                      | Tube de mesure colmaté                                  | Vérifier le niveau d'excitation et la fréquence de vibration des tubes. Nettoyer la paroi interne des tubes de mesure.                                                                                                                                                                      |
|                                                                                          | Coefficient K2 incorrect                                | Vérifier la caractérisation du capteur.<br>Voir la section 6.2.                                                                                                                                                                                                                             |

# Tableau 11-3 Problèmes d'indication des grandeurs mesurées et solutions possibles suite

| Symptôme                                   | Cause                                             | Solution possible                                                                                                                                              |
|--------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Indication de masse volumique              | Ecoulement biphasique                             | Voir la section 11.14.                                                                                                                                         |
| anormalement basse                         | Coefficient K2 incorrect                          | <ul> <li>Vérifier la caractérisation du capteur.<br/>Voir la section 6.2.</li> </ul>                                                                           |
| Fréquence des tubes anormalement haute     | Abrasion de la paroi interne des tubes du capteur | <ul> <li>Contacter le service après-vente.<br/>Voir la section 11.3.</li> </ul>                                                                                |
| Fréquence des tubes anormalement basse     | Tubes du capteur colmatés, corrodés<br>ou abrasés | <ul> <li>Nettoyer la paroi interne des tubes<br/>de mesure.</li> <li>Effectuer la procédure de validation<br/>du débitmètre. Voir la section 11.15.</li> </ul> |
| Niveaux de détection anormalement bas      | Plusieurs causes possibles                        | • Voir la section 11.20.4.                                                                                                                                     |
| Niveaux d'excitation anormalement<br>élevé | Plusieurs causes possibles                        | Voir la section 11.20.3.                                                                                                                                       |

### Tableau 11-3 Problèmes d'indication des grandeurs mesurées et solutions possibles suite

## 11.14 Ecoulement biphasique

Une alarme d'écoulement biphasique est générée quand masse volumique du fluide mesuré est en dehors des limites d'écoulement biphasique configurées. Un écoulement biphasique se produit lorsque des poches d'air ou de gaz se forment dans un écoulement liquide, ou lorsque des poches liquides se forment dans un écoulement gazeux. Voir la section 8.7 pour plus de renseignements sur la fonctionnalité de détection et de gestion des écoulements biphasiques.

Si un écoulement biphasique se produit :

- Vérifier si le procédé est sujet à des problèmes de cavitation, de vaporisation ou de fuites.
- Modifier l'orientation du capteur.
- Surveiller la masse volumique du procédé.
- Si nécessaire, modifier les limites d'écoulement biphasique programmées (voir la section 8.7).
  - Le fait d'augmenter la limite basse ou de diminuer la limite haute d'écoulement biphasique augmentera le risque de détection d'un écoulement biphasique.
  - Inversement, le fait de diminuer la limite basse ou d'augmenter la limite haute d'écoulement biphasique diminuera le risque de détection d'un écoulement biphasique.
- Si nécessaire, augmenter la durée autorisée d'écoulement biphasique programmée (voir la section 8.7).

#### 11.15 Vérification de l'intégrité des tubes de mesure du capteur

La dégradation des tubes de mesure du capteur due aux phénomènes de corrosion ou d'abrasion peut affecter la qualité des mesures. Pour s'assurer de l'intégrité structurelle des tubes de mesure, effectuer une procédure de validation du débitmètre. Voir le chapitre 10. Si la procédure de validation n'est pas disponible, effectuer une inspection visuelle, ou effectuer un étalonnage en masse volumique et vérifier si les valeurs de K1 et K2 ont dérivé. Si nécessaire, contacter le service après-vente de Micro Motion.

#### **Diagnostic des pannes**

#### 11.16 Vérification de la configuration pour la mesure du débit

Si l'unité de mesure du débit est incorrecte, le transmetteur risque de transmettre des valeurs erronées pour certaines grandeurs mesurées, ce qui risque d'entraîner des effets indésirables sur le procédé. S'assurer que l'unité de mesure du débit configurée est correcte. Faire attention aux abréviations ; par exemple, *g/min* représente le gramme par minute et non le gallon par minute. Voir la section 6.3.

## 11.17 Vérification de la caractérisation

Un transmetteur qui n'est pas correctement caractérisé pour le capteur auquel il est associé produira des mesures inexactes. Les coefficients d'étalonnage K1 et Flow Cal (FCF) doivent être appropriés pour le capteur. Si ces valeurs ne sont pas correctes, le capteur risque de ne pas fonctionner correctement ou de produire des signaux de mesure erronés.

S'il s'avère que certains paramètres de caractérisation sont erronés, effectuer une caractérisation complète du débitmètre. Voir la section 6.2.

#### 11.18 Vérification de l'étalonnage

Un mauvais étalonnage du débitmètre peut entraîner des mesures erronées. Si le débitmètre semble fonctionner correctement mais qu'il transmette des valeurs incorrectes, il se peut qu'il soit mal étalonné.

Micro Motion étalonne tous ses débitmètres à l'usine. Un mauvais étalonnage n'est donc probable que si le débitmètre a été réétalonné sur le site d'exploitation. Avant d'effectuer un étalonnage, envisager une procédure de validation du débitmètre ou de vérification de l'étalonnage (voir la section 10.2). Contacter Micro Motion pour toute assistance.

#### 11.19 Rétablissement de la configuration

Dans certains cas, il peut être plus simple de retourner à une configuration antérieure qui fonctionnait plutôt que d'essayer de diagnostiquer la configuration existante. Il existe deux options :

- Rétablir un fichier de configuration qui a été sauvegardé avec ProLink II. Voir la figure C-1.
- Rétablir la configuration d'usine. Pour ce faire :
  - avec ProLink II, voir la figure C-2. La version 2.6 ou supérieure de ProLink II est requise.
  - avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-10 et utiliser la commande Offline diagnostic info > Restore factory configuration.
  - avec les paramètres de bus PROFIBUS, utiliser l'index 51 du bloc Diagnostics (voir le tableau D-4).

Ces deux actions effaceront la configuration existante. Vérifier que la configuration existante a été sauvegardée ou notée par écrit avant de l'effacer.

#### 11.20 Vérification des points de test

Certaines alarmes indiquant une panne du capteur ou un dépassement de limite ne résultent pas nécessairement d'une panne du capteur. Pour diagnostiquer avec certitude une alarme indiquant une panne du capteur ou un dépassement de limite, contrôler les niveaux des points de test. Les *points de test* disponibles sont les tensions des détecteurs droit et gauche, le niveau d'excitation et la fréquence de vibration des tubes de mesure. Ces valeurs décrivent le fonctionnement du capteur.

## 11.20.1 Accès aux points de test

Pour accéder aux points de test :

- avec l'indicateur, affecter les points de test requis aux variables d'affichage. Voir la section 8.9.3.
- avec ProLink II :
  - a. Cliquer sur **ProLink > Niveaux de diagnostic**.
  - b. Observer ou noter les valeurs Fréquence tubes, Détecteur gauche, Détecteur droit et Niveau d'excitation affichées.
- avec un hôte PROFIBUS doté de la description EDD de l'appareil, voir la figure C-7 et utiliser le menu **Device > Meter diagnostics**.
- avec les paramètres de bus PROFIBUS, lire les index 32, 33, 35 et 36 du bloc Diagnostics (voir le tableau D-4).

#### 11.20.2 Interprétation des niveaux mesurés aux points de test

Pour interpréter les niveaux mesurés aux points de test :

- Si le niveau d'excitation est instable, négatif ou saturé, voir la section 11.20.3.
- Si les niveaux de détection ne correspondent pas à la valeur indiquée au tableau 11-4 par rapport à la fréquence de vibration des tubes du capteur, voir la section 11.20.4.
- Si les niveaux de détection correspondent à la valeur indiquée au tableau 11-4, relever les données de diagnostic et contacter le service après-vente de Micro Motion.

| Modèle du capteur <sup>(1)</sup>  | Niveau de détection                                                       |
|-----------------------------------|---------------------------------------------------------------------------|
| Capteurs ELITE <sup>®</sup> (CMF) | 3,4 mV crête-à-crête par Hz, basé sur la fréquence de vibration des tubes |
| Capteurs F025, F050, F100         | 3,4 mV crête-à-crête par Hz, basé sur la fréquence de vibration des tubes |
| Capteur F200                      | 2,0 mV crête-à-crête par Hz, basé sur la fréquence de vibration des tubes |
| Capteurs H025, H050, H100         | 3,4 mV crête-à-crête par Hz, basé sur la fréquence de vibration des tubes |
| Capteur H200                      | 2,0 mV crête-à-crête par Hz, basé sur la fréquence de vibration des tubes |
| Capteurs R025, R050, R100         | 3,4 mV crête-à-crête par Hz, basé sur la fréquence de vibration des tubes |
| Capteur R200                      | 2,0 mV crête-à-crête par Hz, basé sur la fréquence de vibration des tubes |
| Capteurs Série T                  | 0,5 mV crête-à-crête par Hz, basé sur la fréquence de vibration des tubes |
| Capteurs CMF400 S.I.              | 2,7 mV crête-à-crête par Hz, basé sur la fréquence de vibration des tubes |

#### Tableau 11-4 Niveaux de détection du capteur

(1) Si votre capteur n'est pas mentionné dans cette liste, contactez le service après-vente.

#### **11.20.3 Problèmes avec le niveau d'excitation**

Les problèmes liés au niveau d'excitation peuvent apparaître sous différentes formes :

- Niveau saturé ou excessif (proche de 100%)
- Niveau instable (par exemple une oscillation rapide entre une valeur positive et négative)
- Niveau négatif

Voir le tableau 11-5 pour une liste des causes et des solutions possibles.

| Diagnostic | des | pannes |
|------------|-----|--------|
|------------|-----|--------|

| Cause                                                                            | Solution possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecoulement biphasique                                                            | Voir la section 11.14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cavitation ou vaporisation                                                       | <ul> <li>Augmenter la pression en amont ou la contre pression en aval du capteur.</li> <li>Si une pompe est installée en amont du capteur, augmenter la distance entre la pompe et le capteur.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 |
| Tube de mesure colmaté                                                           | <ul> <li>Nettoyer la paroi interne des tubes de mesure.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Immobilisation mécanique<br>des tubes du capteur                                 | <ul> <li>S'assurer que les tubes du capteur sont libres de vibrer. Les problèmes possibles incluent : <ul> <li>Contraintes mécaniques causées par un désalignement de la tuyauterie. Vérifier si le capteur est soumis à des contraintes mécaniques et les éliminer.</li> <li>Déplacement latéral du tube causé par un coup de bélier. Si ceci est la cause présumée du problème, contacter le service après-vente.</li> <li>Gauchissement des tubes causé par une surpressurisation. Si ceci est la cause présumée du problème, contacter le service après-vente.</li> </ul> </li> </ul> |
| Type de capteur configuré incorrect                                              | <ul> <li>Vérifier la configuration du type de capteur, puis vérifier la caractérisation du capteur.<br/>Voir la section 6.2.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bobine d'excitation ou de détection ouverte                                      | Contacter le service après-vente.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Panne de l'électronique,<br>tube de mesure fissuré ou<br>déséquilibre du capteur | Contacter le service après-vente.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

# Tableau 11-5 Causes et solutions des problèmes liés au niveau d'excitation

## 11.20.4 Tension de détection trop faible

Un niveau de détection trop faible peut avoir diverses causes. Voir le tableau 11-6.

#### Tableau 11-6 Causes et solutions d'une tension de détection trop faible

| Cause                                                 | Solution possible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ecoulement biphasique                                 | Voir la section 11.14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Aucune vibration des tubes du capteur                 | Vérifier si les tubes sont colmatés.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Présence d'humidité dans<br>l'électronique du capteur | Eliminer l'humidité.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Capteur endommagé                                     | <ul> <li>S'assurer que le capteur est libre de vibrer. Les problèmes possibles incluent : <ul> <li>Contraintes mécaniques causées par un désalignement de la tuyauterie. Vérifier si le capteur est soumis à des contraintes mécaniques et les éliminer.</li> <li>Déplacement latéral du tube causé par un coup de bélier. Si ceci est la cause présumée du problème, contacter le service après-vente.</li> <li>Gauchissement des tubes causé par une surpressurisation. Si ceci est la cause présumée du problème, contacter le service après-vente.</li> </ul> </li> <li>Tester les circuits du capteur. Voir la section 11.21.</li> <li>Contacter le service après-vente.</li> </ul> |

#### **11.21** Vérification des circuits du capteur

Une bobine ou une sonde de température défectueuse peut générer plusieurs types d'alarmes (panne du capteur, grandeur hors limite, etc.). La vérification de l'intégrité de ces circuits inclut :

- l'inspection du câble de liaison entre le transmetteur et le capteur
- le mesurage de la résistance des circuits du capteur
- la recherche de courts-circuits dans les circuits du capteur

Remarque : Pour vérifier les circuits du capteur, le transmetteur doit être retiré du capteur. Avant de réaliser ces tests, vérifier que tous les autres tests de diagnostic applicables ont été effectués. Les capacités de diagnostic du transmetteur Modèle 2400S sont exhaustives et fournissent des informations qui peuvent se révéler beaucoup plus utiles que ces tests.

- 1. Prendre les mesures nécessaires afin de s'assurer que la procédure de vérification des circuits du capteur n'interfère pas avec les boucles de mesurage et de régulation du procédé.
- 2. Couper l'alimentation du transmetteur.
- 3. Si le transmetteur est installé en atmosphère explosive, attendre cinq minutes.
- 4. Vérifier le câble de liaison avec capteur :
  - a. En se référant à la figure B-1, dévisser les quatre vis imperdables du couvercle du transmetteur et enlever le couvercle.
  - b. Desserrer les deux vis imperdable de l'interface utilisateur.
  - c. Soulever délicatement le module de l'interface utilisateur pour le dégager du connecteur qui se trouve sur le transmetteur.
  - d. Déconnecter le câble PROFIBUS et les fils de l'alimentation. Voir la figure B-2.
  - e. Le transmetteur est maintenu en place dans le boîtier à l'aide de deux vis imperdables à tête hexagonale de 2,5 mm. Desserrer ces vis et soulever délicatement le transmetteur pour le retirer du boîtier. Laisser pendre le transmetteur temporairement hors du boîtier.
  - f. S'assurer que le connecteur du câble est bien enfoncé et que la connexion est bonne. Si le connecteur n'était pas bien enfoncé, le remettre en place, réassembler le transmetteur, et vérifier le fonctionnement du débitmètre.
  - g. Si le problème n'est pas résolu, débrancher le câble de liaison au capteur en retirant l'anneau d'arrêt (voir la figure 11-1) et en tirant sur le connecteur. Mettre le transmetteur de côté.
  - h. Vérifier si le câble est endommagé. S'il est endommagé, contacter Micro Motion.

Figure11-1 Accès aux broches ces circuits du capteur



Valeurs par défaut

5. A l'aide d'un multimètre numérique, mesurer la résistance des différents circuits du capteur. Le tableau 11-7 indique quels sont ces circuits et la plage de résistance de chacun. Voir la figure 11-2 pour identifier les broches de ces circuits sur le tube de passage du capteur. Pour chaque circuit, placer les pointes de touche du multimètre sur chaque paire de broches et noter la valeur de la résistance.

Remarque : Pour accéder à ces broches, il peut être nécessaire d'enlever le collier de serrage et de tourner le transmetteur dans une autre position.

Dans ce test :

- Il ne doit y avoir aucun circuit ouvert, c'est-à-dire aucune résistance infinie.
- Les valeurs de résistance nominales varient de 40% / 100 °C. Toutefois, pour le diagnostic d'une panne, il est plus important de déterminer si un circuit est coupé (résistance infinie) ou en court-circuit (résistance quasi nulle) que de s'attacher à des valeurs légèrement différentes de celles indiquées ci-dessous.
- La résistance des circuits de détection gauche et droite doit être identique (± 10%).
- Les valeurs de résistance mesurées doivent être stables.
- La valeur exacte de la résistance dépend du modèle de capteur et de sa date de fabrication. Pour des valeurs plus précises, contacter Micro Motion.

Si un problème est détecté, ou si une des résistances est hors limites, contacter le service après-vente.

| Circuit                                                                                | Paires                     | Plage nominale de résistance <sup>(1)</sup> |
|----------------------------------------------------------------------------------------|----------------------------|---------------------------------------------|
| Bobine d'excitation                                                                    | Excitation + et -          | 8–1500 Ω                                    |
| Détecteur gauche                                                                       | Détecteur gauche + et -    | 16–1000 Ω                                   |
| Détecteur droit                                                                        | Détecteur droit + et –     | 16–1000 Ω                                   |
| Sonde de température du capteur                                                        | Pt100 + et Pt100 -         | 100 Ωà 0 °C + 0,38675 Ω/ °C                 |
| CLF/Pt100                                                                              |                            |                                             |
| Capteurs Série T                                                                       | Pt100 – et Pt100 composite | 300 Ωà 0 °C +1,16025 Ω/ °C                  |
| Capteurs CMF400 S.I.                                                                   | Pt100 – et résistance fixe | 39,7–42,2 Ω                                 |
| • Capteurs F300<br>• Capteurs H300<br>• Capteurs F025A, F050A, F100A<br>• Capteurs CMS | Pt100 – et résistance fixe | 44,3–46,4 Ω                                 |
| Autres capteurs                                                                        | Pt100 – et CLF             | 0                                           |

## Tableau 11-7 Valeurs nominales de résistance des circuits du capteur

(1) La valeur exacte de la résistance dépend du modèle de capteur et de sa date de fabrication. Pour des valeurs plus précises, contacter Micro Motion.





(1) Fonctionne en résistance fixe avec les capteurs suivants : F300, H300, F025A, F050A, F100A, CMF400 S.I., CMFS. Fonctionne en sonde de température composite avec les capteurs Série T. Pour tous les autres capteurs, fonctionne en Compensateur de Longueur de Fil (CLF).

6. A l'aide du multimètre, vérifier la présence de courts-circuits en testant chaque broche comme suit :

- a. Vérifier chaque broche par rapport à la masse du capteur.
- b. Vérifier chaque broche par rapport aux autres broches comme décrit ci-dessous :
  - Bobine d'excitation + par rapport toutes les autres broches sauf Bobine d'excitation -
  - Bobine d'excitation par rapport toutes les autres broches sauf Bobine d'excitation +
  - Détecteur gauche + par rapport toutes les autres broches sauf Détecteur gauche -
  - Détecteur gauche par rapport toutes les autres broches sauf Détecteur gauche +
  - Détecteur droit + par rapport toutes les autres broches sauf Détecteur droit -
  - Détecteur droit par rapport toutes les autres broches sauf Détecteur droit +
  - Pt100 + par rapport toutes les autres broches sauf Pt100 et CLF/Pt100
  - Pt100 par rapport toutes les autres broches sauf Pt100 + et CLF/Pt100
  - CLF/Pt100 par rapport toutes les autres broches sauf Pt100 + et Pt100 -

Avec le multimètre réglé sur le calibre le plus haut, la résistance doit être infinie pour chaque broche. Toute résistance détectée indique une mise à la masse de cette broche ou un court-circuit entre les broches. Voir le tableau 11-8 pour les causes possibles et les solutions. S'il n'est pas possible de résoudre le problème, contacter le service après-vente.

#### Tableau 11-8 Causes possibles et solutions en cas de court-circuit sur un circuit du capteur

| Cause                                                                          | Solution possible                                                                                                     |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Humidité dans le boîtier du transmetteur                                       | <ul> <li>S'assurer que l'intérieur du boîtier du transmetteur est sec et qu'il<br/>n'y a pas de corrosion.</li> </ul> |
| Humidité dans le boîtier du capteur                                            | Contacter le service après-vente.                                                                                     |
| Court-circuit au niveau du tube de passage entre le capteur et le transmetteur | Contacter le service après-vente.                                                                                     |

#### **Diagnostic des pannes**

Pour réassembler le débitmètre :

- 1. Prendre les mesures nécessaires afin de s'assurer que la reconnexion du transmetteur n'interfère pas avec les boucles de mesurage et de régulation du procédé.
- 2. Réinstaller le connecteur de raccordement au capteur sur le tube de passage à l'intérieur du boîtier du transmetteur :
  - a. Tourner le connecteur jusqu'à ce qu'il s'enfonce sur les broches.
  - b. Appuyer sur le connecteur jusqu'à ce que l'épaulement du connecteur affleure avec l'encoche du tube de passage.
  - c. Remettre l'anneau d'arrêt en place en le glissant par-dessus l'épaulement du connecteur (voir l'étiquette d'instructions).
- 3. Remettre l'électronique du transmetteur dans le boîtier et serrer les vis.
- 4. Reconnecter les fils d'alimentation, refermer le volet de protection et serrer les vis du volet.
- 5. Reconnecter le câble PROFIBUS aux bornes PROFIBUS du transmetteur.
- 6. Enficher le module de l'interface utilisateur sur le transmetteur. Il peut être orienté dans quatre positions différentes ; sélectionner la position la plus appropriée.
- 7. Serrer les vis de fixation de l'interface utilisateur.
- 8. Remettre le couvercle du transmetteur en place et serrer les vis du couvercle.
- 9. Remettre le transmetteur sous tension.

# Annexe A Valeurs par défaut et plages de réglage

#### A.1 Sommaire

Cette annexe indique les valeurs par défaut de la plupart des paramètres du transmetteur et, si applicable, la plage de réglage de ces paramètres.

Ces valeurs par défaut correspondent aux valeurs des paramètres après une réinitialisation générale du transmetteur. Suivant la commande, certaines de ces valeurs peuvent avoir été configurées à l'usine.

# A.2 Valeur par défaut et plage de réglage des paramètres les plus usités

Le tableau qui suit indique la valeur par défaut et la plage de réglage des paramètres les plus usités.

| Туре                       | Paramètre                            | Valeur par défaut | Plage             | Commentaires                                                                                                                                                                                                                             |
|----------------------------|--------------------------------------|-------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Débit                      | Sens d'écoulement                    | Normal            |                   |                                                                                                                                                                                                                                          |
|                            | Amortissement du débit               | 0,64 s            | 0,0–40,96 s       | La valeur entrée par l'utilisateur<br>est ramenée vers le bas à la<br>valeur la plus proche dans une<br>liste de valeurs prédéfinies.<br>Si le fluide mesuré est un gaz,<br>la valeur d'amortissement mini-<br>mum recommandée est 2,56. |
|                            | Coefficient d'étalonnage<br>en débit | 1.00005.13        |                   | Pour les capteurs Série T,<br>cette valeur représente les<br>facteurs FCF et FT enchaînés.<br>Voir la section 6.2.2.                                                                                                                     |
|                            | Unité de débit massique              | g/s               |                   |                                                                                                                                                                                                                                          |
|                            | Seuil bas débit masse                | 0,0 g/s           |                   | <ul> <li>Réglage recommandé :</li> <li>Utilisation standard :</li> <li>0,2 % du débit maximum<br/>du capteur</li> <li>Batch vide-plein-vide :</li> <li>2,5% du débit maximum<br/>du capteur</li> </ul>                                   |
|                            | Type de débit volumique              | Liquide           |                   |                                                                                                                                                                                                                                          |
|                            | Unité de débit volumique             | l/s               |                   |                                                                                                                                                                                                                                          |
|                            | Seuil bas débit volume               | 0,0 l/s           | 0,0– <i>x</i> l/s | <i>x</i> est obtenu en multipliant le<br>coeff. d'étal. en débit par 0,2,<br>en utilisant le l/s comme unité.                                                                                                                            |
| Facteurs                   | Facteur masse                        | 1,00000           |                   |                                                                                                                                                                                                                                          |
| d'ajustage<br>de l'étalon- | Facteur masse volumique              | 1,00000           |                   |                                                                                                                                                                                                                                          |
| nage                       | Facteur volume                       | 1,00000           |                   |                                                                                                                                                                                                                                          |

#### Tableau A-1 Valeurs par défaut et plages de réglage des paramètres de configuration

| Туре                  | Paramètre                     | Valeur par défaut     | Plage                       | Commentaires                                                                                                                          |
|-----------------------|-------------------------------|-----------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Masse<br>volumique    | Amortissement masse volumique | 1,28 s                | 0,0–40,96 s                 | La valeur entrée par l'utilisateur<br>est ramenée à la valeur la<br>plus proche dans une liste de<br>valeurs prédéfinies.             |
|                       | Unité de masse volumique      | g/cm <sup>3</sup>     |                             |                                                                                                                                       |
|                       | Seuil bas masse volumique     | 0,2 g/cm <sup>3</sup> | 0,0 à 0,5 g/cm <sup>3</sup> |                                                                                                                                       |
|                       | D1                            | 0.00000               |                             |                                                                                                                                       |
|                       | D2                            | 1.00000               |                             |                                                                                                                                       |
|                       | K1                            | 1000.00               |                             |                                                                                                                                       |
|                       | K2                            | 50000.00              |                             |                                                                                                                                       |
|                       | FD                            | 0.00000               |                             |                                                                                                                                       |
|                       | DT (TC)                       | 4.44                  |                             |                                                                                                                                       |
| Ecoulement biphasique | Limite basse d'écoul. biph.   | 0,0 g/cm <sup>3</sup> | 0,0–10,0 g/cm <sup>3</sup>  |                                                                                                                                       |
|                       | Limite haute d'écoul. biph.   | 5,0 g/cm <sup>3</sup> | 0,0–10,0 g/cm <sup>3</sup>  |                                                                                                                                       |
|                       | Durée écoul. biph.            | 0,0 s                 | 0,0-60,0 s                  |                                                                                                                                       |
| Température           | Amortissement<br>température  | 4,8 s                 | 0,0–38,4 s                  | La valeur entrée par l'utilisateur<br>est ramenée vers le bas à la<br>valeur la plus proche dans une<br>liste de valeurs prédéfinies. |
|                       | Unité de température          | °C                    |                             |                                                                                                                                       |
|                       | Coefficient d'étalonnage      | 1.00000T0.0000        |                             |                                                                                                                                       |
| Pression              | Unité de pression             | PSI                   |                             |                                                                                                                                       |
|                       | Fact. influence débit         | 0,00000               |                             |                                                                                                                                       |
|                       | Fact. influence masse vol     | 0,00000               |                             |                                                                                                                                       |
|                       | Pression d'étalonnage         | 0,00000               |                             |                                                                                                                                       |
| Capteur<br>Série T    | D3                            | 0,00000               |                             |                                                                                                                                       |
|                       | D4                            | 0,00000               |                             |                                                                                                                                       |
|                       | K3                            | 0,00000               |                             |                                                                                                                                       |
|                       | K4                            | 0,00000               |                             |                                                                                                                                       |
|                       | FTG                           | 0,00000               |                             |                                                                                                                                       |
|                       | FFQ                           | 0,00000               |                             |                                                                                                                                       |
|                       | DTG                           | 0,00000               |                             |                                                                                                                                       |
|                       | DFQ1                          | 0,00000               |                             |                                                                                                                                       |
|                       | DFQ2                          | 0,00000               |                             |                                                                                                                                       |
| Evénements<br>1 à 5   | Туре                          | Seuil bas             |                             |                                                                                                                                       |
|                       | Grandeur                      | Masse volumique       |                             |                                                                                                                                       |
|                       | Valeur de seuil               | 0,0                   |                             |                                                                                                                                       |
|                       | Unité grandeur                | g/cm <sup>3</sup>     |                             |                                                                                                                                       |

# Tableau A-1 Valeurs par défaut et plages de réglage des paramètres de configuration suite

# Tableau A-1 Valeurs par défaut et plages de réglage des paramètres de configuration suite

| Туре                            | Paramètre                                      | Valeur par défaut       | Plage           | Commentaires |
|---------------------------------|------------------------------------------------|-------------------------|-----------------|--------------|
| Indicateur                      | Rétro-éclairage                                | Allumé                  |                 |              |
|                                 | Intensité du rétro-éclairage                   | 63                      | 0 à 63          |              |
|                                 | Période de rafraîchissement                    | 200 millisecondes       | 100 à 10 000 ms |              |
|                                 | Variable d'affichage 1                         | Débit massique          |                 |              |
|                                 | Variable d'affichage 2                         | Total partiel en masse  |                 |              |
|                                 | Variable d'affichage 3                         | Débit volumique         |                 |              |
|                                 | Variable d'affichage 4                         | Total partiel en volume |                 |              |
|                                 | Variable d'affichage 5                         | Masse volumique         |                 |              |
|                                 | Variable d'affichage 6                         | Température             |                 |              |
|                                 | Variable d'affichage 7                         | Niveau d'excitation     |                 |              |
|                                 | Variables d'affichage 8<br>à 15                | Néant                   |                 |              |
|                                 | Activation/blocage totalisations               | Désactivé               |                 |              |
|                                 | RAZ totalisations                              | Désactivé               |                 |              |
|                                 | Défilement automatique                         | Désactivé               |                 |              |
|                                 | Accès menu off-line                            | Activé                  |                 |              |
|                                 | Mot de passe menu off-line                     | Désactivé               |                 |              |
|                                 | Accès au menu d'alarmes                        | Activé                  |                 |              |
|                                 | Acquit simultané de toutes les alarmes         | Activé                  |                 |              |
|                                 | Mot de passe                                   | 1234                    |                 |              |
|                                 | Vitesse de défilement                          | 10 s                    |                 |              |
| Communi-<br>cation<br>numérique | Adresse de nœud<br>PROFIBUS-DP                 | 126                     |                 |              |
|                                 | Port infrarouge                                | Désactivé               |                 |              |
|                                 | Verrouillage en écriture<br>du port infrarouge | Activé (lecture seule)  |                 |              |
|                                 | Adresse Modbus                                 | 1                       |                 |              |
|                                 | Support Modbus ASCII                           | Activé                  |                 |              |
|                                 | Ordre des octets à virgule flottante           | 3–4–1–2                 |                 |              |
|                                 | Forçage sur défaut                             | Néant                   |                 |              |
|                                 | Temporisation du forçage sur défaut            | 0 s                     | 0,0 à 60,0 s    |              |

# Annexe B Illustrations des éléments du transmetteur

#### B.1 Sommaire

Cette annexe contient les illustrations des différents éléments du transmetteur et des bornes de raccordement. Ces illustrations peuvent être utiles lors du diagnostic des pannes du débitmètre. Pour des informations plus détaillées relatives à l'installation et aux procédures de câblage, voir le manuel d'installation du transmetteur.

#### B.2 Eléments constitutifs du transmetteur

Le transmetteur Modèle 2400S DP est monté sur le capteur. La figure B-1 est une vue éclatée du transmetteur Modèle 2400S DP et de ses composants.

#### Figure B-1 Vue éclatée du transmetteur Modèle 2400S DP



#### B.3 Bornes du transmetteur

La figure B-2 montre les bornes et les connecteurs qui se trouvent sous le module de l'interface utilisateur.

- Pour accéder au connecteur de raccordement au bus de terrain PROFIBUS, il faut ouvrir le couvercle du transmetteur et retirer le module de l'interface utilisateur.
- Pour accéder aux bornes d'alimentation ou à la vis de masse interne, il faut ouvrir le couvercle du transmetteur, retirer le module de l'interface utilisateur, desserrer la vis du volet de protection et ouvrir le volet de protection.

Pour des instructions plus détaillées, voir le manuel d'installation du transmetteur.

#### Figure B-2 Bornes



# Annexe C Arborescences des menus du transmetteur Modèle 2400S DP

# C.1 Sommaire

Cette annexe contient les arborescences logicielles suivantes pour le transmetteur Modèle 2400S DP :

- Menus de ProLink II
  - Menu principal : voir la figure C-1
  - Menu de configuration : voir les figures C-2 et C-3
- Menus de la description EDD de l'appareil
  - Menu principal : voir la figure C-4
  - Menu View : voir la figure C-5
  - Menu Device : voir les figures C-6 et C-7
  - Menu Configuration : voir les figures C-8 à C-11
  - Menu Specialist : voir la figure C-12
- Menus de l'indicateur
  - Menu de maintenance (offline) Niveau supérieur : voir la figure C-13
  - Menu de maintenance Informations sur les versions : voir la figure C-14
  - Menu de maintenance Configuration : voir la figure C-15
  - Menu de maintenance Ajustage du zéro : voir la figure C-16
  - Menu de maintenance Validation du débitmètre : voir la figure C-17
- Pour des informations sur les codes et abréviations utilisées par l'indicateur, voir l'annexe E.

Pour les arborescences des procédures de validation et d'étalonnage, voir le chapitre 10.

#### C.2 Informations sur les versions logicielles

Ces arborescences sont basées sur les versions logicielles suivantes :

- Logiciel du transmetteur : version 1.10
- Logiciel ProLink II : version 2.5
- EDD : version 1

Les arborescences peuvent être légèrement différentes avec différentes versions de ces éléments.

#### Arborescences des menus du transmetteur Modèle 2400S DP

#### C.3 Arborescences des menus de ProLink II

#### Figure C-1 Menu principal de ProLink II



(3) Disponible uniquement si la fonctionnalité de mesurage de produits pétroliers est installée.





(1) Apparaît uniquement si le paramètre Type de débit volumique est réglé sur Volume de liquide.

- (2) Apparaît uniquement si le paramètre Type de débit volumique est réglé sur Volume de gaz aux cond. de base.
- (3) Les valeurs affichées sur ce panneau sont à lecture seule et ne sont fournies qu'à titre informationnel.
- (4) Nécessite la version 2.6 ou ultérieure de ProLink II.







#### C.4 Arborescences des menus de la description EDD

Si l'utilisateur se connecte en mode Maintenance, le menu des fonctions I&M (voir la figure C-12) n'est pas disponible. Tous les autres menus de la description EDD sont disponibles.

Si l'utilisateur se connecte en mode Specialist, tous les menus de la description EDD sont disponibles.

#### Figure C-4 EDD – Menu principal







### Figure C-6 EDD – Menu Device



- (1) Volume de liquides uniquement.
- (2) Disponible uniquement si l'option de mesurage de gaz aux conditions de base est activée.
- (3) Disponible uniquement si la fonctionnalité de mesurage de produits pétroliers est installée.
- (4) Disponible uniquement si la fonctionnalité de densimétrie avancée est installée.

#### Figure C-7 EDD – Menu Device suite



Alarm six status, bits 1–8 Alarm seven status, bits 1–8 Alarm eight status, bits 1–8

















>>>> Maximum curve fit order

>>>> Maximum curve fit order Maximum fit order for 5\*5 curve

#### Arborescences des menus du transmetteur Modèle 2400S DP

### Figure C-12 EDD – Menu Specialist : Identification



## C.5 Arborescences des menus de l'indicateur

#### Figure C-13 Arborescences de l'indicateur – Niveau supérieur du menu de maintenance



(1) Cette option apparaît uniquement si le logiciel de validation du débitmètre est installé dans le transmetteur.

#### Figure C-14 Arborescences de l'indicateur – Menu de maintenance : versions logicielles



(1) Cette option apparaît uniquement si l'option spéciale (ETO) ou la fonctionnalité correspondante est installée dans le transmetteur.



Figure C-15 Arborescences de l'indicateur – Menu de maintenance : configuration

- (1) Suivant la configuration du paramètre Type de débit volumique, ce paramètre est appelé soit VOL (volume de liquide), soit GSV (volume de gaz). Voir la section 8.2.
- (2) Option disponible uniquement si la fonctionnalité de mesurage de produits pétroliers est installée.
- (3) Option disponible uniquement si la fonctionnalité de densimétrie avancée est installée.
- (4) Apparaît uniquement si le paramètre DEFIL AUTO (défilement automatique) est activé.
- (5) Apparaît uniquement si le paramètre CODE OFFLN (protection du menu de maintenance par mot de passe) est activé.



#### Figure C-16 Arborescences de l'indicateur – Menu de maintenance : ajustage du zéro




Codes de l'indicateur

# Annexe D Paramètres de bus PROFIBUS

#### D.1 Sommaire

Cette annexe décrit les paramètres de bus des blocs PROFIBUS. Les blocs suivants sont abordés :

- Bloc Mesurage (Slot 1) voir le tableau D-2
- Bloc Etalonnage (Slot 2) voir le tableau D-3
- Bloc Diagnostics (Slot 3) voir le tableau D-4
- Bloc Informations sur l'appareil (Slot 4) voir le tableau D-5
- Bloc Indicateur local (Slot 5) voir le tableau D-6
- Bloc API (Slot 6) voir le tableau D-7
- Bloc Densimétrie avancée (Slot 7) voir le tableau D-8
- Bloc Fonctions I&M (Slot 0) voir le tableau D-9

Les codes suivants sont décrits :

- Codes des unités de mesure des totalisateurs voir les tableaux D-10 à D-12
- Codes des grandeurs mesurées voir le tableau D-13
- Codes d'indexage des alarmes voir le tableau D-14

Remarque : Pour les codes des unités de mesure des grandeurs mesurées, voir la section 6.3.

Pour chaque bloc, tous les paramètres contenus dans le bloc sont listés. Pour chaque paramètre, les informations suivantes sont fournies :

- Index numéro d'index du paramètre dans le bloc
- Nom nom de code du paramètre
- Type de données Type de données du paramètre (voir la section D.2)
- Classe de mémoire classe de mémoire requise par le paramètre, avec la fréquence de rafraîchissement (en Hz) si applicable :
  - D = stockage dynamique (données cycliques le paramètre est régulièrement mis à jour)
  - S = stockage statique (données acycliques le paramètre change uniquement lors d'une écriture délibérée)
  - N = paramètre non volatil (sauvegardé en cas de coupure d'alimentation)
- Accès
  - R = Lecture seule
  - R/W = Lecture/Ecriture

#### D.2 Types de données et codes des types de données des paramètres de bus PROFIBUS

Le tableau D-1 décrit les différents types de données des paramètres de bus PROFIBUS et leurs codes respectifs.

| Type de données | Taille (octets)       | Description                                                               | Plage                     | Code    |
|-----------------|-----------------------|---------------------------------------------------------------------------|---------------------------|---------|
| Boolean         | 1                     | Vrai/faux                                                                 | • 0 = Faux<br>• 1 = Vrai  | BOOL    |
| Integer8        | 1                     | Entier à 8 bits signé                                                     | –128 à +127               | INT8    |
| Unsigned8       | 1                     | Entier à 8 bits non signé                                                 | 0 à 255                   | USINT8  |
| Integer16       | 2                     | Entier à 16 bits signé                                                    | –32768 à +32767           | INT16   |
| Unsigned16      | 2                     | Entier à 16 bits non signé                                                | 0 à 65535                 | USINT16 |
| Integer32       | 4                     | Entier à 32 bits signé                                                    | -2147483648 à +2147483647 | INT32   |
| Unsigned32      | 4                     | Entier à 32 bits non signé                                                | 0 à 4294967296            | USINT32 |
| FLOAT           | 4                     | Nombre à virgule flottante<br>IEEE de simple précision                    | –3.8E38 à +3.8E38         | FLOAT   |
| OCTET STRING    | jusqu'à 128<br>octets | Chaîne de caractères ASCII                                                | N/A                       | STRING  |
| BIT_ENUMERATED  | jusqu'à 128<br>octets | Valeur énumérée où chaque<br>bit représente une<br>énumération différente | N/A                       | B_ENUM  |

## D.3 Bloc Mesurage (Slot 1)

#### Tableau D-2Bloc Mesurage (Slot 1)

| Index | Nom                  | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                             |
|-------|----------------------|--------------------|----------------------|-------|--------------------------------------------------------------------------------|
| 4     | SNS_MassFlow         | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du débit massique mesuré                                       |
| 5     | SNS_MassFlowUnits    | USINT16            | S                    | R/W   | Unité de mesure du débit massique<br>Voir les codes au tableau 6-2             |
| 6     | SNS_Temperature      | FLOAT              | D (20 Hz)            | R     | Valeur actuelle de la température mesurée                                      |
| 7     | SNS_TemperatureUnits | USINT16            | S                    | R/W   | Unité de mesure de la température<br>Voir les codes au tableau 6-6             |
| 8     | SNS_Density          | FLOAT              | D (20 Hz)            | R     | Valeur actuelle de la masse volumique mesurée                                  |
| 9     | SNS_DensityUnits     | USINT16            | S                    | R/W   | Unité de mesure de la masse volumique<br>Voir les codes au tableau 6-5         |
| 10    | SNS_VolFlow          | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du débit volumique de liquide mesuré                           |
| 11    | SNS_VolumeFlowUnits  | USINT16            | S                    | R/W   | Unité de mesure du débit volumique de liquide<br>Voir les codes au tableau 6-3 |
| 12    | SNS_DampingFlowRate  | FLOAT              | S                    | R/W   | Valeur d'amortissement du débit<br>0,0 à 60,0 s                                |
| 13    | SNS_DampingTemp      | FLOAT              | S                    | R/W   | Valeur d'amortissement de la température<br>0,0 à 80,0 s                       |
| 14    | SNS_DampingDensity   | FLOAT              | S                    | R/W   | Valeur d'amortissement de la masse<br>volumique<br>0,0 à 60,0 s                |

#### Tableau D-2 Bloc Mesurage (Slot 1) suite

| Index | Nom                          | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                 |
|-------|------------------------------|--------------------|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15    | SNS_MassMeterFactor          | FLOAT              | S                    | R/W   | Facteur d'ajustage de l'étalonnage en débit massique. Plage : 0,8 à 1,2                                                                                                                                            |
| 16    | SNS_DensMeterFactor          | FLOAT              | S                    | R/W   | Facteur d'ajustage de l'étalonnage en masse volumique. Plage : 0,8 à 1,2                                                                                                                                           |
| 17    | SNS_VolMeterFactor           | FLOAT              | S                    | R/W   | Facteur d'ajustage de l'étalonnage en débit volumique. Plage : 0,8 à 1,2                                                                                                                                           |
| 18    | SNS_MassFlowCutoff           | FLOAT              | S                    | R/W   | Seuil de coupure bas débit masse<br>Plage : de 0 à la limite du capteur                                                                                                                                            |
| 19    | SNS_VolumeFlowCutoff         | FLOAT              | S                    | R/W   | Seuil de coupure bas débit volume liquide<br>Plage : de 0 à la limite du capteur                                                                                                                                   |
| 20    | SNS_LowDensityCutoff         | FLOAT              | S                    | R/W   | Seuil de coupure de la masse volumique<br>Plage : de 0 à 0,5                                                                                                                                                       |
| 21    | SNS_FlowDirection            | USINT16            | S                    | R/W   | <ul> <li>0 = Sens normal</li> <li>1 = Sens inverse</li> <li>2 = Bidirectionnel</li> <li>3 = Valeur absolue</li> <li>4 = Inversion numérique/Sens normal</li> <li>5 = Inversion numérique/bidirectionnel</li> </ul> |
| 22    | SNS_StartStopTotals          | USINT16            |                      | R/W   | Activation/blocage des totalisateurs<br>• 0x0000 = Bloquer les totalisateurs<br>• 0x0001 = Activer les totalisateurs                                                                                               |
| 23    | SNS_ResetAllTotal            | USINT16            |                      | R/W   | RAZ des tous les totalisateurs partiels<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                                                                                                  |
| 24    | SNS_ResetAll<br>Inventories  | USINT16            |                      | R/W   | RAZ des tous les totalisateurs généraux<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                                                                                                  |
| 25    | SNS_ResetMassTotal           | USINT16            |                      | R/W   | RAZ du total partiel en masse<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                                                                                                            |
| 26    | SNS_ResetLineVolTotal        | USINT16            |                      | R/W   | RAZ du total partiel en volume de liquide<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                                                                                                |
| 27    | SNS_MassTotal                | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total partiel en masse                                                                                                                                                                          |
| 28    | SNS_VolTotal                 | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total partiel en volume de liquide                                                                                                                                                              |
| 29    | SNS_MassInventory            | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total général en masse                                                                                                                                                                          |
| 30    | SNS_VolInventory             | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total général en volume de<br>liquide                                                                                                                                                           |
| 31    | SNS_MassTotalUnits           | USINT16            | S                    | R     | Unité de totalisation en masse<br>voir les codes au tableau D-10                                                                                                                                                   |
| 32    | SNS_VolTotalUnits            | USINT16            | S                    | R     | Unité de totalisation en volume de liquide voir les codes au tableau D-11                                                                                                                                          |
| 33    | SNS_EnableGSV <sup>(1)</sup> | USINT16            | S                    | R/W   | Activation/désactivation du mesurage de gaz<br>aux conditions de base<br>• 0x0000 = Activer<br>• 0x0001 = Désactiver                                                                                               |
| 34    | SNS_GSV_GasDens              | FLOAT              | S                    | R/W   | Masse volumique du gaz aux conditions de base                                                                                                                                                                      |
| 35    | SNS_GSV_VolFlow              | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du débit volumique de gaz aux conditions de base                                                                                                                                                   |

#### Tableau D-2 Bloc Mesurage (Slot 1) suite

| Index | Nom                 | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                        |
|-------|---------------------|--------------------|----------------------|-------|---------------------------------------------------------------------------------------------------------------------------|
| 36    | SNS_GSV_VolTot      | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total partiel en volume de gaz aux conditions de base                                                  |
| 37    | SNS_GSV_VolInv      | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total général en volume de<br>gaz aux conditions de base                                               |
| 38    | SNS_GSV_FlowUnits   | USINT16            | S                    | R/W   | Unité du débit volumique de gaz aux<br>conditions de base. Voir les codes au<br>tableau 6-4                               |
| 39    | SNS_GSV_TotalUnits  | USINT16            | S                    | R     | Unité de totalisation en volume de gaz aux<br>conditions de base. Voir les codes au<br>tableau D-12                       |
| 40    | SNS_GSV_FlowCutoff  | FLOAT              | S                    | R/W   | Seuil de coupure bas débit volume gaz aux conditions de base                                                              |
| 41    | SNS_ResetGSVolTotal | USINT16            | S                    | R/W   | RAZ du total partiel en volume de gaz aux<br>conditions de base<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro |
| 42    | SNS_ResetAPIGSVInv  | USINT16            | S                    | R/W   | RAZ du total général en volume de gaz aux<br>conditions de base<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro |
| 43    | SNS_ResetMassInv    | USINT16            | S                    | R/W   | RAZ du total général en masse<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                   |
| 44    | SNS_ResetVolInv     | USINT16            | S                    | R/W   | RAZ du total général en volume de liquide<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                       |

(1) Si le mesurage du volume de gaz aux conditions de base est activé, le mesurage du volume de liquide est désactivé, et vice versa.

## D.4 Bloc Etalonnage (Slot 2)

#### Tableau D-3 Bloc Etalonnage (Slot 2)

| Index | Nom                      | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                     |
|-------|--------------------------|--------------------|----------------------|-------|------------------------------------------------------------------------------------------------------------------------|
| 4     | SNS_FlowCalGain          | FLOAT              | S                    | R/W   | Facteur d'étalonnage en débit (6 caractères)<br>du coefficient d'étalonnage en débit                                   |
| 5     | SNS_FlowCalTemp<br>Coeff | FLOAT              | S                    | R/W   | Facteur de température en débit (4 caractères)<br>du coefficient d'étalonnage en débit                                 |
| 6     | SNS_FlowZeroCal          | USINT16            |                      | R/W   | Commande d'auto-ajustage du zéro<br>• 0x0000 = Interrompre l'ajustage en cours<br>• 0x0001 = Lancer l'ajustage du zéro |
| 7     | SNS_MaxZeroingTime       | USINT16            | S                    | R/W   | Durée d'ajustage du zéro<br>Plage : 5 à 300 secondes                                                                   |
| 8     | SNS_AutoZeroStdDev       | FLOAT              | S                    | R     | Ecart-type de l'ajustage du zéro                                                                                       |
| 9     | SNS_AutoZeroValue        | FLOAT              | S                    | R/W   | Décalage actuel du zéro à débit nul, en µs                                                                             |
| 10    | SNS_FailedCal            | FLOAT              | S                    | R     | Valeur du zéro si la procédure d'ajustage<br>échoue                                                                    |

### Tableau D-3 Bloc Etalonnage (Slot 2) suite

| Index | Nom                      | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                    |
|-------|--------------------------|--------------------|----------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------|
| 11    | SNS_K1Cal                | USINT16            |                      | R/W   | Commande d'étalonnage en masse volumique<br>sur D1<br>• 0x0000 = Néant<br>• 0x0001 = Lancer l'étalonnage sur D1                       |
| 12    | SNS_K2Cal                | USINT16            |                      | R/W   | Commande d'étalonnage en masse volumique<br>sur D2<br>• 0x0000 = Néant<br>• 0x0001 = Lancer l'étalonnage sur D2                       |
| 13    | SNS_FdCal                | USINT16            |                      | R/W   | Commande d'étalonnage en masse volumique<br>à haut débit<br>• 0x0000 = Néant<br>• 0x0001 = Lancer l'étalonnage de FD                  |
| 14    | SNS_TseriesD3Cal         | USINT16            |                      | R/W   | Commande d'étalonnage en masse volumique<br>sur D3<br>• 0x0000 = Néant<br>• 0x0001 = Lancer l'étalonnage sur D3                       |
| 15    | SNS_TseriesD4Cal         | USINT16            |                      | R/W   | Commande d'étalonnage en masse volumique<br>sur D4<br>• 0x0000 = Néant<br>• 0x0001 = Lancer l'étalonnage sur D4                       |
| 16    | SNS_K1                   | FLOAT              | S                    | R/W   | Constante d'étalonnage K1 (µs)                                                                                                        |
| 17    | SNS_K2                   | FLOAT              | S                    | R/W   | Constante d'étalonnage K2 (µs)                                                                                                        |
| 18    | SNS_FD                   | FLOAT              | S                    | R/W   | Constante d'étalonnage FD (µs)                                                                                                        |
| 19    | SNS_TseriesK3            | FLOAT              | S                    | R/W   | Constante d'étalonnage K3 (µs)                                                                                                        |
| 20    | SNS_TseriesK4            | FLOAT              | S                    | R/W   | Constante d'étalonnage K4 (µs)                                                                                                        |
| 21    | SNS_D1                   | FLOAT              | S                    | R/W   | Masse volumique du fluide d'étalonnage D1                                                                                             |
| 22    | SNS_D2                   | FLOAT              | S                    | R/W   | Masse volumique du fluide d'étalonnage D2                                                                                             |
| 23    | SNS_CalValForFD          | FLOAT              | S                    | R/W   | Masse volumique du fluide d'étalonnage FD                                                                                             |
| 24    | SNS_TseriesD3            | FLOAT              | S                    | R/W   | Masse volumique du fluide d'étalonnage D3                                                                                             |
| 25    | SNS_TseriesD4            | FLOAT              | S                    | R/W   | Masse volumique du fluide d'étalonnage D4                                                                                             |
| 26    | SNS_DensityTempCoeff     | FLOAT              | S                    | R/W   | Coeff. de température en masse volumique                                                                                              |
| 27    | SNS_TSeriesFlow<br>TGCO  | FLOAT              | S                    | R/W   | Valeur de FTG (Série T)                                                                                                               |
| 28    | SNS_TSeriesFlow<br>FQCO  | FLOAT              | S                    | R/W   | Valeur de FFQ (Série T)                                                                                                               |
| 29    | SNS_TSeriesDens<br>TGCO  | FLOAT              | S                    | R/W   | Valeur de DTG (Série T)                                                                                                               |
| 30    | SNS_TSeriesDens<br>FQCO1 | FLOAT              | S                    | R/W   | Valeur de DFQ1 (Série T)                                                                                                              |
| 31    | SNS_TSeriesDens<br>FQCO2 | FLOAT              | S                    | R/W   | Valeur de DFQ2 (Série T)                                                                                                              |
| 32    | SNS_TempCalOffset        | FLOAT              | S                    | R/W   | Coeff. d'étalonnage en température : décalage                                                                                         |
| 33    | SNS_TempCalSlope         | FLOAT              | S                    | R/W   | Coeff. d'étalonnage en température : pente                                                                                            |
| 34    | SNS_EnableExtTemp        | USINT16            | S                    | R/W   | Utilisation d'un signal de température externe<br>pour les fonctionnalités API et DA :<br>• 0x0000 = Désactiver<br>• 0x0001 = Activer |
| 35    | SNS_ExternalTempInput    | FLOAT              | S                    | R/W   | Valeur du signal de température externe                                                                                               |

#### Tableau D-3 Bloc Etalonnage (Slot 2) suite

| Index | Nom                        | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                |
|-------|----------------------------|--------------------|----------------------|-------|---------------------------------------------------------------------------------------------------|
| 36    | SNS_EnablePresComp         | Method             | S                    | R/W   | Correction en pression :<br>• 0x0000 = Désactiver<br>• 0x0001 = Activer                           |
| 37    | SNS_ExternalPresInput      | FLOAT              | D (20)               | R/W   | Valeur du signal de pression externe                                                              |
| 38    | SNS_PressureUnits          | USINT16            | S                    | R/W   | Unité de mesure de la pression<br>Voir les codes au tableau 6-7                                   |
| 39    | SNS_FlowPresComp           | FLOAT              | S                    | R/W   | Facteur d'influence de la pression sur le débit                                                   |
| 40    | SNS_DensPresComp           | FLOAT              | S                    | R/W   | Facteur d'influence de la pression sur la masse volumique                                         |
| 41    | SNS_FlowCalPres            | FLOAT              | S                    | R/W   | Pression d'étalonnage en débit                                                                    |
| 42    | SNS_FlowZeroRestore        |                    | S                    | R/W   | Rétablissement de l'ajustage du zéro d'usine :<br>• 0x0000 = Aucune action<br>• 0x0001 = Rétablir |
| 43    | DB_SNS_AutoZero<br>Factory |                    | S                    | R     | Valeur d'usine de l'ajustage du zéro, en µs                                                       |

# D.5 Bloc Diagnostics (Slot 3)

## Tableau D-4Bloc Diagnostics (Slot 3)

| Index | Nom              | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                                                      |
|-------|------------------|--------------------|----------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | SNS_SlugDuration | FLOAT              | S                    | R/W   | Durée autorisée de l'écoulement biphasique<br>Unité : seconde<br>Plage : 0 à 60 secondes                                                                                                                                                                |
| 2     | SNS_SlugLo       | FLOAT              | S                    | R/W   | Limite basse d'écoulement biphasique<br>Unité : g/cm <sup>3</sup><br>Plage : 0 à 10 g/cm <sup>3</sup>                                                                                                                                                   |
| 3     | SNS_SlugHi       | FLOAT              | S                    | R/W   | Limite haute d'écoulement biphasique<br>Unité : g/cm <sup>3</sup><br>Plage : 0 à 10 g/cm <sup>3</sup>                                                                                                                                                   |
| 4     | UNI_PCIndex      | USINT16            | S                    | R/W   | Code d'indexage des événements TOR :<br>0, 1, 2, 3, 4                                                                                                                                                                                                   |
| 5     | SNS_PC_Action    | USINT16            | S                    | R/W   | Type de l'événement TOR<br>• 0 = Supérieur à valeur de seuil A<br>• 1 = Supérieur à valeur de seuil A<br>• 2 = Dans bande (A= <x<=b)<br>• 3 = Hors bande (A&gt;=x ou B&lt;=x)</x<=b)<br>                                                                |
| 6     | SNS_PC_SetPointA | FLOAT              | S                    | R/W   | Valeur de seuil A                                                                                                                                                                                                                                       |
| 7     | SNS_PC_SetPointB | FLOAT              | S                    | R/W   | Valeur de seuil B                                                                                                                                                                                                                                       |
| 8     | SNS_PC_PVCode    | USINT16            | S                    | R/W   | Grandeur affectée à l'événement TOR<br>Voir les codes au tableau D-13                                                                                                                                                                                   |
| 9     | SNS_PC_Status    | B_ENUM             | D (20 Hz)            | R     | Etat des événements TOR<br>• $0x0001 = Evénement TOR_0$ activé<br>• $0x0002 = Evénement TOR_1$ activé<br>• $0x0004 = Evénement TOR_2$ activé<br>• $0x0008 = Evénement TOR_3$ activé<br>• $0x0010 = Evénement TOR_4$ activé<br>• Bits 5 à 15 non définis |

| Index | Nom              | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|------------------|--------------------|----------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10    | SNS_StatusWords1 | B_ENUM             | D (20 Hz)            | R     | <ul> <li>0x0001 = Erreur total de contrôle<br/>EEPROM (PP)</li> <li>0x0002 = Erreur du test de RAM (PP)</li> <li>0x0004 = Non utilisé</li> <li>0x0008 = Panne du capteur</li> <li>0x0010 = Température hors limites</li> <li>0x0020 = Echec de l'étalonnage</li> <li>0x0040 = Autre panne</li> <li>0x0080 = Initialisation du transmetteur</li> <li>0x0100 = Non utilisé</li> <li>0x0200 = Non utilisé</li> <li>0x0200 = Non utilisé</li> <li>0x0400 = Mode de simulation activé (A132)</li> <li>0x0800 = Non utilisé</li> <li>0x1000 = Erreur chien de garde</li> <li>0x2000 = Non utilisé</li> <li>0x2000 = Non utilisé</li> <li>0x2000 = Non utilisé</li> <li>0x2000 = Non utilisé</li> <li>0x4000 = Non utilisé</li> <li>0x4000 = Non utilisé</li> <li>0x8000 = Défaut</li> </ul> |
| 11    | SNS_StatusWords2 | B_ENUM             | D (20 Hz)            | R     | <ul> <li>0x0001 = Non utilisé</li> <li>0x0002 = Non utilisé</li> <li>0x0004 = Non utilisé</li> <li>0x0008 = Non utilisé</li> <li>0x0010 = Masse volumique hors limites</li> <li>0x0020 = Excitation hors limites</li> <li>0x0040 = Défaut de comm. PIC\carte</li> <li>0x0080 = Non utilisé</li> <li>0x0100 = Erreur mémoire non volatile (PP)</li> <li>0x0200 = Erreur RAM (PP)</li> <li>0x0400 = Panne du capteur</li> <li>0x0800 = Température hors limites</li> <li>0x1000 = Entrée hors limites</li> <li>0x2000 = Non utilisé</li> <li>0x2000 = Non utilisé</li> <li>0x2000 = Non utilisé</li> <li>0x4000 = Transmetteur non caractérisé</li> <li>0x8000 = Non utilisé</li> </ul>                                                                                                 |
| 12    | SNS_StatusWords3 | B_ENUM             | D (20 Hz)            | R     | <ul> <li>0x0001 = Non utilisé</li> <li>0x0002 = Coupure d'alimentation</li> <li>0x0004 = Initialisation du transmetteur</li> <li>0x0008 = Non utilisé</li> <li>0x0010 = Non utilisé</li> <li>0x0020 = Non utilisé</li> <li>0x0040 = Non utilisé</li> <li>0x0080 = Non utilisé</li> <li>0x0100 = Echec de l'étalonnage</li> <li>0x0200 = Echec auto-zéro: Débit &lt; 0 excessif</li> <li>0x0400 = Echec auto-zéro: Débit &gt; 0 excessif</li> <li>0x0400 = Echec auto-zéro: Débit instable</li> <li>0x0800 = Echec auto-zéro: Débit instable</li> <li>0x0800 = Echec auto-zéro: Débit instable</li> <li>0x1000 = Panne du transmetteur</li> <li>0x2000 = Perte de données</li> <li>0x4000 = Etalonnage en cours</li> <li>0x8000 = Ecoulement biphasique</li> </ul>                     |

| Index | Nom              | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|------------------|--------------------|----------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13    | SNS_StatusWords4 | B_ENUM             | D (20 Hz)            | R     | <ul> <li>0x0001 = API : Température hors limites</li> <li>0x0002 = API : Masse volumique hors limites</li> <li>0x0004 = Pt100 capteur hors limites</li> <li>0x0008 = Pt100 Série T hors limites</li> <li>0x0010 = Ecoulement inverse</li> <li>0x0020 = Erreur données usine</li> <li>0x0040 = DA : Mise en équation impossible</li> <li>0x0080 = Forçage dernière valeur mesurée</li> <li>0x0100 = DA : Erreur d'extrapolation</li> <li>0x0200 = Coefficient d'étalonnage absent</li> <li>0x0400 = Non utilisé</li> <li>0x0800 = Non utilisé</li> <li>0x1000 = Erreur mémoire non volatile (PP)</li> <li>0x4000 = Erreur mémoire non volatile (PP)</li> <li>0x8000 = Erreur mémoire non volatile (PP)</li> </ul>                    |
| 14    | SNS_StatusWords5 | B_ENUM             | D (20 Hz)            | R     | <ul> <li>0x0001 = Secteur d'amorçage (PP)</li> <li>0x0002 = Non utilisé</li> <li>0x0004 = Non utilisé</li> <li>0x0008 = Non utilisé</li> <li>0x0010 = Non utilisé</li> <li>0x0020 = Non utilisé</li> <li>0x0020 = Ltalonnage sur D3 en cours</li> <li>0x0080 = Etalonnage sur D4 en cours</li> <li>0x0100 = Non utilisé</li> <li>0x0200 = Non utilisé</li> <li>0x0200 = Non utilisé</li> <li>0x0200 = Non utilisé</li> <li>0x0400 = Etalonnage pente température en cours</li> <li>0x0800 = Etalonnage décalage température en cours</li> <li>0x0800 = Etalonnage FD en cours</li> <li>0x1000 = Etalonnage sur D2 en cours</li> <li>0x2000 = Etalonnage sur D1 en cours</li> <li>0x4000 = Auto-ajustage du zéro en cours</li> </ul> |
| 15    | SNS_StatusWords6 | B_ENUM             | D (20 Hz)            | R     | • $0x0001 = Non utilisé$<br>• $0x0002 = Non utilisé$<br>• $0x0004 = Non utilisé$<br>• $0x0008 = Non utilisé$<br>• $0x0010 = Non utilisé$<br>• $0x0020 = Non utilisé$<br>• $0x0040 = Non utilisé$<br>• $0x0000 = Evénement TOR_0 activé$<br>• $0x0200 = Evénement TOR_1 activé$<br>• $0x0400 = Evénement TOR_2 activé$<br>• $0x0400 = Evénement TOR_3 activé$<br>• $0x0800 = Evénement TOR_3 activé$<br>• $0x1000 = Evénement TOR_4 activé$<br>• $0x2000 = Non utilisé$<br>• $0x4000 = Non utilisé$<br>• $0x4000 = Non utilisé$                                                                                                                                                                                                      |

#### Type de **Classe de** Accès Index Nom données mémoire **Description / codes / commentaires** 16 SNS\_StatusWords7 **B\_ENUM** R • 0x0001 = Combinaison K1/FCF non D (20 Hz) reconnue • 0x0002 = Mise sous tension • 0x0004 = Tension d'alimentation trop faible (A031) • 0x0008 = Tube non rempli (A033) • 0x0010 = Validation débitmètre / sorties = niveau de forçage (A032)<sup>(1)</sup> 0x0020 = Validation débitmètre / sorties = dernière valeur mesurée (A131)<sup>(1)</sup> 0x0040 = Erreur PIC UI EEPROM • 0x0080 = Non utilisé • 0x0100 = Non utilisé • 0x0200 = Non utilisé • 0x0400 = Non utilisé • 0x0800 = Non utilisé • 0x1000 = Non utilisé • 0x2000 = Non utilisé • 0x4000 = Echec du test de validation (A034) • 0x8000 = Validation interrompue (A035) 17 R • 0x0001 = Non utilisé SNS\_StatusWords8 **B\_ENUM** D (20 Hz) • 0x0002 = Non utilisé • 0x0004 = Non utilisé • 0x0008 = Non utilisé • 0x0010 = Non utilisé • 0x0020 = Non utilisé • 0x0040 = Non utilisé • 0x0080 = Non utilisé • 0x0100 = Non utilisé • 0x0200 = Non utilisé • 0x0400 = Non utilisé • 0x0800 = Non utilisé • 0x1000 = Non utilisé • 0x2000 = Non utilisé • 0x4000 = Non utilisé • 0x8000 = Non utilisé 18 SYS\_DigCommFault R/W USINT16 S Option de forçage sur défaut des valeurs ActionCode transmises par communication numérique : • 0 = Valeur haute • 1 = Valeur basse 2 = Signaux à zéro • 3 = IEEE NAN• 4 = Débit nul • 5 = Néant 19 DB SYS TimeoutValue R/W USINT16 S Temporisation du forcage sur défaut LMV Plage : 0 à 60 secondes 20 **UNI Alarm Index** USINT16 S R/W Code d'indexage de l'alarme, utilisé pour configurer/visualiser le niveau de gravité de l'alarme ou pour acquitter l'alarme Voir les codes d'indexage des alarmes au tableau D-13 21 SYS\_AlarmSeverity USINT16 S R/W Niveau de gravité de l'alarme identifiée par le code d'indexage de l'alarme. • 0 = Ignorer • 1 = Informationnel 2 = Défaut

| Index | Nom                   | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                                                                               |
|-------|-----------------------|--------------------|----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22    | SYS_AlarmStatus       | B_ENUM             | D (20 Hz)            | R/W   | Etat de l'alarme identifiée par le code<br>d'indexage de l'alarme.<br>• 0x00 = Alarme acquittée ayant disparu<br>• 0x01 = Alarme active et acquittée<br>• 0x10 = Alarme non acquittée ayant disparu<br>• 0x11 = Alarme active, non acquittée<br>Ecrire 0 pour acquitter l'alarme |
| 23    | SYS_AlarmCount        | USINT16            | S                    | R     | Nombre de fois que l'alarme identifiée par le<br>code d'indexage de l'alarme est passé de l'état<br>inactive à l'état active                                                                                                                                                     |
| 24    | SYS_AlarmPosted       | USINT32            | S                    | R     | Nombre de secondes, depuis la dernière<br>remise à zéro du temps sous tension (index<br>52), de l'alarme identifiée par le code<br>d'indexage de l'alarme                                                                                                                        |
| 25    | SYS_AlarmCleared      | USINT32            | S                    | R     | Nombre de secondes, depuis la dernière<br>remise à zéro du temps sous tension (index<br>52), de l'alarme identifiée par le code<br>d'indexage de l'alarme                                                                                                                        |
| 26    | UNI_AlarmHistoryIndex | USINT16            | S                    | R/W   | Index du numéro d'enregistrement dans<br>l'historique des alarmes<br>Plage : 0 à 49                                                                                                                                                                                              |
| 27    | SYS_AlarmNumber       | USINT16            | S                    | R     | Numéro de l'alarme correspondant à l'index du<br>numéro d'enregistrement dans l'historique des<br>alarmes<br>1 = A001, 2 = A002, etc.                                                                                                                                            |
| 28    | SYS_AlarmEvent        | USINT16            | S                    | R     | Type de changement d'état correspondant à<br>l'index du numéro d'enregistrement dans<br>l'historique des alarmes<br>• 1 = Apparition de l'alarme<br>• 2 = Disparition de l'alarme                                                                                                |
| 29    | SYS_AlarmTime         | USINT32            | S                    | R     | Instant du changement d'état de l'alarme<br>correspondant à l'index du numéro<br>d'enregistrement dans l'historique des<br>alarmes, en secondes depuis la dernière<br>remise à zéro du temps sous tension<br>(index 52)                                                          |
| 30    | SYS_AckAllAlarms      | USINT16            | S                    | R/W   | Acquit simultané de toutes les alarmes<br>• 0x0000 = Non utilisé<br>• 0x0001 = Acquitter                                                                                                                                                                                         |
| 31    | SYS_ClearAlarmHistory | USINT16            | S                    | R/W   | Réinitialisation de l'historique des alarmes<br>• 0x0000 = Non utilisé<br>• 0x0001 = Réinitialiser                                                                                                                                                                               |
| 32    | SNS_DriveGain         | FLOAT              | D (20 Hz)            | R     | Gain d'excitation (%)                                                                                                                                                                                                                                                            |
| 33    | SNS_RawTubeFreq       | FLOAT              | D (20 Hz)            | R     | Fréquence de vibration des tubes (Hz)                                                                                                                                                                                                                                            |
| 34    | SNS_LiveZeroFlow      | FLOAT              | D (20 Hz)            | R     | Valeur non filtrée du débit massique (non<br>affecté par le seuil de coupure bas débit)<br>Unité : unité configurée pour le débit massique                                                                                                                                       |
| 35    | SNS_LPOamplitude      | FLOAT              | D (20 Hz)            | R     | Niveau de détection gauche<br>Unité : volt                                                                                                                                                                                                                                       |
| 36    | SNS_RPOamplitude      | FLOAT              | D (20 Hz)            | R     | Niveau de détection droit<br>Unité : volt                                                                                                                                                                                                                                        |
| 37    | SNS_BoardTemp         | FLOAT              | D (20 Hz)            | R     | Température de la carte<br>Unité : °C                                                                                                                                                                                                                                            |

| Index | Nom                          | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                                                |
|-------|------------------------------|--------------------|----------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 38    | SNS_MaxBoardTemp             | FLOAT              | D (20 Hz)            | R     | Température maximum de l'électronique<br>Unité : °C                                                                                                                                                                                               |
| 39    | SNS_MinBoardTemp             | FLOAT              | D (20 Hz)            | R     | Température minimum de l'électronique<br>Unité : °C                                                                                                                                                                                               |
| 40    | SNS_AveBoardTemp             | FLOAT              | D (20 Hz)            | R     | Température moyenne de l'électronique<br>Unité : °C                                                                                                                                                                                               |
| 41    | SNS_MaxSensorTemp            | FLOAT              | D (20 Hz)            | R     | Température maximum du capteur<br>Unité : °C                                                                                                                                                                                                      |
| 42    | SNS_MinSensorTemp            | FLOAT              | D (20 Hz)            | R     | Température minimum du capteur<br>Unité : °C                                                                                                                                                                                                      |
| 43    | SNS_AveSensorTemp            | FLOAT              | D (20 Hz)            | R     | Température moyenne du capteur<br>Unité : °C                                                                                                                                                                                                      |
| 44    | SNS_WireRTDRes               | FLOAT              | D (20 Hz)            | R     | Résistance du câble 9 à fils<br>Unité : ohm                                                                                                                                                                                                       |
| 45    | SNS_LineRTDRes               | FLOAT              | D (20 Hz)            | R     | Résistance de la sonde Pt100 du capteur<br>Unité : ohm                                                                                                                                                                                            |
| 46    | SYS_PowerCycleCount          | USINT16            | D                    | R     | Nombre de cycles de mise hors/sous tension<br>du transmetteur                                                                                                                                                                                     |
| 47    | SYS_PowerOnTimeSec           | USINT32            | S                    | R     | Temps cumulé pendant lequel le transmetteur<br>a été sous tension depuis la dernière<br>réinitialisation<br>Unité : Secondes depuis la dernière<br>réinitialisation                                                                               |
| 48    | SNS_InputVoltage             | FLOAT              | S                    | R     | Tension d'entrée Coriolis (mesure interne),<br>~12 Vcc<br>Unité : volt                                                                                                                                                                            |
| 49    | SNS_TargetAmplitude          | FLOAT              | S                    | R     | Amplitude cible à laquelle le transmetteur<br>essaye d'exciter le capteur<br>Unité : mV/HZ                                                                                                                                                        |
| 50    | SNS_CaseRTDRes               | FLOAT              | S                    | R     | Résistance de la sonde de température du<br>boîtier (Série T)<br>Unité : ohm                                                                                                                                                                      |
| 51    | SYS_RestoreFactory<br>Config | USINT16            | S                    | R/W   | Rétablissement de la configuration d'usine<br>• 0x0000 = Aucune action<br>• 0x0001 = Rétablir la configuration d'usine                                                                                                                            |
| 52    | SYS_ResetPowerOn<br>Time     | USINT16            | S                    | R/W   | Remise à zéro du temps sous tension<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                                                                                                                                     |
| 53    | FRF_EnableFCF<br>Validation  | USINT16            | S                    | R/W   | Type de procédure de validation à effectuer<br>• 0x0000 = Désactiver<br>• 0x0001 = Normal<br>• 0x0002 = Validation usine sur air<br>• 0x0003 = Validation usine sur eau<br>• 0x0004 = Debogage<br>• 0x0006 = Continuer les mesures <sup>(2)</sup> |
| 54    | FRF_FaultAlarm               | USINT16            | D                    | R/W   | Niveau de forçage des grandeurs mesurées au<br>cours de la procédure de validation du<br>débitmètre<br>• 0 = Dernière valeur mesurée<br>• 1 = Niveau de forçage sur défaut                                                                        |

| Index | Nom                            | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|--------------------------------|--------------------|----------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 55    | DB_FRF_StiffnessLimit          | FLOAT              | S                    | R/W   | Ecart maximum admissible de la raideur pour<br>la procédure de validation du débitmètre.<br>Représente un pourcentage.<br>Sans unité                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 56    | FRF_AlgoState                  | USINT16            | S                    | R     | Stade actuel d'exécution de la procédure de validation du débitmètre<br>1–18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 57    | FRF_AbortCode                  | USINT16            | S                    | R     | <ul> <li>Raison pour laquelle la procédure de validation<br/>du débitmètre a été interrompue :</li> <li>0 = Aucune erreur</li> <li>1 = Interruption manuelle</li> <li>2 = Expiration du délai imparti</li> <li>3 = Dérive en fréquence</li> <li>4 = Tension crête d'excitation trop élevée</li> <li>5 = Courant d'excitation trop instable</li> <li>6 = Courant moyen d'excitation trop élevé</li> <li>7 = Détection d'erreur dans boucle<br/>d'excitation</li> <li>8 = Delta T trop instable</li> <li>9 = Delta T trop élevé</li> <li>10 = Exécution du stade en cours</li> </ul> |
| 58    | FRF_StateAtAbort               | USINT16            | S                    | R     | Stade d'exécution de la procédure de<br>validation du débitmètre au moment de<br>l'interruption de la procédure<br>1–18                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 59    | DB_FRF_<br>StiffOutLimLpo      | USINT16            | D                    | R     | La raideur de la branche entrante est elle hors<br>limites ?<br>• 0 = Non<br>• 1 = Oui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60    | DB_FRF_<br>StiffOutLimRpo      | USINT16            | D                    | R     | La raideur de la branche sortante est elle hors<br>limites ?<br>• 0 = Non<br>• 1 = Oui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 61    | FRF_Progress                   | USINT16            | S                    | R     | Pourcentage d'exécution de la procédure de validation du débitmètre (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 62    | DB_FRF_StiffnessLpo_<br>Mean   | FLOAT              | S                    | R     | Valeur moyenne actuelle de la raideur de la branche entrante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 63    | DB_FRF_StiffnessRpo_<br>Mean   | FLOAT              | S                    | R     | Valeur moyenne actuelle de la raideur de la branche sortante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 64    | DB_FRF_Damping_<br>Mean        | FLOAT              | S                    | R     | Valeur moyenne actuelle de l'amortissement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 65    | DB_FRF_MassLpo_<br>Mean        | FLOAT              | S                    | R     | Valeur moyenne actuelle de la masse de la branche entrante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 66    | DB_FRF_MassRpo_<br>Mean        | FLOAT              | S                    | R     | Valeur moyenne actuelle de la masse de la branche sortante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 67    | DB_FRF_StiffnessLpo<br>StdDev  | FLOAT              | S                    | R     | Ecart-type actuel de la raideur de la branche entrante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 68    | DB_FRF_StiffnessRpo_<br>StdDev | FLOAT              | S                    | R     | Ecart-type actuel de la raideur de la branche sortante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 69    | DB_FRF_Damping_<br>StdDev      | FLOAT              | S                    | R     | Ecart-type actuel de l'amortissement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 70    | DB_FRF_MassLpo_<br>StdDev      | FLOAT              | S                    | R     | Ecart-type actuel de la masse de la branche entrante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

### Tableau D-4 Bloc Diagnostics (Slot 3) suite

| Index | Nom                              | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|----------------------------------|--------------------|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 71    | DB_FRF_MassRpo_<br>StdDev        | FLOAT              | S                    | R     | Ecart-type actuel de la masse de la branche sortante                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 72    | DB_FRF_StiffnessLpo_<br>AirCal   | FLOAT              | S                    | R     | Valeur moyenne de la raideur de la branche entrante lors de l'étalonnage d'usine sur air                                                                                                                                                                                                                                                                                                                                                                                                               |
| 73    | DB_FRF_StiffnessRpo_<br>AirCal   | FLOAT              | S                    | R     | Valeur moyenne de la raideur de la branche sortante lors de l'étalonnage d'usine sur air                                                                                                                                                                                                                                                                                                                                                                                                               |
| 74    | DB_FRF_Damping_<br>AirCal        | FLOAT              | S                    | R     | Valeur moyenne de l'amortissement lors de l'étalonnage d'usine sur air                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 75    | DB_FRF_MassLpo_<br>AirCal        | FLOAT              | S                    | R     | Valeur moyenne de la masse de la branche entrante lors de l'étalonnage d'usine sur air                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 76    | DB_FRF_MassRpo_<br>AirCal        | FLOAT              | S                    | R     | Valeur moyenne de la masse de la branche sortante lors de l'étalonnage d'usine sur air                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 77    | DB_FRF_StiffnessLpo_<br>WaterCal | FLOAT              | S                    | R     | Valeur moyenne de la raideur de la branche entrante lors de l'étalonnage d'usine sur eau                                                                                                                                                                                                                                                                                                                                                                                                               |
| 78    | DB_FRF_StiffnessRpo_<br>WaterCal | FLOAT              | S                    | R     | Valeur moyenne de la raideur de la branche sortante lors de l'étalonnage d'usine sur eau                                                                                                                                                                                                                                                                                                                                                                                                               |
| 79    | DB_FRF_Damping_<br>WaterCal      | FLOAT              | S                    | R     | Valeur moyenne de l'amortissement lors de l'étalonnage d'usine sur eau                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 80    | DB_FRF_MassLpo_<br>WaterCal      | FLOAT              | S                    | R     | Valeur moyenne de la masse de la branche<br>entrante lors de l'étalonnage d'usine sur eau                                                                                                                                                                                                                                                                                                                                                                                                              |
| 81    | DB_FRF_MassRpo_<br>WaterCal      | FLOAT              | S                    | R     | Valeur moyenne de la masse de la branche sortante lors de l'étalonnage d'usine sur eau                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 82    | DB_UNI_DE_<br>ActionCode         | USINT16            | S                    | R /W  | Action qui sera déclenchée en cas d'activation<br>de l'événement spécifié avec l'index 83<br>• 1 = Lancer l'ajustage du zéro<br>• 2 = RAZ total partiel masse<br>• 3 = RAZ total partiel vol<br>• 4 = RAZ total partiel vol API<br>• 5 = RAZ total partiel vol DA<br>• 6 = RAZ total masse nette DA<br>• 7 = RAZ total vol net DA<br>• 8 = RAZ tous totaux partiels<br>• 9 = Activ/blocage totalisations<br>• 18 = Sélect. courbe DA suivante<br>• 21 = RAZ total partiel vol gaz aux cond. de<br>base |
| 83    | DB_UNI_DE_<br>Assignment         | USINT16            | S                    | R /W  | Evénement TOR affecté à l'action référencée<br>par l'index 82<br>• 57 = Evénement TOR 1<br>• 58 = Evénement TOR 2<br>• 59 = Evénement TOR 3<br>• 60 = Evénement TOR 4<br>• 61 = Evénement TOR 5<br>• 251 = Néant                                                                                                                                                                                                                                                                                       |
| 84    | DB_SYS_MasterReset               | USINT16            | S                    | R/W   | Réinitialisation générale<br>• 0x0000 = Aucune action<br>• 0x0001 = Effectuer une réinitialisation<br>générale                                                                                                                                                                                                                                                                                                                                                                                         |
| 85    | SYS_AckAlarm                     | USINT16            | S                    | R/W   | Code d'indexage pour l'acquittement des<br>alarmes. Voir les codes d'indexage des<br>alarmes au tableau D-13                                                                                                                                                                                                                                                                                                                                                                                           |
| 86    | SYS_DriveCurrent                 | FLOAT              | D (20 Hz)            | R     | Courant d'excitation du capteur<br>Unité : mA                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Illustrations

#### Tableau D-4 Bloc Diagnostics (Slot 3) suite

| Index             | Nom                         | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                             |
|-------------------|-----------------------------|--------------------|----------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 87 <sup>(2)</sup> | DB_FRF_MV_Index             | USINT16            | D (20 Hz)            | R/W   | Code d'indexage pour les tests de validation<br>enregistrés dans le transmetteur (0–19)<br>0 = Test le plus récent<br>19 = Test le plus ancien |
| 88 <sup>(2)</sup> | DB_FRF_MV_Counter           | USINT16            | D (20 Hz)            | R     | Numéro du test de validation affecté par le<br>compteur de tests du transmetteur                                                               |
| 89 <sup>(2)</sup> | DB_FRF_MV_Status            | USINT16            | D (20 Hz)            | R     | Test de validation enregistré : Etat du test<br>Bit 7 = Réussite/Echec<br>Bits 6–4 = Etat<br>Bits 3–0 = Code d'interruption                    |
| 90 <sup>(2)</sup> | DB_FRF_MV_Time              | USINT32            | D (20 Hz)            | R     | Test de validation enregistré : Heure de<br>lancement du test                                                                                  |
| 91 <sup>(2)</sup> | DB_FRF_MV_LPO_Nor<br>m      | FLOAT              | D (20 Hz)            | R     | Test de validation enregistré : Raideur au niveau du détecteur gauche                                                                          |
| 92 <sup>(2)</sup> | DB_FRF_MV_RPO_Nor<br>m      | FLOAT              | D (20 Hz)            | R     | Test de validation enregistré : Raideur au niveau du détecteur droit                                                                           |
| 93 <sup>(2)</sup> | DB_FRF_MV_FirstRun_<br>Time | FLOAT              | D (20 Hz)            | R/W   | Programmation de la validation : Nombre<br>d'heures avant le premier test de validation<br>Plage : 1–1000<br>0 = Aucun test programmé          |
| 94 <sup>(2)</sup> | DB_FRF_MV_Elapse_Ti<br>me   | FLOAT              | D (20 Hz)            | R/W   | Programmation de la validation : Nombre<br>d'heures entre chaque test de validation<br>Plage : 1–1000<br>0 = Pas de récurrence d'excécution    |
| 95 <sup>(2)</sup> | DB_FRF_MV_Time_Left         | FLOAT              | D (20 Hz)            | R     | Programmation de la validation : Nombre<br>d'heures restantes avant le prochain test de<br>validation                                          |

(1) Concerne uniquement les transmetteurs dotés de la version d'origine de la fonctionnalité de validation du débitmètre.
(2) Concerne uniquement les transmetteurs dotés de la version évoluée de la fonctionnalité de validation du débitmètre.

#### D.6 Bloc Informations sur l'appareil (Slot 4)

#### Tableau D-5 Bloc Information sur l'appareil (Slot 4)

| Index | Nom                 | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                     |
|-------|---------------------|--------------------|----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4     | SYS_FeatureKey      | B_ENUM             | S                    | R     | Fonctionnalités du transmetteur activées<br>• 0x0000 = Standard<br>• 0x0800 = Validation du débitmètre<br>• 0x0008 = Densimétrie avancée<br>• 0x0010 = Mesurage de produits pétroliers |
| 5     | SYS_CEQ_Number      | USINT16            | S                    | R     | ETO (Engineering To Order) : fonctionnalités spéciales                                                                                                                                 |
| 6     | SNS_SensorSerialNum | USINT32            | S                    | R/W   | Numéro de série du capteur                                                                                                                                                             |
| 7     | SNS_SensorType      | STRING             | S                    | R/W   | Modèle du capteur                                                                                                                                                                      |
| 8     | SNS_SensorTypeCode  | USINT16            | S                    | R/W   | Type de capteur<br>• 0 = Tubes courbes<br>• 1 = Tube droit (Série T)                                                                                                                   |

# Tableau D-5 Bloc Information sur l'appareil (Slot 4) suite

| Index | Nom                      | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                                        |
|-------|--------------------------|--------------------|----------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9     | SNS_SensorMaterial       | USINT16            | S                    | R/W   | Matériau de construction des tubes du capteur<br>• 0 = Néant<br>• 3 = Hastelloy C-22<br>• 4 = Monel<br>• 5 = Tantale<br>• 6 = Titane<br>• 19 = Acier inoxydable 316L<br>• 23 = Inconel<br>• 252 = Inconnu<br>• 253 = Spécial              |
| 10    | SNS_LinerMaterial        | USINT16            | S                    | R/W   | Matériau de revêtement interne des tubes du<br>capteur<br>• 0 = Néant<br>• 10 = PTFE (Téflon)<br>• 11 = Halar<br>• 16 = Tefzel<br>• 251 = Néant<br>• 252 = Inconnu<br>• 253 = Spécial                                                     |
| 11    | SNS_FlangeType           | USINT16            | S                    | R/W   | Type de raccords procédé du capteur<br>0 = ANSI 150<br>1 = ANSI 300<br>2 = ANSI 600<br>5 = PN 40<br>7 = JIS 10K<br>8 = JIS 20K<br>9 = ANSI 900<br>10 = Raccords sanitaires<br>11 = Union<br>12 = PN 100<br>252 = Inconnu<br>253 = Spécial |
| 12    | SNS_MassFlowHiLim        | FLOAT              | S                    | R     | Limite haute de débit massique du capteur                                                                                                                                                                                                 |
| 13    | SNS_TempFlowHiLim        | FLOAT              | S                    | R     | Limite haute de température du capteur                                                                                                                                                                                                    |
| 14    | SNS_DensityHiLim         | FLOAT              | S                    | R     | Limite haute de masse volumique du capteur                                                                                                                                                                                                |
| 15    | SNS_VolumeFlowHiLim      | FLOAT              | S                    | R     | Limite haute de débit volumique du capteur                                                                                                                                                                                                |
| 16    | SNS_MassFlowLoLim        | FLOAT              | S                    | R     | Limite basse de débit massique du capteur                                                                                                                                                                                                 |
| 17    | SNS_TempFlowLoLim        | FLOAT              | S                    | R     | Limite basse de température du capteur                                                                                                                                                                                                    |
| 18    | SNS_DensityLoLim         | FLOAT              | S                    | R     | Limite basse de masse volumique du capteur                                                                                                                                                                                                |
| 19    | SNS_VolumeFlowLoLim      | FLOAT              | S                    | R     | Limite basse de débit volumique du capteur                                                                                                                                                                                                |
| 20    | SNS_MassFlowLoSpan       | FLOAT              | S                    | R     | Etendue minimum de mesure du débit massique du capteur                                                                                                                                                                                    |
| 21    | SNS_TempFlowLoSpan       | FLOAT              | S                    | R     | Etendue minimum de mesure de la<br>température du capteur                                                                                                                                                                                 |
| 22    | SNS_DensityLoSpan        | FLOAT              | S                    | R     | Etendue minimum de mesure de la masse volumique du capteur                                                                                                                                                                                |
| 23    | SNS_VolumeFlow<br>LoSpan | FLOAT              | S                    | R     | Etendue minimum de mesure du débit volumique du capteur                                                                                                                                                                                   |
| 24    | HART_HartDeviceID        | USINT32            | S                    | R/W   | Numéro de série du transmetteur                                                                                                                                                                                                           |
| 25    | SYS_SoftwareRev          | USINT16            | S                    | R     | Numéro de version logicielle du transmetteur<br>(format de type xxx.xx, p.e., 141 = v1.41)                                                                                                                                                |
| 26    | SYS_BoardRevision        | USINT16            | S                    | R     | Version de la carte électronique                                                                                                                                                                                                          |

#### D.7 Bloc Indicateur local (Slot 5)

# Tableau D-6 Bloc Indicateur local (Slot 5)

| Index | Nom                                     | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                       |
|-------|-----------------------------------------|--------------------|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4     | UI_EnableLdoTotalizer<br>Reset          | USINT16            | S                    | R/W   | RAZ totaux partiels avec l'indicateur<br>• 0x0000 = Désactivé<br>• 0x0001 = Activé                                                                                       |
| 5     | UI_EnableLdoTotalizer<br>StartStop      | USINT16            | S                    | R/W   | Activ./blocage totalisations avec l'indicateur<br>• 0x0000 = Désactivé<br>• 0x0001 = Activé                                                                              |
| 6     | UI_EnableLdoAutoScroll                  | USINT16            | S                    | R/W   | Défilement automatique sur l'indicateur<br>• 0x0000 = Désactivé<br>• 0x0001 = Activé                                                                                     |
| 7     | UI_EnableLdoOffline<br>Menu             | USINT16            | S                    | R/W   | Accès au menu Offline<br>• 0x0000 = Désactivé<br>• 0x0001 = Activé                                                                                                       |
| 8     | UI_EnableSecurity                       | USINT16            | S                    | R/W   | Activation du mot de passe (menu Offline)<br>• 0x0000 = Désactivé<br>• 0x0001 = Activé                                                                                   |
| 9     | UI_EnableLdoAlarm<br>Menu               | USINT16            | S                    | R/W   | Accès au menu d'alarmes<br>• 0x0000 = Désactivé<br>• 0x0001 = Activé                                                                                                     |
| 10    | UI_EnableLdoAckAll<br>Alarms            | USINT16            | S                    | R/W   | Acquit général des alarmes avec l'indicateur<br>• 0x0000 = Désactivé<br>• 0x0001 = Activé                                                                                |
| 11    | UI_OfflinePassword                      | USINT16            | S                    | R/W   | Mot de passe de l'indicateur<br>0 à 9999                                                                                                                                 |
| 12    | UI_AutoScrollRate                       | USINT16            | S                    | R/W   | Durée d'affichage de chaque grandeur à<br>l'écran lorsque la fonction de défilement<br>automatique est activée<br>1 à 30 secondes                                        |
| 13    | UI_BacklightOn                          | USINT16            | S                    | R/W   | Activation du rétro-éclairage<br>• 0x0000 = éteint<br>• 0x0001 = allumé                                                                                                  |
| 14    | UNI_UI_ProcVarIndex                     | USINT16            | S                    | R/W   | Index de la grandeur mesurée dont la résolution<br>sera réglée avec l'index 15<br>Voir le tableau D-13 pour les codes d'indexage                                         |
| 15    | UI_NumDecimals                          | USINT16            | S                    | R/W   | Nombre de chiffres affichés à droite du point<br>décimal pour la grandeur mesurée<br>sélectionnée avec l'index 14<br>Plage : 0 à 5                                       |
| 16    | UI_ProcessVariables<br>(LDO_VAR_1_CODE) | USINT16            | S                    | R/W   | Grandeur affectée à la variable d'affichage 1<br>de l'indicateur. Voir le tableau D-13 pour les<br>codes des grandeurs. Tous les codes sont<br>valides sauf 251 (Néant). |

#### Tableau D-6 Bloc Indicateur local (Slot 5) suite

| Index | Nom                                      | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                              |
|-------|------------------------------------------|--------------------|----------------------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| 17    | UI_ProcessVariables<br>(LDO_VAR_2_CODE)  | USINT16            | S                    | R/W   | Grandeurs affectées aux variables<br>d'affichage 2 à 15 de l'indicateur. Voir le                                                |
| 18    | UI_ProcessVariables<br>(LDO_VAR_3_CODE)  | USINT16            | S                    | R/W   | <ul> <li>tableau D-13 pour les codes des grandeurs.</li> <li>Tous les codes sont valides.</li> </ul>                            |
| 19    | UI_ProcessVariables<br>(LDO_VAR_4_CODE)  | USINT16            | S                    | R/W   | -                                                                                                                               |
| 20    | UI_ProcessVariables<br>(LDO_VAR_5_CODE)  | USINT16            | S                    | R/W   | -                                                                                                                               |
| 21    | UI_ProcessVariables<br>(LDO_VAR_6_CODE)  | USINT16            | S                    | R/W   |                                                                                                                                 |
| 22    | UI_ProcessVariables<br>(LDO_VAR_7_CODE)  | USINT16            | S                    | R/W   | _                                                                                                                               |
| 23    | UI_ProcessVariables<br>(LDO_VAR_8_CODE)  | USINT16            | S                    | R/W   | -                                                                                                                               |
| 24    | UI_ProcessVariables<br>(LDO_VAR_9_CODE)  | USINT16            | S                    | R/W   | -                                                                                                                               |
| 25    | UI_ProcessVariables<br>(LDO_VAR_10_CODE) | USINT16            | S                    | R/W   | -                                                                                                                               |
| 26    | UI_ProcessVariables<br>(LDO_VAR_11_CODE) | USINT16            | S                    | R/W   | -                                                                                                                               |
| 27    | UI_ProcessVariables<br>(LDO_VAR_12_CODE) | USINT16            | S                    | R/W   | -                                                                                                                               |
| 28    | UI_ProcessVariables<br>(LDO_VAR_13_CODE) | USINT16            | S                    | R/W   | -                                                                                                                               |
| 29    | UI_ProcessVariables<br>(LDO_VAR_14_CODE) | USINT16            | S                    | R/W   | -                                                                                                                               |
| 30    | UI_ProcessVariables<br>(LDO_VAR_15_CODE) | USINT16            | S                    | R/W   | -                                                                                                                               |
| 31    | UI_UpdatePeriodmsec                      | USINT16            | S                    | R/W   | Période de rafraîchissement des valeurs<br>affichées sur l'indicateur<br>Plage : 100 à 10000 millisecondes                      |
| 32    | UI_BacklightOnIntensity                  | USINT16            | S                    | R/W   | Intensité du rétro-éclairage de l'indicateur<br>Plage : 0 (éteint) à 63 (pleine intensité)                                      |
| 33    | UI_Language                              | USINT16            | S                    | R/W   | Langue d'affichage sur l'indicateur<br>• 0 = Anglais<br>• 1 = Allemand<br>• 2 = Français<br>• 3 = Non utilisé<br>• 4 = Espagnol |
| 34    | SYS_Enable_IRDA_<br>Comm                 | USINT16            | S                    | R/W   | Activation / désactivation du port infrarouge :<br>• 0x0000 = Désactivé<br>• 0x0001 = Activé                                    |
| 35    | SYS_Enable_IRDA_<br>WriteProtect         | USINT16            | S                    | R/W   | Usage du port infrarouge :<br>• 0x0000 = Lecture / écriture<br>• 0x0001 = Lecture seule                                         |

# D.8 Bloc API (Slot 6)

# Tableau D-7 Bloc API (Slot 6)

| Index | Nom                         | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                         |
|-------|-----------------------------|--------------------|----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4     | SNS_API_CorrDensity         | FLOAT              | D (20 Hz)            | R     | Valeur actuelle de la masse volumique à température de référence API                                                                                                                                                       |
| 5     | SNS_API_CorrVolFlow         | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du débit volumique à<br>température de référence API                                                                                                                                                       |
| 6     | SNS_API_AveCorr<br>Density  | FLOAT              | D (20 Hz)            | R     | Valeur moyenne de la masse volumique<br>pondérée sur la quantité délivrée                                                                                                                                                  |
| 7     | SNS_API_AveCorrTemp         | FLOAT              | D (20 Hz)            | R     | Valeur moyenne de la température pondérée sur la quantité délivrée                                                                                                                                                         |
| 8     | SNS_API_CTL                 | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du CTL                                                                                                                                                                                                     |
| 9     | SNS_API_CorrVolTotal        | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total partiel en volume à<br>température de référence API                                                                                                                                               |
| 10    | SNS_API_CorrVolInv          | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total général en volume à<br>température de référence API                                                                                                                                               |
| 11    | SNS_ResetApiRefVol<br>Total | USINT16            |                      | R/W   | RAZ du total partiel en volume à température<br>de référence API<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                                                                                 |
| 12    | SNS_ResetAPIGSVInv          | USINT16            | S                    | R/W   | RAZ du total général en volume à température<br>de référence API<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                                                                                 |
| 13    | SNS_APIRefTemp              | FLOAT              | S                    | R/W   | Température de référence utilisée pour les<br>calculs de la fonctionnalité de mesurage de<br>produits pétroliers                                                                                                           |
| 14    | SNS_APITEC                  | FLOAT              | S                    | R/W   | Coefficient d'expansion thermique utilisé pour<br>les calculs de la fonctionnalité de mesurage de<br>produits pétroliers                                                                                                   |
| 15    | SNS_API2540TableType        | USINT16            | S                    | R/W   | Type de table API $17 = Table 5A$ $18 = Table 5B$ $19 = Table 5D$ $36 = Table 6C$ $49 = Table 23A$ $50 = Table 23B$ $51 = Table 23D$ $68 = Table 24C$ $81 = Table 53A$ $82 = Table 53B$ $83 = Table 53D$ $100 = Table 54C$ |

## D.9 Bloc Densimétrie avancée (Slot 7)

# Tableau D-8 Bloc Densimétrie avancée (Slot 7)

| Index | Nom                         | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                               |
|-------|-----------------------------|--------------------|----------------------|-------|----------------------------------------------------------------------------------------------------------------------------------|
| 4     | SNS_ED_RefDens              | FLOAT              | D (20 Hz)            | R     | Valeur actuelle de la masse volumique à température de référence                                                                 |
| 5     | SNS_ED_SpecGrav             | FLOAT              | D (20 Hz)            | R     | Valeur actuelle de la densité                                                                                                    |
| 6     | SNS_ED_StdVolFlow           | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du débit volumique à<br>température de référence                                                                 |
| 7     | SNS_ED_NetMassFlow          | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du débit massique net de matière portée                                                                          |
| 8     | SNS_ED_NetVolFlow           | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du débit volumique net de matière portée                                                                         |
| 9     | SNS_ED_Conc                 | FLOAT              | D (20 Hz)            | R     | Valeur actuelle de la concentration                                                                                              |
| 11    | SNS_ED_StdVolTotal          | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total partiel en volume à<br>température de référence                                                         |
| 12    | SNS_ED_StdVolInv            | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total général en volume à<br>température de référence                                                         |
| 13    | SNS_ED_NetMassTotal         | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total partiel en masse nette<br>de matière portée                                                             |
| 14    | SNS_ED_NetMassInv           | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total général en masse<br>nette de matière portée                                                             |
| 15    | SNS_ED_NetVolTotal          | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total partiel en volume net<br>de matière portée                                                              |
| 16    | SNS_ED_NetVolInv            | FLOAT              | D (20 Hz)            | R     | Valeur actuelle du total général en volume net<br>de matière portée                                                              |
| 17    | SNS_ResetEDRefVol<br>Total  | USINT16            |                      | R/W   | RAZ du total partiel en volume à température<br>de référence :<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro         |
| 18    | SNS_ResetEDNetMass<br>Total | USINT16            |                      | R/W   | RAZ du total partiel en masse nette :<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                  |
| 19    | SNS_ResetEDNetVol<br>Total  | USINT16            |                      | R/W   | RAZ du total partiel en volume net :<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                   |
| 20    | SNS_ResetEDVolInv           | USINT16            | S                    | R/W   | RAZ du total général en volume à température<br>de référence :<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro         |
| 21    | SNS_ResetEDNetMass<br>Inv   | USINT16            | S                    | R/W   | RAZ du total général en masse nette :<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                  |
| 22    | SNS_ResetEDNetVollnv        | USINT16            | S                    | R/W   | RAZ du total général en volume net :<br>• 0x0000 = Aucune action<br>• 0x0001 = Remettre à zéro                                   |
| 23    | SNS_ED_CurveLock            | USINT16            | S                    | R/W   | Verrouillage en écriture de toutes les courbes<br>de densité configurées :<br>• 0x0000 = Non verrouillé<br>• 0x0001 = Verrouillé |

# Tableau D-8 Bloc Densimétrie avancée (Slot 7) suite

| Index | Nom                         | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                                                                                                                                                              |
|-------|-----------------------------|--------------------|----------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 24    | SNS_ED_Mode                 | USINT16            | S                    | R/W   | Grandeur dérivée :<br>• 0 = Néant<br>• 1 = Masse volumique à temp. de référence<br>• 2 = Densité<br>• 3 = Concentration en masse (masse vol.)<br>• 4 = Concentration en volume (masse vol.)<br>• 5 = Concentration en volume (masse vol.)<br>• 6 = Concentration en volume (densité)<br>• 7 = Concentration (masse vol.)<br>• 8 = Concentration (densité)       |
| 25    | SNS_ED_ActiveCurve          | USINT16            | S                    | R/W   | Numéro de la courbe de densité active (a)<br>Plage : 0 à 5                                                                                                                                                                                                                                                                                                      |
| 26    | UNI_ED_CurveIndex           | USINT16            | S                    | R/W   | Index de la courbe à configurer (n)<br>Plage : 0 à 5                                                                                                                                                                                                                                                                                                            |
| 27    | UNI_ED_TempIndex            | USINT16            | S                    | R/W   | Index du point de température de<br>la courbe <sub>n</sub> (x)<br>Plage : 0 à 5                                                                                                                                                                                                                                                                                 |
| 28    | UNI_ED_ConcIndex            | USINT16            | S                    | R/W   | Index de concentration de la courbe <sub>n</sub> (y)<br>Plage : 0 à 5                                                                                                                                                                                                                                                                                           |
| 29    | SNS_ED_TempISO              | FLOAT              | S                    | R/W   | Valeur du point <sub>x</sub> de température de la courbe <sub>n</sub>                                                                                                                                                                                                                                                                                           |
| 30    | SNS_ED_DensAtTemp<br>ISO    | FLOAT              | S                    | R/W   | Masse volumique au point <sub>x</sub> de température et<br>à concentration <sub>y</sub> de la courbe <sub>n</sub>                                                                                                                                                                                                                                               |
| 31    | SNS_ED_DensAtTemp<br>Coeff  | FLOAT              | S                    | R/W   | Coefficient au point <sub>x</sub> de température et à concentration <sub>y</sub> de la courbe <sub>n</sub>                                                                                                                                                                                                                                                      |
| 32    | SNS_ED_ConcLabel55          | FLOAT              | S                    | R/W   | Code du symbole de l'unité de concentration<br>pour la courbe <sub>n</sub> :<br>• 100 = Degré Twaddell<br>• 101 = Degré Brix<br>• 102 = Degré Baumé (d>1)<br>• 103 = Degré Baumé (d<1)<br>• 105 = % MES - masse<br>• 106 = % MES - volume<br>• 107 = Degré Balling<br>• 108 = Proof / volume<br>• 109 = Proof / masse<br>• 160 = Degré Plato<br>• 253 = Spécial |
| 33    | SNS_ED_DensAtConc           | FLOAT              | S                    | R/W   | Masse volumique (à temp. de référence) à la concentration, de la courbe, $(1x6)$                                                                                                                                                                                                                                                                                |
| 34    | SNS_ED_DensAtConc<br>Coeff  | FLOAT              | S                    | R/W   | Coefficient (à température de référence) à la concentration <sub>y</sub> de la courbe <sub>n</sub> (1x6)                                                                                                                                                                                                                                                        |
| 35    | SNS_ED_ConcLabel51          | FLOAT              | S                    | R/W   | Valeur de la concentration <sub>y</sub> (axe des y) de la courbe <sub>n</sub> (1x6)                                                                                                                                                                                                                                                                             |
| 36    | SNS_ED_RefTemp              | FLOAT              | S                    | R/W   | Température de référence de la courbe <sub>n</sub>                                                                                                                                                                                                                                                                                                              |
| 37    | SNS_ED_SGWaterRef<br>Temp   | FLOAT              | S                    | R/W   | Température de référence pour la densité de l'eau de la courbe <sub>n</sub>                                                                                                                                                                                                                                                                                     |
| 38    | SNS_ED_SGWaterRef<br>Dens   | FLOAT              | S                    | R/W   | Masse volumique de référence pour la densité de l'eau de la courbe <sub>n</sub>                                                                                                                                                                                                                                                                                 |
| 39    | SNS_ED_SlopeTrim            | FLOAT              | S                    | R/W   | Ajustage de la courbe <sub>n</sub> : pente                                                                                                                                                                                                                                                                                                                      |
| 40    | SNS_ED_OffsetTrim           | FLOAT              | S                    | R/W   | Ajustage de la courbe <sub>n</sub> : décalage                                                                                                                                                                                                                                                                                                                   |
| 41    | SNS_ED_ExtrapAlarm<br>Limit | FLOAT              | S                    | R/W   | Limite pour l'alarme d'extrapolation de la courbe <sub>n</sub> (%)                                                                                                                                                                                                                                                                                              |

### Tableau D-8 Bloc Densimétrie avancée (Slot 7) suite

| Index | Nom                             | Type de<br>données | Classe de<br>mémoire | Accès | Description / codes / commentaires                                                                                                                                                                                                                                                                                                                                             |
|-------|---------------------------------|--------------------|----------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42    | SNS_ED_CurveName                | STRING             | S                    | R/W   | Nom de la courbe <sub>n</sub>                                                                                                                                                                                                                                                                                                                                                  |
| 43    | SNS_ED_MaxFitOrder              | USINT16            | S                    | R/W   | Ordre maximum du polynôme pour la courbe <sub>n</sub><br>Plage : 2 à 5                                                                                                                                                                                                                                                                                                         |
| 44    | SNS_ED_FitResults               | USINT16            | S                    | R     | Résultat de mise en équation de la courbe <sub>n</sub> :<br>• 0 = Bonne<br>• 1 = Médiocre<br>• 2 = Echec<br>• 3 = Vide                                                                                                                                                                                                                                                         |
| 45    | SNS_ED_ConcUnit<br>Code         | USINT16            | S                    | R/W   | Code du symbole d'unité de concentration<br>pour la courbe <sub>n</sub> :<br>• 1110 = Degré Twaddell<br>• 1426 = Degré Brix<br>• 1111 = Degré Baumé (d>1)<br>• 1112 = Degré Baumé (d<1)<br>• 1343 = % MES - masse<br>• 1344 = % MES - volume<br>• 1427 = Degré Balling<br>• 1428 = Proof (volume)<br>• 1429 = Proof (masse)<br>• 1346 = % Plato<br>• 1342 = % (Unité spéciale) |
| 46    | SNS_ED_ExpectedAcc              | FLOAT              | S                    | R     | Incertitude attendue pour la mise en équation de la courbe <sub>n</sub>                                                                                                                                                                                                                                                                                                        |
| 47    | SNS_ED_ResetFlag                | USINT16            | S                    | W     | Effacer toutes les données de courbes :<br>• 0x0000 = Aucune action<br>• 0x0001 = Effacer                                                                                                                                                                                                                                                                                      |
| 48    | SNS_ED_EnableDens<br>LowExtrap  | USINT16            | S                    | R/W   | Alarme d'extrapolation basse masse vol. :<br>• 0x0000 = Désactiver<br>• 0x0001 = Activer                                                                                                                                                                                                                                                                                       |
| 49    | SNS_ED_EnableDens<br>HighExtrap | USINT16            | S                    | R/W   | Alarme d'extrapolation haute masse vol. :<br>• 0x0000 = Désactiver<br>• 0x0001 = Activer                                                                                                                                                                                                                                                                                       |
| 50    | SNS_ED_EnableTemp<br>LowExtrap  | USINT16            | S                    | R/W   | Alarme d'extrapolation basse température :<br>• 0x0000 = Désactiver<br>• 0x0001 = Activer                                                                                                                                                                                                                                                                                      |
| 51    | SNS_ED_EnableTemp<br>HighExtrap | USINT16            | S                    | R/W   | Alarme d'extrapolation haute température :<br>• 0x0000 = Désactiver<br>• 0x0001 = Activer                                                                                                                                                                                                                                                                                      |
| 52    | SNS_ED_LongCurve                | OCTET<br>STRING    | S                    | R/W   | Nom étendu de la courbe                                                                                                                                                                                                                                                                                                                                                        |

#### D.10 Fonctions I&M (Slot 0)

#### Tableau D-9 Fonctions I&M

| Index | Sous-<br>index | Nom                       | Description                                                        | Type de<br>données     | Taille | Classe de<br>mémoire | Accès |
|-------|----------------|---------------------------|--------------------------------------------------------------------|------------------------|--------|----------------------|-------|
| 255   | 65000          | HEADER                    | En-tête du fabricant                                               | STRING                 | 10     | S                    | R     |
|       |                | MANUFACTURER_<br>ID       | ID du fabricant affecté par<br>PTO                                 | USINT16                | 2      | S                    | R     |
|       |                | ORDER_ID                  | Numéro d'ordre de l'appareil                                       | STRING                 | 20     | S                    | R     |
|       |                | SERIAL_NO                 | Numéro de série de l'appareil                                      | STRING                 | 16     | S                    | R     |
|       |                | HARDWARE_<br>REVISION     | Numéro de révision matérielle                                      | USINT16                | 2      | S                    | R     |
|       |                | SOFTWARE_<br>REVISION     | Numéro de version logicielle<br>de l'appareil ou du module         | 1×CHAR<br>3×USINT8     | 4      | S                    | R     |
|       |                | REV_COUNTER               | Compteur de révision<br>matérielle ou de l'un de ses<br>paramètres | USINT16                | 2      | S                    | R     |
|       |                | PROFILE_ID                | Type de profil du profil<br>supporté                               | USINT16                | 2      | S                    | R     |
|       |                | PROFILE_<br>SPECIFIC_TYPE | Type de profil spécifique                                          | USINT16                | 2      | S                    | R     |
|       |                | IM_VERSION                | Version des fonctions I&M<br>implémentées                          | 2×USINT8               | 2      | S                    | R     |
|       |                | IM_SUPPORTED              | Fonctions I&M disponibles                                          | USINT16 <sup>(1)</sup> | 2      | S                    | R     |
|       | 65001          | HEADER                    | En-tête du fabricant                                               | STRING                 | 10     | S                    | R     |
|       |                | TAG_FUNCTION              | Repère d'identification                                            | STRING                 | 32     | S                    | R/W   |
|       |                | TAG_LOCATION              | Repère d'implantation                                              | STRING                 | 22     | S                    | R/W   |

(1) Implémenté sous la forme d'un tableau de bits.

#### D.11 Codes des unités de mesure des totalisateurs partiels et généraux

#### Tableau D-10 Codes des unités de mesure des totaux partiels et généraux en masse

| Code | Label       | Description                    |
|------|-------------|--------------------------------|
| 1089 | g           | Gramme                         |
| 1088 | Kg          | Kilogramme                     |
| 1092 | metric tons | Tonne métrique                 |
| 1094 | lbs         | Livre                          |
| 1095 | short tons  | Tonne courte (US, 2000 livres) |
| 1096 | long tons   | Tonne forte (UK, 2240 livres)  |

#### Tableau D-11 Codes des unités de mesure des totaux partiels et généraux en volume liquide

| Code | Label  | Description            |
|------|--------|------------------------|
| 1048 | gal    | Gallon                 |
| 1038 | I      | Litre                  |
| 1049 | ImpGal | Gallon impérial (U.K.) |

| Code | Label    | Description                   |
|------|----------|-------------------------------|
| 1034 | m3       | Mètre cube                    |
| 1036 | cm3      | Centimètre cube               |
| 1051 | bbl      | Baril <sup>(1)</sup>          |
| 1641 | Beer bbl | Baril de bière <sup>(2)</sup> |
| 1043 | ft3      | Pied cube                     |

#### Tableau D-11 Codes des unités de mesure des totaux partiels et généraux en volume liquide suite

(1) Baril de pétrole (42 gallons U.S.).

(2) Baril de bière U.S. (31 gallons U.S.).

# Tableau D-12 Codes des unités de mesure des totaux partiels et généraux en volume de gaz aux conditions de base

| Code | Label | Description         |
|------|-------|---------------------|
| 1053 | SCF   | Pied cube standard  |
| 1521 | Nm3   | Mètre cube normal   |
| 1526 | Sm3   | Mètre cube standard |
| 1531 | NL    | Litre normal        |
| 1536 | SL    | Litre standard      |

#### D.12 Codes des grandeurs mesurées

#### Tableau D-13 Codes des grandeurs mesurées

| Code | Description                                                              |
|------|--------------------------------------------------------------------------|
| 0    | Débit massique                                                           |
| 1    | Température                                                              |
| 2    | Total partiel en masse                                                   |
| 3    | Masse volumique                                                          |
| 4    | Total général en masse                                                   |
| 5    | Débit volumique                                                          |
| 6    | Total partiel en volume                                                  |
| 7    | Total général en volume                                                  |
| 15   | API : Masse volumique à température de référence                         |
| 16   | API : Débit volumique à température de référence                         |
| 17   | API : Total partiel en volume à température de référence                 |
| 18   | API : Total général en volume à température de référence                 |
| 19   | API : Masse volumique moyenne pondérée sur la quantité délivrée          |
| 20   | API : Température moyenne pondérée sur la quantité délivrée              |
| 21   | Densimétrie avancée : Masse volumique à température de référence         |
| 22   | Densimétrie avancée : Densité                                            |
| 23   | Densimétrie avancée : Débit volumique à température de référence         |
| 24   | Densimétrie avancée : Total partiel en volume à température de référence |
| 25   | Densimétrie avancée : Total général en volume à température de référence |

| Code | Description                                                          |
|------|----------------------------------------------------------------------|
| 26   | Densimétrie avancée : Débit massique net de matière portée           |
| 27   | Densimétrie avancée : Total partiel en masse nette de matière portée |
| 28   | Densimétrie avancée : Total général en masse nette de matière portée |
| 29   | Densimétrie avancée : Débit volumique net de matière portée          |
| 30   | Densimétrie avancée : Total partiel en volume net de matière portée  |
| 31   | Densimétrie avancée : Total général en volume net de matière portée  |
| 32   | Densimétrie avancée : Concentration                                  |
| 33   | API : CTL                                                            |
| 46   | Fréquence de vibration des tubes                                     |
| 47   | Niveau d'excitation                                                  |
| 48   | Température du boîtier du capteur (Série T)                          |
| 49   | Amplitude du détecteur gauche                                        |
| 50   | Amplitude du détecteur droit                                         |
| 51   | Température carte                                                    |
| 53   | Signal de pression externe                                           |
| 55   | Signal de température externe                                        |
| 63   | Débit volumique de gaz aux conditions de base                        |
| 64   | Total partiel en volume de gaz aux cond. de base                     |
| 65   | Total général en volume de gaz aux cond. de base                     |
| 69   | Débit résiduel (zéro)                                                |
| 251  | Néant                                                                |

# Tableau D-13 Codes des grandeurs mesurées suite

## D.13 Codes d'indexage des alarmes

## Tableau D-14 Codes d'indexage des alarmes

| Code | Description                                          |
|------|------------------------------------------------------|
| 1    | Panne de mémoire non volatile                        |
| 2    | Erreur RAM/ROM                                       |
| 3    | Panne du capteur                                     |
| 4    | Température hors limites                             |
| 5    | Entrée hors limite                                   |
| 6    | Transmetteur non caractérisé                         |
| 7    | Réservé                                              |
| 8    | Masse volumique hors limites                         |
| 9    | Mise sous tension et initialisation du transmetteur  |
| 10   | Echec de l'étalonnage                                |
| 11   | Débit inférieur à 0 excessif pour l'ajustage du zéro |
| 12   | Débit supérieur à 0 excessif pour l'ajustage du zéro |
| 13   | Débit trop instable pour l'ajustage du zéro          |
| 14   | Panne du transmetteur                                |

| Code   | Description                                                          |
|--------|----------------------------------------------------------------------|
| 16     | Température Pt100 capteur hors limites                               |
| 17     | Température Pt100 boîtier hors limites (Série T)                     |
| 18     | Réservé                                                              |
| 19     | Réservé                                                              |
| 20     | Type de capteur incorrect (K1)                                       |
| 21     | Type de capteur invalide                                             |
| 22     | Erreur mémoire non volatile (platine processeur)                     |
| 23     | Erreur mémoire non volatile (platine processeur)                     |
| 24     | Erreur mémoire non volatile (platine processeur)                     |
| 25     | Défaut d'amorçage (platine processeur)                               |
| 26     | Réservé                                                              |
| 27     | Violation de sécurité                                                |
| 28     | Réservé                                                              |
| 29     | Panne de communication interne                                       |
| 30     | Incompatibilité matérielle/logicielle                                |
| 31     | Tension d'alimentation trop faible                                   |
| 32     | Validation débitmètre / sorties forcées à leur valeur de défaut      |
| 33     | Tubes non remplis                                                    |
| 42     | Excitation hors limites                                              |
| 43     | Perte de données éventuelle                                          |
| 44     | Ajustage du zéro ou étalonnage en cours                              |
| 45     | Ecoulement biphasique                                                |
| 47     | Coupure d'alimentation                                               |
| 56     | API : Température hors limites                                       |
| 57     | API : Masse volumique hors limites                                   |
| 60     | Densimétrie avancée : mise en équation impossible                    |
| 61     | Densimétrie avancée : Alarme d'extrapolation                         |
| 71     | Validation débitmètre / sorties forcées à la dernière valeur mesurée |
| 72     | Mode de simulation activé                                            |
| 73–139 | Non défini                                                           |

#### Tableau D-14 Codes d'indexage des alarmes suite

# Annexe E Glossaire des codes et abréviations de l'indicateur

#### E.1 Sommaire

Cette annexe explique la signification des codes et abréviations de l'indicateur du transmetteur.

*Remarque : Les informations contenues dans cette annexe ne s'appliquent qu'aux transmetteurs équipés d'un indicateur.* 

#### E.2 Codes et abréviations

Le tableau E-1 donne la définition des codes et abréviations représentant les grandeurs mesurées sur l'indicateur (voir la section 8.9.3 pour configurer l'affichage des grandeurs mesurées).

Le tableau E-2 donne la définition des codes et abréviations du menu de maintenance.

*Remarque : Ces tableaux ne contiennent pas de définition pour les mots complets ou pour les symboles des unités de mesure. Pour la définition des symboles représentant les unités de mesure, voir la section 6.3.* 

| Code ou abréviation | Définition                                               | Commentaire                                              |
|---------------------|----------------------------------------------------------|----------------------------------------------------------|
| BRD T               | Température carte                                        |                                                          |
| CONC                | Concentration                                            | Uniquement avec la fonctionnalité Densimétrie<br>avancée |
| D_MOY               | Masse volumique moyenne                                  |                                                          |
| DENS                | Densité                                                  |                                                          |
| ENT P               | Entrée numérique de pression                             |                                                          |
| ENT T               | Entrée numérique de température                          |                                                          |
| EXCIT               | Niveau d'excitation                                      |                                                          |
| GEN_M               | Total général en masse                                   |                                                          |
| GENVT               | Total général en volume                                  |                                                          |
| GSV                 | Volume de gaz aux conditions<br>de base                  |                                                          |
| GSV F               | Débit volumique de gaz aux<br>conditions de base         |                                                          |
| GSV I               | Total général du volume de gaz<br>aux conditions de base |                                                          |
| GSV T               | Total partiel en volume de gaz<br>aux conditions de base |                                                          |
| LPO_A               | Amplitude du détecteur gauche                            |                                                          |
| LZERO               | Débit sous seuil                                         |                                                          |

#### Tableau E-1 Codes des grandeurs mesurées

| Code ou abréviation | Définition                                              | Commentaire                                                          |
|---------------------|---------------------------------------------------------|----------------------------------------------------------------------|
| MOYPD               | Moyenne pondérée                                        |                                                                      |
| MTR T               | Température du boîtier du capteur<br>(Série T)          |                                                                      |
| NET M               | Débit massique net de matière portée                    | Uniquement avec la fonctionnalité Densimétrie avancée                |
| NET V               | Débit volumique net de matière portée                   | Uniquement avec la fonctionnalité Densimétrie avancée                |
| NETMI               | Total général en masse nette de matière portée          | Uniquement avec la fonctionnalité Densimétrie avancée                |
| NETVI               | Total général en volume net de matière portée           | Uniquement avec la fonctionnalité Densimétrie avancée                |
| PWRIN               | Tension d'entrée                                        | Indique la tension d'alimentation de la platine processeur           |
| RDENS               | Masse volumique à température<br>de référence           | Uniquement avec la fonctionnalité Densimétrie avancée                |
| RPO A               | Amplitude du détecteur droit                            |                                                                      |
| STD V               | Débit volumique à température<br>de référence           | Uniquement avec la fonctionnalité Densimétrie avancée                |
| STD V               | Débit volumique à température<br>de référence           | Uniquement avec la fonctionnalité Densimétrie<br>avancée             |
| STDVI               | Total général en volume à tempé-<br>rature de référence | Uniquement avec la fonctionnalité Densimétrie avancée                |
| T_MOY               | Température moyenne                                     |                                                                      |
| TCDEN               | Masse volumique à température<br>de référence           | Uniquement avec la fonctionnalité Mesurage<br>de produits pétroliers |
| TCORI               | Total général en volume à tempé-<br>rature de référence | Uniquement avec la fonctionnalité Mesurage<br>de produits pétroliers |
| TCORR               | Total partiel en volume à tempé-<br>rature de référence | Uniquement avec la fonctionnalité Mesurage<br>de produits pétroliers |
| TCVOL               | Volume à température de référence                       | Uniquement avec la fonctionnalité Mesurage<br>de produits pétroliers |
| TUBHZ               | Fréquence de vibration des tubes                        |                                                                      |

#### Tableau E-1 Codes des grandeurs mesurées suite

## Tableau E-2 Codes utilisés dans le menu de maintenance (off-line maint)

| Code ou abréviation | Définition                                       | Commentaire                                                                                               |
|---------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| ACQUI               | Afficher le menu d'acquit général<br>des alarmes |                                                                                                           |
| ACQUI ALARM         | Acquitter cette alarme                           |                                                                                                           |
| ACQUI TOUS          | Acquitter toutes les alarmes                     |                                                                                                           |
| ACTIV               | Activer                                          | Appuyer sur Select pour activer                                                                           |
| ADRSS               | Adresse                                          |                                                                                                           |
| AFF                 | Affectation                                      | Commande affectée à un événement                                                                          |
| AJUSTER             | Auto-ajustage du zéro                            |                                                                                                           |
| CHANGER CODE        | Modification du mot de passe                     | Ce mot de passe permet d'accéder au<br>fonctionnalités de l'indicateur lorsque celui-ci<br>est verrouillé |

| Code ou abréviation | Définition                         | Commentaire                                                                           |
|---------------------|------------------------------------|---------------------------------------------------------------------------------------|
| CONFIG, CONFG       | Configuration                      |                                                                                       |
| CORE                | Platine processeur                 |                                                                                       |
| DESAC               | Désactiver                         | Appuyer sur Select pour désactiver                                                    |
| EVNTx               | Evénement <i>x</i>                 |                                                                                       |
| Ex                  | Evénement <i>x</i>                 | Se rapporte aux événements 1 et 2 dans les<br>écrans de réglage de la valeur de seuil |
| EXCIT%, EXCIT       | Niveau d'excitation                |                                                                                       |
| FACAJ               | Facteur d'ajustage de l'étalonnage |                                                                                       |
| INDIC               | Indicateur                         |                                                                                       |
| IRDA                | Port infrarouge                    |                                                                                       |
| LANG                | Langue d'affichage                 |                                                                                       |
| M_ASC               | Modbus ASCII                       |                                                                                       |
| M_RTU               | Modbus RTU                         |                                                                                       |
| M_VOL               | Masse volumique                    |                                                                                       |
| MASSE               | Débit massique                     |                                                                                       |
| MBUS                | Modbus                             |                                                                                       |
| MESUR               | Mesurage                           |                                                                                       |
| OFF-LINE MAINT      | Menu de maintenance                |                                                                                       |
| OFFLN               | Menu de maintenance (off-line)     |                                                                                       |
| PRESS               | Pression                           |                                                                                       |
| Q_VOL               | Débit volumique                    |                                                                                       |
| QMASS               | Débit massique                     |                                                                                       |
| r.                  | Révision, version                  |                                                                                       |
| RTECL, rEtrOECL     | Rétro-éclairage de l'indicateur    |                                                                                       |
| SENS                | Sens d'écoulement                  |                                                                                       |
| SIMUL               | Simulation                         |                                                                                       |
| SPECL               | Unité spéciale                     |                                                                                       |
| TEMP                | Température                        |                                                                                       |
| VALID               | Validation                         |                                                                                       |
| VER                 | Version                            |                                                                                       |
| VERR                | Verrouillage en écriture           |                                                                                       |
| VOL                 | Volume ou débit volumique          |                                                                                       |
| XMTR                | Transmetteur                       |                                                                                       |
| Z ACT               | Zéro actuel                        |                                                                                       |
| Z USN               | Zéro de l'usine                    |                                                                                       |

### Tableau E-2 Codes utilisés dans le menu de maintenance (off-line maint) suite

#### A

Adresse de nœud PROFIBUS connexion au transmetteur 22 réglage 7,69 télégramme Set Slave Address 22 valeur par défaut 7, 69 Adresse Modbus 71 Afficheur à cristaux liquides Voir Indicateur Ajustage du zéro 117 échec 132 procédure 119 Alarmes bits d'état 40 comportement du transmetteur 40 gestion 40 historique des alarmes 40 liste des codes 134 niveau de gravité configuration 62 gestion des alarmes 40 Alimentation bornes du transmetteur 156 diagnostic des pannes 131 Amortissement 55 Arborescences des menus EDD 161 indicateur 168 ProLink II 158 Auto-réglage du zéro Voir Ajustage du zéro

## B

Bornes emplacement 156 Boutons *Voir* Touches optiques

#### C

Câblage, diagnostic des pannes 131 Capteur diagnostic des pannes 145 informations sur le capteur 75 Caractérisation coefficient d'étalonnage en débit 26 diagnostic des pannes 143 paramètres de caractérisation 25 procédure 27 quand caractériser le débitmètre 25 Coefficient d'étalonnage en débit 26 Communication numérique adresse Modbus 71 **PROFIBUS 9,70** délai supplémentaire de réponse numérique 72 forçage sur défaut des valeurs transmises 73 ordre des octets à virgule flottante 72 paramètres 69 port infrarouge 71 temporisation du forçage sur défaut 74 Configuration adresse de nœud PROFIBUS 7, 69 adresse Modbus 71 amortissement 55 communication numérique 69 correction en pression 84 correction en température des fonctionnalités API et DA 87 débit volumique de gaz 52 délai supplémentaire de réponse numérique 72 écoulement biphasique 61 essentielle 25 événements 58 facteurs d'ajustage de l'étalonnage 117 fonctionnalité de densimétrie avancée 78 fonctionnalité de mesurage de produits pétroliers 75 fonctions I&M 75 formulaire de préconfiguration 5 indicateur grandeurs à afficher 66 langue 66 paramètres 65 résolution de l'affichage 66 saisie de valeurs à virgule flottante 13 informations sur le capteur 75 informations sur le transmetteur 74 niveau de gravité des alarmes 62 optionnelle 51

ordre des octets à virgule flottante 72 outils de configuration 3 paramètres API 75 période de rafraîchissement 66 planification 3 port infrarouge lecture/écriture ou lecture seule 71 verrouillage/déverrouillage 71 sauvegarde d'un fichier de configuration 18 sens d'écoulement 56 seuils de coupure 54 support Modbus ASCII 72 temporisation du forçage sur défaut 74 unités de mesure 28 débit massique 30 débit volumique de gaz 30 débit volumique liquide 30 masse volumique 32 pression 33 température 33 Connexion au transmetteur à partir d'un hôte PROFIBUS 22 avec ProLink II ou Pocket ProLink 18 paramètres de communication du port service 18 via le port infrarouge 19 Correction en pression 83 configuration 84 facteurs d'influence 84 Correction en température des fonctionnalités API et DA configuration 87 Couvercle du transmetteur ouverture et fermeture 11

## D

Débit massique amortissement 55 seuil de coupure 54 unité de mesure configuration 30 liste des codes 30 Débit volumique de gaz amortissement 55 configuration 52 seuil de coupure 54 unité de mesure configuration 30 liste des codes 32 Débit volumique de liquide amortissement 55 seuil de coupure 54 unité de mesure configuration 30 liste des codes 30 Défaut de fonctionnement codes d'alarme 134 diagnostic des pannes 132 forçage sur défaut des valeurs transmises par voie numérique 73 Délai supplémentaire de réponse numérique 72 Détection automatique du port service 19 Diagnostic des pannes câblage alimentation 131 câbllage au réseau PROFIBUS 132 caractérisation 143 configuration pour la mesure du débit 143 défauts de fonctionnement 132 définition des codes d'alarmes 134 échec de l'ajustage du zéro 132 écoulement biphasique 142 étalonnage 132, 143 gestion des alarmes 134 grandeurs mesurées 138 le transmetteur ne fonctionne pas 130 mise à la terre 132 outils de communication 130 panne de communication 130 points de test 143 problèmes avec le niveau d'excitation 144 problèmes de câblage 131 tension de détection trop faible 145 tubes du capteur 142 vérification des circuits du capteur 145 voyants LED 134 Documentation 5 **DP-V0** 2 DP-V1 2,24

# Ε

Ecoulement biphasique configuration 61 disgnostic des pannes 142 EDD 21 arborescences des menus 161 configuration du volume de gaz aux conditions de base 54 contrôle des totaux partiels et généraux 49 gestion des alarmes 43 téléchargement 3 utilisation avec un hôte PROFIBUS 23 visualisation de l'état du transmetteur 39 des grandeurs mesurées 37 des totaux partiels et généraux 46 Etalonnage 91, 94 ajustage du zéro 119 diagnostic des pannes 143 échec de l'étalonnage 132 en masse volumique échec 132 procédure 122 en température échec 132 procédure 127 Etat du transmetteur visualisation 39 avec l'indicateur 41 avec la description EDD 43 avec les paramètres de bus PROFIBUS 44 avec ProLink II 42 **Evénements** configuration 58 modification de la valeur de seuil avec l'indicateur 61 visualisation de l'état d'un événement 60

#### F

Facteurs d'ajustage de l'étalonnage 93 configuration 117
Facteurs d'influence de la pression 84
Fichiers de configuration téléchargement et sauvegarde 18
Fonctionnalité de densimétrie avancée activation et blocage des totalisateurs partiels et généraux 47
configuration 78
paramètres de bus PROFIBUS 191
remise à zéro des totalisateurs généraux 47
visualisation des grandeurs mesurées 36
visualisation des totaux partiels et généraux 45 Fonctionnalité de mesurage de produits pétroliers activation et blocage des totalisateurs partiels et généraux 47 configuration 75 paramètres de bus PROFIBUS 190 remise à zéro des totalisateurs généraux 47 visualisation des grandeurs mesurées 36 visualisation des totaux partiels et généraux 45 Fonctions I&M configuration 75 paramètres de bus PROFIBUS 194 usage 35 Forçage sur défaut des valeurs transmises par voie numérique configuration 73 temporisation 74 Formulaire de préconfiguration 5

#### G

Grandeurs mesurées affichage sur l'indicateur 66 amortissement 55 diagnostic des pannes 138 relevé 36 visualisation 36 GSD 2, 21 contrôle des totaux partiels et généraux 49 modules d'entrée et de sortie 22 téléchargement 3 utilisation avec un hôte PROFIBUS 22 visualisation des grandeurs mesurées 37 des totaux partiels et généraux 47

#### Η

Hôte PROFIBUS compatibilité 131 connexion au transmetteur 2400S DP 22 utilisation 21 avec la description d'appareil EDD 23 avec le fichier GSD 22 avec les paramètres de bus PROFIBUS 24

#### l Indicateur

arborescences des menus 168 codes et abréviations 199 contrôle des totalisateurs partiels et généraux 47 gestion des alarmes 41 grandeurs à afficher 66 intensité du rétro-éclairage 68 langue 12, 66

menus de l'indicateur 13 mise en/hors fonction des fonctionnalités 68 modification de la valeur de seuil d'un événement 61 mot de passe 13 notation décimale 13 notation exponentielle 13 paramètres de bus PROFIBUS 188 période de rafraîchissement des valeurs affichées 66 résolution de l'affichage 66 rétro-éclairage 68 saisie de valeurs à virgule flottante 13 touches optiques 11 visualisation des grandeurs mesurées 12, 36 total général en masse 45 total général en volume 45 total partiel en masse 45 total partiel en volume 45 Voir aussi Interface utilisateur Influence de la pression 84 Informations sur le capteur 75 Informations sur le transmetteur 74 Informations sur les versions logicielles 2 Interface utilisateur caractéristiques et fonctions 9 indicateur optionnel 9 Voir aussi Indicateur

#### L

Langue de l'indicateur 12, 66 de ProLink II 20

#### М

Masse volumique amortissement 55 facteur d'influence 84 seuil de coupure 54 unité de mesure configuration 32 liste des codes 32 Mise à la terre, diagnostic des pannes 132 Modbus adresse 71 délai supplémentaire de réponse numérique 72 ordre des octets à virgule flottante 72 Mode de simulation 133 Modules d'entrée liste 22 Modules de sortie liste 22 Modules de sorties utilisation pour la correction en pression et en température 83, 87, 89 Mot de passe de l'indicateur 13

## Ν

Niveau d'excitation diagnostic des pannes 144 Niveau de détection diagnostic des pannes 145 Niveau de gravité des alarmes configuration 62 gestion des alarmes 40 Numéro de modèle 1

## 0

Ordre des octets à virgule flottante 72 Organigramme de configuration 3 Outils de communication 3 diagnostic des pannes 130

#### Ρ

Paramètres de bus PROFIBUS 173 bloc API 190 Densimétrie avancée 191 **Diagnostics** 178 Etalonnage 176 Indicateur local 188 Informations sur l'appareil 186 Mesurage 174 codes d'indexage des alarmes 196 codes des grandeurs mesurées 195 codes des unités de mesure débit massique 30 débit volumique (gaz) 32 débit volumique (liquides) 31 masse volumique 32 pression 33 température 33 totalisateurs 194 configuration du volume de gaz aux conditions de base 54 contrôle des totaux partiels et généraux 49 fonctions I&M 194 gestion des alarmes 44 types de données 174 utilisation avec un hôte PROFIBUS 24

visualisation des grandeurs mesurées 38 des totaux partiels et généraux 47 état du transmetteur 39 Pattes du port service connexion de ProLink II ou Pocket ProLink 19 Période de rafraîchissement configuration 66 Pocket ProLink connexion au transmetteur Modèle 2400S DP 18 sauvegarde d'un fichier de configuration 18 spécifications 17, 131 téléchargement d'un fichier de configuration 18 Points de test 143 Port infrarouge connexion de Pocket ProLink 19 lecture/écriture ou lecture seule 71 verrouillage/déverrouillage 71 Port service détection automatique 19 paramètres de communication 18 pattes de connexion 19 Pression correction 83 d'étalonnage en débit 84 facteurs d'influence 84 unité de mesure configuration 33 liste des codes 33 PROFIBUS DP débits de transmission 2 méthodes de configuration 2 mode de communication 2 modules de sorties correction en pression et en température 83, 87,89 services cycliques DP-V0 2 services de lecture/écriture DP-V1 2, 24 vérification du câblage au réseau 132 ProLink II arborescences des menus 158 connexion au transmetteur Modèle 2400S DP 18 contrôle des totalisateurs partiels et généraux 48 gestion des alarmes 42 langue 20 sauvegarde d'un fichier de configuration 18 spécifications 17, 131 téléchargement d'un fichier de configuration 18 visualisation des grandeurs mesurées 37 des totaux partiels et généraux 46 état du transmetteur 39

## S

Scroll mode d'emploi des touches optiques 11 Sécurité 1 Select mode d'emploi des touches optiques 11 Sélecteurs rotatifs *Voir* Communication numérique sélecteurs rotatifs de l'adresse de nœud PROFIBUS 9, 70 Sens d'écoulement 56 Service après-vente 6, 130 Seuils de coupure 54 Siemens Simatic PDM 21 Support Modbus ASCII 72

# T

Télégramme Set Slave Address 22 Température amortissement 55 unité de mesure configuration 33 liste des codes 33 Temporisation du forçage sur défaut 74 Tension de détection trop faible 145 Totalisateurs généraux contrôle 47 définition 45 remise à zéro 47 unités de mesure 28 visualisation des valeurs 45 Totalisateurs partiels contrôle 47 définition 45 remise à zéro 47 unités de mesure 28 visualisation des valeurs 45 Touches optiques de l'indicateur 11 Transmetteur configuration essentielle 25 optionnelle 51 connexion avec Pocket ProLink 18 avec ProLink II 18 avec un hôte PROFIBUS 21 éléments constitutifs 155 mise en ligne 7 numéro de modèle 1 type 1 valeurs par défaut 151 Tubes de mesure du capteur 142

#### U

Unités de mesure configuration 28

#### V

Valeurs par défaut 151 Validation du débitmètre 91, 92 écart maximum admissible 96 procédure 95 résultat du test 107 version évoluée exécution 101 programmation 114 Vérification de l'étalonnage 91, 93 procédure 117 Visualisation de l'état du transmetteur 39 avec l'indicateur 41 avec la description EDD 43 avec les paramètres de bus PROFIBUS 44 avec ProLink II 42 des grandeurs mesurées 36 avec l'indicateur 12 des totalisations 45 Vitesse de transmission détection automatique 7, 22 Voyant NETWORK 38 Voyant S/W ADDR 38 Voyant STATUS 38, 39
## ©2009 Micro Motion, Inc. Tous droits réservés. P/N MMI-20008812, Rev. AA

Consultez l'actualité Micro Motion sur Internet : www.micromotion.com

## Emerson Process Management S.A.S. France

14, rue Edison - BP 21 69671 Bron Cedex T +33 (0) 4 72 15 98 00 F +33 (0) 4 72 15 98 99 Centre Clients Débitmétrie (appel gratuit) T 0800 917 901 www.emersonprocess.fr

## Emerson Process Management AG Suisse

Blegistraße 21 CH-6341 Baar-Walterswil T +41 (0) 41 768 6111 F +41 (0) 41 768 6300 www.emersonprocess.ch

#### Emerson Process Management Micro Motion Europe Neonstraat 1 6718 WX Ede Pays-Bas

T +31 (0) 318 495 555 F +31 (0) 318 495 556

#### Micro Motion Inc. USA Worldwide Headquarters 7070 Winchester Circle

Boulder, Colorado 80301 États-Unis T +1 303-527-5200

+1 800-522-6277

F +1 303-530-8459

# Micro Motion

### Emerson Process Management nv/sa Belgique

De Kleetlaan 4 1831 Diegem T +32 (0) 2 716 77 11 F +32 (0) 2 725 83 00 Centre Clients Débitmétrie (appel gratuit) T 0800 75 345 www.emersonprocess.be

#### **Emerson Process Management**

Micro Motion, Asia 1 Pandan Crescent Singapore 128461 République de Singapour T +65 6777-8211 F +65 6770-8003

#### Emerson Process Management Micro Motion, Japan

1-2-5, Higashi Shinagawa Shinagawa-ku Tokyo 140-0002 Japon T +81 3 5769-6803 F +81 3 5769-6844

