Manual de configuración y uso P/N MMI-20008813, Rev. AA Octubre 2009

Transmisores modelo 2400S de Micro Motion[®] para PROFIBUS-DP

Manual de configuración y uso

©2009 Micro Motion, Inc. Todos los derechos reservados. Los logotipos de Micro Motion y de Emerson son marcas comerciales y marcas de servicio de Emerson Electric Co. Micro Motion, ELITE, MVD, ProLink, MVD Direct Connect y PlantWeb son marcas de una de las empresas del grupo Emerson Process Management. Todas las otras marcas comerciales son de sus respectivos propietarios.

Contenido

Capítulo 1	Ante 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10	es de comenzar Generalidades. Seguridad Determinación de la información del transmisor Funcionalidad PROFIBUS-DP Determinación de la información de versión Herramientas de comunicación. Planificación de la configuración Hoja de trabajo de preconfiguración Documentación del medidor de caudal. Servicio al cliente de Micro Motion		1 1 1 2 3 3 5 6 6
Capítulo 2	Pues	sta en marcha del medidor de caudal		7
	2.1 2.2 2.3	Generalidades Ajuste de la dirección de nodo Puesta en línea del transmisor		7 7 7
Capítulo 3	Uso	de la interfaz de usuario del transmisor		. 9
	3.1	Generalidades.		9
	3.2	Interfaz de usuario sin o con indicador		9
	3.4	Uso de los interruptores ópticos		11
	3.5	Uso del indicador		12
		3.5.1 Idioma del indicador		12
		3.5.2 Visualización de las variables de proceso		12
		3.5.3 Uso de los menus del indicador.		13
		3.5.5 Introducción de valores de punto flotante con el indicado	or	13
Capítulo 4	Cone	exión con el software ProLink II o Pocket ProLink		. 17
•	4.1	Generalidades		17
	4.2	Requerimientos		17
	4.3	Carga/descarga de configuración		18
	4.4	Conexion desde un PC a un transmisor modelo 2400S DP		18
		4.4.1 Opciones de conexión del nuerto de servicio		18 18
		4.4.3 Haciendo la conexión.		19
	4.5	Idioma de ProLink II		20

Contenido

Capítulo 5	Uso	de un ho	ost PROFIBUS	. 21
	5.1	Genera	lidades	21
	5.2	Archivo	s de soporte	21
	5.3	Conexić	ón al transmisor modelo 2400S DP	21
	5.4	Uso del	GSD	22
	5.5	Uso de	la EDD	23
	5.6	Uso de	los parámetros de bus PROFIBUS	23
	_			
Capítulo 6	Conf	iguració	on requerida del transmisor	. 25
	6.1	Genera	lidades	25
	6.2	Caracte	rización del medidor de caudal	25
		6.2.1	Cuándo caracterizar	25
		6.2.2	Parámetros de caracterización	25
		6.2.3	Cómo caracterizar	27
	6.3	Configu	ración de las unidades de medición	28
		6.3.1	Unidades de caudal másico	30
		6.3.2	Unidades de caudal volumétrico	30
		6.3.3	Unidades de densidad	32
		6.3.4	Unidades de temperatura	33
		6.3.5	Unidades de presión	
Canítulo 7	Uso	del Tran	smisor	35
oupliaio i	7 1	Conorol	lidadaa	
	7.1	Use de		30
	7.2	Degistr	as funciones ram	30
	7.3	Negistro) de las variables de proceso	30
	7.4			30
		7.4.1		36
		7.4.2		37
		7.4.3	Con un host PROFIBUS y la EDD.	37
		7.4.4	Con un host PROFIBUS y el GSD	37
		7.4.5	Con los parametros de bus PROFIBUS	38
	7.5	Uso de	los LEDs	38
		7.5.1	Uso del LED de la red	38
		7.5.2	Uso del LED de dirección de software	38
	7.6	Visualiz	ación del estatus del transmisor	39
		7.6.1	Utilizando el LED indicador del estatus	39
		7.6.2	Utilizando ProLink II	39
		7.6.3	Utilizando un host PROFIBUS y la EDD	39
		7.6.4	Utilizando los parámetros de bus PROFIBUS	40
	7.7	Manipul	ación de alarmas de estatus	40
		7.7.1	Utilizando el indicador	41
		7.7.2	Utilizando ProLink II	42
		7.7.3	Utilizando un host PROFIBUS con la EDD	43
		7.7.4	Utilizando los parámetros de bus PROFIBUS	44
	7.8	Uso de	los totalizadores e inventarios	45
		7.8.1	Visualización de totales actuales para totalizadores e inventarios	45
		7.8.2	Control de los totalizadores e inventarios	47

Capítulo 8	Conf	iguració	n opcional	. 53
•	81	Generali	dades	53
	82	Configur	ación de la medición de caudal volumétrico para gas	
	0.2	821	Utilizando Prol ink II	55
		822	Utilizando un host PROEIBUS con la EDD	
		823	Utilizando los parámetros de bus PROFIBUS	56
	83	Configur	ración de los cutoffs	
	0.0	8.3.1	Cutoffs v caudal volumétrico	
	84	Configur	ración de los valores de atenuación	
	0.4	8 4 1	Atenuación y medición de volumen	58
	85	Configur	ración del parámetro de dirección de caudal	50
	0.J 8.6	Configur	ación de quentos	
	0.0	o c 1		
		0.0.1		
		0.0.2	Combia da las nuntos de referencia da suentos dasda al indicador	02
	07	8.6.3	Campio de los puntos de referencia de eventos desde el indicador	63
	8.7	Configur		63
	8.8	Configur	ación de la prioridad de las alarmas de estatus	64
	8.9	Configur		67
		8.9.1		6/
		8.9.2	Idioma	68
		8.9.3	Variables y precisión del indicador.	68
		8.9.4	Luz de fondo del panel LCD	69
		8.9.5	Funciones del indicador	69
	8.10	Configur	ación de la comunicación digital	71
		8.10.1	Dirección de nodo PROFIBUS-DP	71
		8.10.2	Uso del puerto infrarrojo (IrDA)	72
		8.10.3	Dirección de Modbus	73
		8.10.4	Soporte de Modbus ASCII	73
		8.10.5	Orden de bytes de punto flotante	73
		8.10.6	Retardo adicional de la respuesta de comunicación	74
		8.10.7	Acción de fallo de comunicación digital	74
		8.10.8	Timeout (tiempo de espera) de fallo	75
	8.11	Configur	ación de los ajustes del dispositivo	76
	8.12	Configur	ación de los valores de las funciones I&M de PROFIBUS	76
	8.13	Configur	ación de los parámetros del sensor	76
	8.14	Configur	ación de la aplicación para mediciones en la industria petrolera	77
		8.14.1	Acerca de la aplicación para mediciones en la industria petrolera	77
		8.14.2	Procedimiento de configuración.	79
	8.15	Configur	ación de la aplicación de densidad meiorada	80
		8.15.1	Acerca de la aplicación de densidad meiorada	80
		8.15.2	Procedimiento de configuración	82
Canítulo 9	Com	nensació	ón de presión y compensación de temperatura externa	85

9.1 9.2	Generalid Compens	lades
	9.2.1	Opciones
	9.2.2	Factores de corrección de presión
	9.2.3	Configuración
9.3	Compens	ación de temperatura externa 88
9.4	Obtenciór	n de datos de temperatura y presión externas

Capítulo 10	Presta	aciones de medición	91
-	10.1	Generalidades	. 91
	10.2	Validación del medidor. verificación del medidor v calibración	. 91
		10.2.1 Verificación del medidor.	. 92
		10.2.2 Validación del medidor y factores del medidor	. 93
		10.2.3 Calibración	. 93
		10.2.4 Comparación v recomendaciones	. 94
	10.3	Realizar una verificación del medidor	. 95
		10.3.1 Preparación para la prueba de verificación del medidor	. 95
		10.3.2 Ejecutar la prueba de verificación del medidor, versión original	. 95
		10.3.3 Realizar una verificación inteligente del medidor	100
		10.3.4 Lectura e interpretación de los resultados de la prueba de	
		verificación del medidor	106
		10.3.5 Configuración de una ejecución automática o remota de la prueba de	
		verificación del medidor	113
	10.4	Realizar una validación del medidor	115
	10.5	Realizar una calibración de ajuste del cero	117
		10.5.1 Preparación para el ajuste del cero	117
		10.5.2 Procedimiento de ajuste del cero	118
	10.6	Realizar una calibración de densidad	121
		10.6.1 Preparación para la calibración de densidad	121
		10.6.2 Procedimientos de calibración de densidad	122
	10.7	Realizar una calibración de temperatura	126
Conítulo 11	Salua	ián do problemen	107
	30100		121
	11.1	Generalidades	127
	11.2	Guía de temas de solución de problemas	127
	11.3	Servicio al cliente de Micro Motion	128
	11.4	El transmisor no funciona	128
	11.5	El transmisor no se comunica.	128
	11.6	Revisión del dispositivo de comunicación	129
	11.7	Diagnóstico de problemas de cableado	129
		11.7.1 Revisión del cableado de la fuente de alimentación	129
		11.7.2 Revisión del cableado PROFIBUS	130
		11.7.3 Revisión de la tierra	130
	11.8	Fallo de ajuste del cero o de calibración.	131
	11.9	Condiciones de fallo	131
	11.10	Modo de simulación	131
	11.11	LEDs del transmisor	132
	11.12	Alarmas de estatus	132
	11.13	Revisión de las variables de proceso	136
	11.14	Revisión de slug flow	139
	11.15	Revisión de los tubos del sensor	139
	11.16	Revisión de la configuración de medición de caudal	139
	11.17		140
	11.18	Revision de la calibracion	140
	11.19	Restauración de una configuración funcional	140
	11.20	Revision de los puntos de prueba.	140
		11.20.1 Obtencion de los puntos de prueba	141
		11.20.2 Evaluacion de los puntos de prueba	141
		11.20.3 Problemas de ganancia de la bobina impulsora	141
	11.01	11.20.4 Bajo voltaje de pickott	142
	11.21		142

Contenido

Apéndice A	Valoi	res predeterminados y rangos	. 147
	A.1	Generalidades	147
	A.2	Valores predeterminados y rangos usados más frecuentemente	147
Apéndice B	Comj	ponentes del transmisor	. 151
	B.1	Generalidades	151
	B.2	Componentes del transmisor	151
	B.3	Terminales y conectores	152
Apéndice C	Diag	ramas de flujo de menús – Transmisores modelo 2400S DP $_{ m c}$.	. 153
-	C.1	Generalidades	153
	C.2	Información de la versión	153
	C.3	Diagramas de flujo de menús de ProLink II	154
	C.4	Diagramas de flujo de menús de EDD	157
	C.5	Diagramas de flujo de menús del indicador	164
Apéndice D	Pará	metros de bus PROFIBUS	. 169
-	D.1	Generalidades	169
	D.2	Tipos de datos PROFIBUS-DP y códigos de los tipos de datos	170
	D.3	Bloque Measurement (Slot 1)	170
	D.4	Bloque Calibration (Slot 2)	172
	D.5	Bloque Diagnostic (Slot 3).	174
	D.6	Bloque Device Information (Slot 4)	182
	D.7	Bioque Local Display (Slot 5)	183
	D.0	Bloque API (Slot 0)	197
	D.9 D 10	Functiones I&M (Slot 0)	190
	D.11	Códigos de unidades de medición de totalizador e inventario	190
	D.12	Códigos de variables de proceso	191
	D.13	Códigos de índice de alarma	192
Anéndice F	Códi	nos v abreviaciones del indicador	195
		Generalidades	105
	с. F 2	Códigos v abreviaciones	105
	L.2	Ooligoo y abioviacioneo	135
Índice			. 199

Capítulo 1 Antes de comenzar

1.1 Generalidades

Este capítulo proporciona una orientación al uso de este manual, e incluye un diagrama de flujo de configuración y una hoja de trabajo de preconfiguración. Este manual describe los procedimientos requeridos para poner en marcha, configurar, usar, dar servicio de mantenimiento y diagnosticar problemas del transmisor modelo 2400S de Micro Motion[®] para PROFIBUS-DP (el transmisor modelo 2400S DP).

Si usted no sabe qué transmisor tiene, vea la Sección 1.3 para instrucciones sobre la identificación del tipo de transmisor a partir del número de modelo ubicado en la etiqueta del transmisor.

Nota: la información sobre la configuración y uso de transmisores modelo 2400S con opciones de E/S diferentes se proporciona en manuales separados. Vea el manual correspondiente a su transmisor.

1.2 Seguridad

En todo este manual se proporcionan mensajes de seguridad para proteger al personal y al equipo. Lea cuidadosamente cada mensaje de seguridad antes de proseguir con el siguiente paso.

1.3 Determinación de la información del transmisor

El tipo de transmisor, la opción de interfaz de usuario y las opciones de salida están codificados en el número de modelo ubicado en la etiqueta del transmisor. El número de modelo es una cadena de la siguiente forma:

2400S*X*X*****

En esta cadena:

- **2400S** identifica la familia del transmisor.
- La primera X (el séptimo caracter) identifica la opción de E/S: D = PROFIBUS-DP
- La segunda **X** (el noveno caracter) identifica la opción de interfaz de usuario:
 - **1** = Indicador con lente de vidrio
 - **3** = Sin indicador
 - **4** = Indicador con lente que no es de vidrio

1.4 Funcionalidad PROFIBUS-DP

El transmisor modelo 2400S DP implementa la siguiente funcionalidad de PROFIBUS-DP:

- Velocidades de transmisión: velocidades de transmisión estándar entre 9,6 kbits/seg y 12,0 Mbits/seg, detectadas automáticamente por el transmisor
- Mensajes de esclavo de E/S:
 - Intercambio de datos
 - Acíclico
- Métodos de configuración:
 - Dirección de nodo: interruptores físicos de dirección o direccionamiento por software
 - Descripción de dispositivo (EDD) conforme a lo siguiente: *Specification for PROFIBUS* Device Description and Device Integration: Volumen 2: EDDL V1.1, Enero 2001
 - Servicios de lectura y escritura DP-V1 con parámetros de bus PROFIBUS
- Métodos de operación:
 - GSD conforme a lo siguiente: Specification for PROFIBUS Device Description and Device Integration: Volumen 1: GSD V5.0, Mayo 2003
 - Servicios cíclicos DP-V0
 - Descripción de dispositivo mostrada anteriormente
 - Servicios de lectura y escritura DP-V1
- Funciones de identificación y mantenimiento (I&M):
 - I&M 0
 - I&M 1

como se especifica en Profile Guidelines Part 1: Identification & Maintenance Functions Version 1.1.1, Marzo 2005.

1.5 Determinación de la información de versión

La Tabla 1-1 muestra la información de versión que usted tal vez necesite y describe cómo obtenerla. (Se tiene información adicional mediante las funciones I&M. Vea la Sección 7.2.)

labla 1-1 Ubtencion de la información de versio

Componente	Herramienta	Método
Software del transmisor	Con ProLink II	View > Installed Options > Software Revision
	Con EDD	MMI Coriolis Flow > Configuration Parameters > Device
	Con indicador	OFF-LINE MAINT > VER
ProLink II	Con ProLink II	Help > About ProLink II
Versión de GSD	Editor de textos	Abrir el archivo MMI0A60.GSD Revisar el parámetro GSD_Revision
Versión de EDD	Editor de textos	Abrir el archivo MMICorFlowDP.ddl Revisar el parámetro DD_Revision

Antes de comenzar

1.6 Herramientas de comunicación

La mayoría de los procedimientos descritos en este manual requieren el uso de una herramienta de comunicación. La Tabla 1-2 muestra las herramientas de comunicación que se pueden utilizar, con su funcionalidad y requerimientos.

Nota: usted puede utilizar ProLink II, la EDD o los parámetros de bus de PROFIBUS para la configuración y mantenimiento del transmisor. No es necesario tener más de uno de estos métodos disponibles.

Tabla 1-2 Herramientas de comunicación para el transmisor modelo 2400S DP

	Fun	cionalidad		
Herramienta	Visualización/ operación	Configuración/ mantenimiento	Requerimiento	
Indicador del transmisor	Parcial	Parcial	Transmisor con indicador	
ProLink [®] II	Total	Total ⁽¹⁾	v2.5 (implementación preliminar) v2.6 (implementación total)	
Pocket ProLink [®]	Total	Total ⁽¹⁾	v1.3 (implementación preliminar) v1.4 (implementación total)	
Host PROFIBUS				
• GSD	Parcial	Ninguno	Archivo GSD (MMI0A60.GSD)	
• EDD	Total	Total ⁽¹⁾	Conjunto de archivos EDD	
 Parámetros de bus 	Total	Total ⁽¹⁾	Ninguno	

(1) Excepto la dirección de nodo.

Los archivos de EDD y GSD se pueden descargar del sitio web de Micro Motion: **www.micromotion.com**.

En este manual:

- En el Capítulo 3 se proporciona información básica sobre el uso del indicador y de la interfaz de usuario del transmisor.
- Se proporciona información básica sobre el uso de ProLink II o Pocket ProLink, y sobre la conexión de ProLink II o Pocket ProLink a su transmisor en el Capítulo 4. Para obtener más información, vea el manual de ProLink II o Pocket ProLink, disponible en el sitio web de Micro Motion (www.micromotion.com).
- Se proporciona información básica sobre el uso de un host PROFIBUS en el Capítulo 5.

1.7 Planificación de la configuración

Consulte el diagrama de flujo de configuración de la Figura 1-1 para planificar la configuración del transmisor. En general, realice los pasos de configuración en el orden que se muestra aquí.

Nota: dependiendo de su instalación y de su aplicación, algunas tareas de configuración pueden ser opcionales.

Nota: este manual proporciona información sobre los temas que no se incluyen en el diagrama de flujo de configuración, v.g.: uso del transmisor, solución de problemas y procedimientos de calibración. Asegúrese de revisar estos temas según se requiera.

Figura 1-1 Generalidades de la configuración

Antes de comenzar

1.8 Hoja de trabajo de preconfiguración

La hoja de trabajo de pre-configuración proporciona un lugar para registrar información acerca de su medidor de caudal y de su aplicación. Esta información afectará las opciones de su configuración a medida que trabaja en este manual. Es posible que usted necesite consultar con el personal de instalación del transmisor o con el personal de proceso de la aplicación para obtener la información requerida.

Si usted está configurando múltiples transmisores, haga copias de esta hoja de trabajo y llene una para cada transmisor individual.

Hoja de trabajo de pre	econfiguración	Transmisor		
Elemento		Datos de configuración		
Número de modelo del tra	nsmisor			
Número de serie del transmisor				
Revisión del software del	transmisor			
Número de modelo del se	nsor			
Número de serie del sens	or			
Dirección de nodo PROFIBUS-DP				
Unidades de medición	Caudal másico			
	Caudal volumétrico			
	Densidad			
	Presión			
Temperatura				
Aplicaciones instaladas		 Verificación inteligente del medidor de Micro Motion Aplicación de verificación del medidor, versión original Aplicación para mediciones en la industria petrolera Aplicación de densidad mejorada 		

1.9 Documentación del medidor de caudal

La Tabla 1-3 muestra las fuentes de documentación para obtener información adicional.

Tabla 1-3	Recursos de	documentación	del medidor	de caudal
-----------	--------------------	---------------	-------------	-----------

Tema	Documento
Instalación del sensor	Documentación del sensor
Instalación del transmisor	Transmisores modelo 2400S de Micro Motion®: Manual de instalación
Instalación en áreas peligrosas	Vea la documentación de aprobaciones enviada con el transmisor, o descargue la documentación adecuada del sitio web de Micro Motion (www.micromotion.com)

1.10 Servicio al cliente de Micro Motion

Para servicio al cliente, llame al centro de soporte más cercano a usted:

- En los EE. UU., llame al 800-522-MASS (800-522-6277) (sin costo)
- En Canadá y Latinoamérica, llame al +1 303-527-5200
- En Asia:
 - En Japón, llame al 3 5769-6803
 - En otras ubicaciones, llame al +65 6777-8211 (Singapur)
- En Europa:
 - En el Reino Unido, llame al 0870 240 1978 (sin costo)
 - En otras ubicaciones, llame al +31 (0) 318 495 555 (Países Bajos)

Nuestros clientes que residen fuera de los Estados Unidos también pueden contactar al departamento de servicio al cliente de Micro Motion por correo electrónico a *flow.support@emerson.com*.

Uso de ProLink II

Capítulo 2 Puesta en marcha del medidor de caudal

2.1 Generalidades

Este capítulo describe los siguientes procedimientos:

- Ajuste de la dirección de nodo vea la Sección 2.2
- Puesta en línea del medidor de caudal vea la Sección 2.3

2.2 Ajuste de la dirección de nodo

Se proporcionan tres interruptores de dirección en el módulo interfaz de usuario (vea la Figura 3-1 ó la Figura 3-2). Estos interruptores se utilizan para establecer la dirección de nodo de tres dígitos para el dispositivo:

- El interruptor ubicado más a la izquierda establece el primer dígito.
- El interruptor central establece el segundo dígito.
- El interruptor ubicado más a la derecha establece el tercer dígito.

El ajuste predeterminado para los interruptores de dirección es 126.

Usted puede establecer la dirección de nodo manualmente antes de poner el dispositivo en línea, girando los interruptores de dirección a cualquier valor entre **0** y **125**. Si el transmisor fue encendido en el momento en que se configuraron los interruptores de dirección, no aceptará la nueva dirección de nodo hasta que usted apague y vuelva a encender el transmisor.

Si se pone el transmisor en línea con los interruptores configurados a **126**:

- El dispositivo aparece en la dirección **126** en la lista viva.
- Usted puede establecer la dirección de nodo mediante software enviando un telegrama Set Slave Address desde el host PROFIBUS.
- Usted puede establecer la dirección de nodo manualmente girando los interruptores a cualquier valor entre **0** y **125**, y luego apagando y volviendo a encender el dispositivo.

Para obtener más información sobre la configuración de la dirección de nodo, vea la Sección 8.10.1.

Nota: no es necesario establecer la velocidad de transmisión porque el transmisor modelo 2400S DP detecta automáticamente y usa la velocidad de transmisión del segmento DP.

2.3 Puesta en línea del transmisor

Para poner el transmisor en línea:

- 1. Siga los procedimientos adecuados para garantizar que el proceso de configuración y comisionamiento del transmisor modelo 2400S DP no interfiera con los lazos de medición y control existentes.
- 2. Asegúrese de que el cable PROFIBUS esté conectado al transmisor como se describe en el manual de instalación del transmisor.

3. Asegúrese de que todas las cubiertas y sellos de transmisor y sensor estén cerrados.

4. Encienda el transmisor. El medidor de caudal realizará automáticamente rutinas de diagnóstico. Cuando el medidor de caudal haya completado su secuencia de energizado, el LED de estatus se encenderá en verde. Si el LED indicador del estatus exhibe una conducta diferente, existe una condición de alarma o la calibración del transmisor está en progreso. Vea la Sección 7.6.

Nota: si esta es la puesta en marcha inicial, o si la alimentación ha estado desconectada suficiente tiempo para permitir que los componentes alcancen la temperatura ambiental, el medidor de caudal está listo para recibir fluido de proceso aproximadamente un minuto después del encendido. Sin embargo, puede tomar hasta diez minutos para que la electrónica del medidor de caudal alcance el equilibrio térmico. Durante este período de calentamiento, es posible que usted observe un poco de inexactitud o inestabilidad de medición.

5. Asegúrese de que el transmisor esté visible en la red. Para obtener información sobre cómo establecer comunicación entre el transmisor modelo 2400S DP y un host PROFIBUS, vea el Capítulo 5.

Capítulo 3 Uso de la interfaz de usuario del transmisor

3.1 Generalidades

Este capítulo describe la interfaz de usuario del transmisor modelo 2400S DP. Se describen los siguientes temas:

- Transmisores sin o con indicador vea la Sección 3.2
- Quitar y volver a poner la cubierta del alojamiento del transmisor vea la Sección 3.3
- Uso de los interruptores ópticos Scroll y Select vea la Sección 3.4
- Uso del indicador vea la Sección 3.5

3.2 Interfaz de usuario sin o con indicador

La interfaz de usuario del transmisor modelo 2400S DP depende de si se pidió con o sin un indicador:

- Si se pidió sin un indicador, no hay un panel de cristal líquido (LCD) en la interfaz de usuario. La interfaz de usuario proporciona las siguientes características y funciones:
 - Tres interruptores de dirección, usados para establecer la dirección de nodo PROFIBUS
 - Un interruptor de resistencia de terminación interna
 - Tres LEDs: un LED indicador del estatus, un LED de red y un LED de dirección de software
 - Clips del puerto de servicio
 - Botón Zero

Para todas las otras funciones, se requiere ProLink II o un host PROFIBUS suministrado por el cliente.

- Si se pidió con un indicador, no se proporciona un botón Zero (usted debe ajustar el cero del transmisor con el menú del indicador, con ProLink II o con un host PROFIBUS), y se agregan las siguientes características:
 - Un panel LCD, que muestra los datos de las variables de proceso y también proporciona acceso al menú off-line para configuración y gestión básicas. Se proporcionan interruptores ópticos para control de la pantalla LCD.
 - Un puerto infrarrojo (IrDA) que proporciona acceso inalámbrico al puerto de servicio

Nota: el menú fuera de línea no proporciona acceso a toda la funcionalidad del transmisor; para tener acceso a toda la funcionalidad del transmisor, se debe usar ProLink II, la EDD o los parámetros de bus PROFIBUS.

Las figuras 3-1 y 3-2 muestran la interfaz de usuario del transmisor modelo 2400S DP con y sin un indicador. En ambas ilustraciones, se ha quitado la cubierta del alojamiento del transmisor.

Figura 3-1 Interfaz de usuario – Transmisores sin indicador

Figura 3-2 Interfaz de usuario – Transmisores con indicador

Si el transmisor no tiene un indicador, se debe quitar la cubierta del transmisor para tener acceso a todas las características y funciones de la interfaz de usuario.

Uso de ProLink II

Si el transmisor tiene un indicador, la cubierta del alojamiento del transmisor tiene un lente. Todas las características mostradas en la Figura 3-2 son visibles a través del lente, y las siguientes funciones se pueden realizar a través del lente (es decir, con la cubierta del alojamiento del transmisor en su lugar):

- Visualización de los LEDs
- Visualización del panel LCD
- Uso de los interruptores ópticos **Select** y **Scroll**
- Conexión del puerto de servicio mediante el puerto infrarrojo (IrDA)

Todas las otras funciones requieren que se quite la cubierta del alojamiento del transmisor.

Para obtener información acerca de:

- Uso de los interruptores de dirección, vea la Sección 8.10.1.
- Uso de los LEDs, vea la Sección 7.5.
- Conexión del puerto de servicio, vea la Sección 4.4.
- Uso del botón Zero, vea la Sección 10.5.

Nota: el interruptor de resistencia de terminación se usa para habilitar o inhabilitar el terminador interno. El terminador interno se puede usar en lugar de un terminador externo si se requiere terminación en el transmisor.

3.3 Quitar y volver a poner la cubierta del alojamiento del transmisor

Para algunos procedimientos, usted debe quitar la cubierta del alojamiento del transmisor. Para quitar la cubierta del alojamiento del transmisor:

1. Si el transmisor está instalado en un área de división 2 ó zona 2, desconecte la alimentación de la unidad.

ADVERTENCIA

Si se quita la cubierta del alojamiento del transmisor en un área de división 2 ó zona 2 mientras el transmisor está energizado, se puede ocasionar una explosión.

Para evitar el riesgo de una explosión, quite la alimentación del transmisor antes de quitar la cubierta del alojamiento del transmisor.

- 2. Afloje los cuatro tornillos cautivos.
- 3. Levante la cubierta del alojamiento del transmisor alejándola del transmisor.

Cuando vuelva a poner la cubierta del alojamiento del transmisor, asegúrese de ajustarla y apretar los tornillos de modo que no pueda entrar humedad en el alojamiento del transmisor.

3.4 Uso de los interruptores ópticos

Nota: esta sección aplica sólo a los transmisores que tienen un indicador.

Los interruptores ópticos **Scroll** y **Select** se usan para desplazarse en los menús del indicador. Para activar un interruptor óptico, toque el lente ubicado en la parte frontal del interruptor óptico o mueva su dedo sobre el interruptor óptico cerca del lente. Hay dos indicadores de interruptor óptico: uno para cada interruptor. Cuando se activa un interruptor óptico, el indicador asociado se enciende en rojo sólido.

A PRECAUCIÓN

Si se intenta activar un interruptor óptico insertando un objeto en la abertura, se puede dañar el equipo.

Para evitar dañar los interruptores ópticos, no inserte un objeto en las aberturas. Use sus dedos para activar los interruptores ópticos.

3.5 Uso del indicador

Nota: esta sección aplica sólo a los transmisores que tienen un indicador.

El indicador se puede usar para ver los datos de las variables de proceso o para tener acceso a los menús del transmisor para configuración o mantenimiento.

3.5.1 Idioma del indicador

El indicador se puede configurar para los siguientes idiomas:

- Inglés
- Francés
- Español
- Alemán

Debido a las restricciones de software y hardware, algunas palabras y términos pueden aparecer en inglés en los menús de un indicador con idioma diferente a inglés. Para obtener una lista de los códigos y abreviaciones usados en el indicador, vea el Apéndice E.

Para obtener información acerca de la configuración del idioma del indicador, vea la Sección 8.9. En este manual, se usa inglés como el idioma del indicador.

3.5.2 Visualización de las variables de proceso

En el uso ordinario, la línea **Process variable** (variable de proceso) del panel LCD muestra las variables configuradas para el indicador, y la línea **Units of measure** (unidades de medición) muestra la unidad de medición para la variable de proceso mostrada.

- Vea la Sección 8.9.3 para obtener información sobre la configuración de las variables del indicador.
- Vea el Apéndice E para obtener información sobre los códigos y abreviaciones usados para las variables del indicador.

Si se requiere más de una línea para describir la variable del indicador, la línea **Units of measure** alterna entre la unidad de medición y la descripción adicional. Por ejemplo, si el panel LCD está mostrando un valor de inventario de masa, la línea **Units of measure** alterna entre la unidad de medición (por ejemplo, **G**) y el nombre del inventario (por ejemplo, **MASSI**).

La función Auto Scroll (autodesplazamiento) puede estar o no habilitada:

- Si la función Auto Scroll está habilitada, cada variable configurada en el indicador se mostrará durante el número de segundos especificado para Scroll Rate (rapidez de desplazamiento).
- Independientemente de si la función Auto Scroll está habilitada o no, el operador puede desplazarse manualmente a través de las variables configuradas en el indicador activando el interruptor **Scroll**.

Uso de la interfaz de usuario del transmisor

Para obtener más información sobre el uso del indicador para ver las variables de proceso o para manipular los totalizadores e inventarios, vea el Capítulo 7.

3.5.3 Uso de los menús del indicador

Nota: el sistema de menús del indicador proporciona acceso a las funciones básicas y datos básicos del transmisor. No proporciona acceso a todas las funciones y datos. Para tener acceso a todas las funciones y datos, use ProLink II o una herramienta PROFIBUS suministrada por el cliente.

Para ingresar al sistema de menús del indicador:

- 1. Active Scroll y Select simultáneamente.
- 2. Mantenga Scroll y Select presionados hasta que aparezcan las palabras SEE ALARM (ver alarma) u OFF-LINE MAINT (mantenimiento fuera de línea).

Nota: el acceso al sistema de menús del indicador puede estar habilitado o inhabilitado. Si está inhabilitado, la opción OFF-LINE MAINT no aparece. Para obtener más información, vea la Sección 8.9.

Para entrar en algunas secciones del menú del indicador:

- Si se ha configurado una contraseña, se le pedirá que la introduzca. Vea la Sección 3.5.4.
- Si no se requiere una contraseña para el indicador, se le pedirá que active los interruptores ópticos en una secuencia predefinida (**Scroll-Select-Scroll**). Esta característica está diseñada para evitar entrar accidentalmente al menú debido a variaciones en la iluminación ambiental o a otros factores ambientales.

Si no hay actividad de los interruptores ópticos durante dos minutos, el transmisor saldrá del sistema de menús fuera de línea y regresará a la pantalla de la variable de proceso.

Para moverse a través de una lista de opciones, active Scroll.

Para seleccionar un elemento de la lista o para entrar en un submenú, desplácese a la opción deseada, luego active **Select**. Si se muestra una pantalla de confirmación:

- Para confirmar el cambio, active **Select**.
- Para cancelar el cambio, active **Scroll**.

Para salir de un menú sin hacer cambios:

- Use la opción **EXIT** si está disponible.
- De lo contrario, active **Scroll** en la pantalla de confirmación.

3.5.4 Contraseña del indicador

Algunas funciones de menú del indicador, tales como el acceso al menú fuera de línea, pueden protegerse con una contraseña del indicador. Para obtener información acerca de la activación y configuración de la contraseña del indicador, consulte la Sección 8.9.

Si se requiere una contraseña, la palabra **CODE?** (¿código?) aparece en la parte superior de la pantalla de contraseña. Introduzca los dígitos de la contraseña uno a la vez usando **Scroll** para escoger un número y **Select** para moverse al siguiente dígito.

Si usted encuentra una pantalla de contraseña del indicador pero no conoce la contraseña, espere 60 segundos sin activar ninguno de los interruptores ópticos del indicador. El tiempo de espera de la pantalla de contraseña transcurrirá y usted regresará a la pantalla anterior.

3.5.5 Introducción de valores de punto flotante con el indicador

Algunos valores de configuración, tales como factores del medidor o rangos de salida, se introducen como valores de punto flotante. Cuando usted entra por primera vez en la pantalla de configuración, el valor se despliega en notación decimal (como se muestra en la Figura 3-3) y el dígito activo destella.

Figura 3-3 Valores numéricos en notación decimal

Introduzca un número (longitud máxima: ocho dígitos o siete dígitos y un signo menos). La precisión máxima es cuatro.

Para cambiar el valor:

- 1. Presione **Select** para moverse un dígito a la izquierda. Desde el dígito ubicado más a la izquierda, se proporciona un espacio para un signo. El espacio de signo pasa al dígito ubicado más a la derecha.
- Presione Scroll para cambiar el valor del dígito activo: 1 se vuelve 2, 2 se vuelve 3, ..., 9 se vuelve 0, 0 se vuelve 1. Para el dígito ubicado más a la derecha, se incluye una opción E para cambiar a notación exponencial.

Para cambiar el signo de un valor:

- 1. Presione **Select** para moverse al espacio ubicado inmediatamente a la izquierda del dígito ubicado más a la izquierda.
- 2. Presione **Scroll** para especificar (para un valor negativo) o [espacio en blanco] (para un valor positivo).

En la notación decimal, usted puede cambiar la posición del punto decimal hasta una precisión máxima de cuatro (cuatro dígitos a la derecha del punto decimal). Para hacer esto:

- 1. Presione **Select** hasta que el punto decimal esté destellando.
- 2. Presione Scroll. Esto quita el punto decimal y mueve el cursor un dígito a la izquierda.
- 3. Presione **Select** para moverse un dígito a la izquierda. A medida que usted se mueve de un dígito al siguiente, un punto decimal destellará entre cada par de dígitos.
- 4. Cuando el punto decimal esté en la posición deseada, presione **Scroll.** Esto inserta el punto decimal y mueve el cursor un dígito a la izquierda.

Para cambiar de notación decimal a exponencial (vea la Figura 3-4):

- 1. Presione Select hasta que el dígito ubicado más a la derecha esté destellando.
- 2. Presione **Scroll** hasta que aparezca la **E**, luego presione **Select**. El indicador cambia para proporcionar dos espacios para introducir el exponente.

Uso de la interfaz de usuario del transmisor

- 3. Para introducir el exponente:
 - a. Presione **Select** hasta que el dígito deseado esté destellando.
 - b. Presione **Scroll** para ir al valor deseado. Usted puede introducir un signo menos (sólo primera posición), valores entre 0 y 3 (para la primera posición en el exponente), o valores entre 0 y 9 (para la segunda posición en el exponente).
 - c. Presione **Select**.

Nota: cuando se cambia entre la notación decimal y exponencial, los cambios no guardados se pierden. El sistema se revierte al valor guardado previamente.

Nota: mientras se encuentre en la notación exponencial, las posiciones del punto decimal y del exponente están fijas.

Para cambiar de notación exponencial a decimal:

- 1. Presione **Select** hasta que la **E** esté destellando.
- 2. Presione **Scroll** para llegar a **d**.
- 3. Presione **Select**. El indicador cambia para quitar el exponente.

Para salir del menú:

- Si se ha cambiado el valor, presione **Select** y **Scroll** simultáneamente hasta que se despliegue la pantalla de confirmación.
 - Presione **Select** para aplicar el cambio y salir.
 - Presione **Scroll** para salir sin aplicar el cambio.
- Si no se ha cambiado el valor, presione **Select** y **Scroll** simultáneamente hasta que se despliegue la pantalla previa.

Capítulo 4 Conexión con el software ProLink II o Pocket ProLink

4.1 Generalidades

ProLink II es una herramienta de configuración y gestión basada en Windows para transmisores Micro Motion. Proporciona acceso completo a las funciones y datos del transmisor. Pocket ProLink es una versión de ProLink II que se ejecuta en un Pocket PC.

Este capítulo proporciona información básica para conectar ProLink II o Pocket ProLink a su transmisor. Se describen los siguientes temas y procedimientos:

- Requerimientos vea la Sección 4.2
- Carga/descarga de configuración vea la Sección 4.3
- Conexión a un transmisor modelo 2400S DP vea la Sección 4.4

En las instrucciones de este manual se asume que los usuarios ya están familiarizados con el software ProLink II o Pocket ProLink. Para obtener más información sobre el uso de ProLink II, consulte el manual de ProLink II. Para obtener más información sobre el uso de Pocket ProLink, consulte el manual de Pocket ProLink. Ambos manuales están disponibles en el sitio web de Micro Motion (www.micromotion.com). Las instrucciones de este manual se referirán sólo a ProLink II.

4.2 Requerimientos

Para usar ProLink II con un transmisor modelo 2400S DP:

- Usted debe tener ProLink II v2.5 ó superior.
- Usted debe tener el juego de instalación de ProLink II adecuado a su PC y el tipo de conexión, o el equipo equivalente. Vea el manual o la guía de referencia rápida de ProLink II para obtener detalles.

Para usar Pocket ProLink con un transmisor modelo 2400S DP:

- Usted debe tener Pocket ProLink v1.3 ó superior.
- Además:
 - Si usted se conectará al transmisor mediante los clips del puerto de servicio, debe tener el juego de instalación de Pocket ProLink o el equipo equivalente. Vea el manual o la guía de referencia rápida de Pocket ProLink para obtener detalles.
 - Si se conectará mediante el puerto infrarrojo (IrDA), no se requiere equipo adicional.

4.3 Carga/descarga de configuración

ProLink II y Pocket ProLink proporcionan una función de carga/descarga de configuración que le permite guardar los conjuntos de configuración a su PC. Esto le permite:

- Fácil respaldo y restauración de la configuración del transmisor
- Fácil duplicación de los conjuntos de configuración

Micro Motion recomienda guardar todas las configuraciones de transmisor a un PC tan pronto como se complete la configuración. Vea la Figura C-1, y consulte el manual de ProLink II o de Pocket ProLink para obtener detalles.

4.4 Conexión desde un PC a un transmisor modelo 2400S DP

Para conectarse al transmisor modelo 2400S DP usando ProLink II o Pocket ProLink, usted debe usar una conexión del puerto de servicio.

4.4.1 Opciones de conexión

Se puede tener acceso al puerto de servicio mediante los clips correspondientes o mediante el puerto infrarrojo.

Los clips del puerto de servicio tienen prioridad sobre el puerto infrarrojo:

- Si existe una conexión activa mediante los clips del puerto de servicio, no se tiene acceso mediante el puerto infrarrojo.
- Si existe una conexión mediante el puerto infrarrojo y se intenta conectar mediante los clips del puerto de servicio, se termina la conexión del puerto infrarrojo.

Además:

- El acceso mediante el puerto infrarrojo se puede inhabilitar completamente. En este caso, el puerto infrarrojo no está disponible para conectarse en ningún momento. Por omisión, el acceso mediante el puerto infrarrojo está inhabilitado.
- El puerto infrarrojo puede protegerse contra escritura. En este caso, sólo se utilizará para obtener los datos del transmisor. Por omisión, el puerto infrarrojo está protegido contra escritura.

Vea la Sección 8.10.2 para obtener información o para cambiar estos ajustes.

4.4.2 Parámetros de conexión del puerto de servicio

El puerto de servicio usa parámetros de conexión predeterminados. Tanto ProLink II como Pocket ProLink usan automáticamente estos parámetros predeterminados cuando se configura Protocol a Service Port.

Además, para minimizar los requerimientos de configuración, el puerto de servicio emplea un esquema de autodetección cuando responde a las solicitudes de conexión. El puerto de servicio aceptará todas las solicitudes de conexión dentro de los límites descritos en la Tabla 4-1. Si usted se conecta al puerto de servicio desde otra herramienta, asegúrese de que esos parámetros de configuración estén dentro de estos límites.

Tabla 4-1	Límites de autodetección del puerto de servicio
-----------	---

Parámetro	Opción
Protocol (protocolo)	Modbus ASCII o Modbus RTU ⁽¹⁾
Dirección	Responde a las dos direcciones siguientes: • Dirección de puerto de servicio (111) • Dirección Modbus configurada (predeterminada=1) ⁽²⁾
Baud rate (velocidad de transmisión) ⁽³⁾	Velocidades estándar entre 1200 y 38400
Stop bits (bits de paro)	1, 2
Parity (paridad)	Even (par), odd (impar), none (ninguna)

(1) El soporte de puerto de servicio para Modbus ASCII puede estar inhabilitado. Vea la Sección 8.10.4.

(2) Vea la Sección 8.10.3 para obtener información sobre la configuración de la dirección Modbus.

(3) Es la velocidad de transmisión entre el puerto de servicio y el programa de conexión. No es la velocidad de transmisión de PROFIBUS DP.

4.4.3 Haciendo la conexión

Para conectarse al puerto de servicio:

- 1. Si utiliza el puerto infrarrojo:
 - a. Asegúrese de que el puerto infrarrojo esté habilitado (vea la Sección 8.10.2).
 - b. Asegúrese de que no haya una conexión mediante los clips del puerto de servicio.

Nota: las conexiones mediante los clips del puerto de servicio tienen prioridad sobre las conexiones mediante el puerto infrarrojo. Si usted está conectado actualmente a los clips del puerto de servicio, no podrá conectarse mediante el puerto infrarrojo.

c. Posicione el dispositivo infrarrojo (IrDA) para la comunicación con el puerto infrarrojo (vea la Figura 3-2). No necesita quitar la cubierta del alojamiento del transmisor.

Nota: el puerto infrarrojo (IrDA) se utiliza generalmente con Pocket ProLink. Para usar el puerto infrarrojo con ProLink II, se requiere un dispositivo especial; no se tiene soporte para el puerto infrarrojo integrado en muchos PCs laptop. Para obtener más información sobre el uso del puerto infrarrojo con ProLink II, contacte con el departamento de servicio al cliente de Micro Motion.

2. Si utiliza los clips del puerto de servicio:

- a. Conecte el convertidor de señal al puerto serial o USB de su PC, utilizando los conectores o adaptadores adecuados (v.g., un adaptador de 25 pines a 9 pines o un conector USB).
- b. Quite la cubierta del alojamiento del transmisor (vea la Sección 3.3), luego conecte los conductores del convertidor de señal a los clips del puerto de servicio. Vea la Figura 4-1.

ADVERTENCIA

Si se quita la cubierta del alojamiento del transmisor en un área peligrosa, se puede provocar una explosión.

Debido a que se debe quitar la cubierta del alojamiento del transmisor para conectarse a los clips del puerto de servicio, éstos se deben usar sólo para conexiones temporales, por ejemplo, para fines de configuración o solución de problemas.

Cuando el transmisor esté en una atmósfera explosiva, utilice un método diferente para conectarse a su transmisor.

Figura 4-1 Conexiones del puerto de servicio a los clips del puerto de servicio

- 3. Ejecute el software ProLink II o Pocket ProLink. Desde el menú Connection, haga clic en **Connect to Device**. En la pantalla que aparece, especifique:
 - Protocol: Service Port
 - COM Port: según sea adecuado para su PC

No se requieren otros parámetros.

4. Haga clic en **Connect**. El software intentará hacer la conexión.

Nota: mientras esté conectado al puerto infrarrojo, ambos indicadores de interruptor óptico destellarán en rojo, y ambos interruptores (Scroll y Select) se inhabilitan.

- 5. Si aparece un mensaje de error:
 - a. Asegúrese de que esté utilizando el puerto COM correcto.
 - b. Para conexiones al puerto infrarrojo, asegúrese de que éste esté habilitado.
 - c. Para conexiones a los clips del puerto de servicio, intercambie los conductores entre los clips y vuelva a intentar.
 - d. Para conexiones a los clips del puerto de servicio, revise todo el cableado entre el PC y el transmisor.

4.5 Idioma de ProLink II

ProLink II se puede configurar para diferentes idiomas. Para configurar el idioma de ProLink II, utilice el menú Tools (Herramientas). Vea la Figura C-1.

En este manual, se usa inglés como el idioma de ProLink II.

Configuración opcional

Capítulo 5 Uso de un host PROFIBUS

5.1 Generalidades

Este capítulo proporciona información básica para utilizar un host PROFIBUS con el transmisor modelo 2400S DP. Se describen los siguientes temas:

- Archivos de soporte vea la Sección 5.2
- Conexión del transmisor modelo 2400S DP desde un host PROFIBUS vea la Sección 5.3
- Uso de un host PROFIBUS con el GSD vea la Sección 5.4
- Uso de un host PROFIBUS con la descripción de dispositivo (EDD) vea la Sección 5.5
- Uso de los parámetros de bus PROFIBUS vea la Sección 5.6

5.2 Archivos de soporte

Los siguientes archivos están disponibles para usarse con el transmisor modelo 2400S DP:

- MMI0A60.GSD permite:
 - Visualización de datos y alarmas del proceso
 - Gestión de totalizadores e inventarios
 - Aceptación de datos de presión y temperatura externas para usarse en la compensación de presión o de temperatura
- La descripción de dispositivo (EDD) permite todo lo anterior, además de lo siguiente:
 - Funcionalidad de configuración
 - Visualización de estatus de eventos
 - Reconocimiento de alarmas
 - Realización del ajuste del cero y de la calibración de densidad
 - Realización de la verificación del medidor

El GSD se puede descargar del sitio web de Micro Motion (**www.micromotion.com**), y se puede usar con cualquier host PROFIBUS compatible. La EDD se puede descargar del sitio web de Micro Motion, y ha sido certificada para funcionar con Siemens Simatic PDM.

Configurar el GSD o la EDD usando el método adecuado a su host PROFIBUS.

5.3 Conexión al transmisor modelo 2400S DP

Para conectarse al transmisor modelo 2400S DP:

1. El transmisor detecta automáticamente y usa la velocidad de transmisión del segmento DP. Si no se detecta la velocidad de transmisión, el transmisor no intenta establecer la comunicación.

- 2. El ajuste de fábrica para los interruptores físicos de dirección es **126**, que es la dirección predeterminada de PROFIBUS para dispositivos decomisionados. Para comisionar el transmisor, la dirección de nodo se debe establecer a un valor que esté en el rango para dispositivos comisionados (**0–125**).
 - Si establecerá la dirección de nodo mediante los interruptores físicos de dirección:
 - a. Establezca la dirección de nodo al valor deseado. Vea la Sección 8.10.1.
 - b. Desde el host PROFIBUS, haga la conexión a la red donde el transmisor está instalado.
 - c. Utilizando los mismos métodos que utiliza para otros dispositivos PROFIBUS-DP, establezca una conexión al transmisor modelo 2400S DP.
 - Si establecerá la dirección de nodo mediante software:
 - a. Asegúrese de que los interruptores físicos de dirección estén configurados a **126** ó superior.
 - b. Desde el host PROFIBUS, haga la conexión a la red donde el transmisor está instalado.
 - c. Utilizando los mismos métodos que utiliza para otros dispositivos PROFIBUS-DP, establezca una conexión al transmisor modelo 2400S DP.
 - d. Envíe un telegrama Set Slave Address. Vea la Sección 8.10.1.

5.4 Uso del GSD

Los módulos disponibles con el GSD se muestran en la Tabla 5-1. Tome en cuenta que entrada y salida son desde la perspectiva del host PROFIBUS; es decir:

- Los módulos de entrada introducen datos desde el transmisor a la red, y al host PROFIBUS.
- Los módulos de salida toman los datos de salida de la red hacia el transmisor.

Configure los módulos deseados para el intercambio de datos. Usted puede seleccionar un máximo de 10 módulos de entrada.

Número de módulo	Nombre de módulo	Тіро	Tamaño (bytes)	Comentarios
1	Device Status	Input	1	 0 = Dato bueno 1 = Dato malo
2	Mass Flow	Input	4	
3	Mass Total	Input	4	
4	Mass Inventory	Input	4	
5	Temperature	Input	4	
6	Density	Input	4	
7	Volume Flow	Input	4	Volumen de líquido
8	Volume Total	Input	4	Volumen de líquido
9	Volume Inventory	Input	4	Volumen de líquido
10	Drive Gain	Input	4	
11	GSV Flow	Input	4	Volumen estándar de gas
12	GSV Total	Input	4	Volumen estándar de gas
13	GSV Inventory	Input	4	Volumen estándar de gas
14	API Density	Input	4	
15	API Volume Flow	Input	4	

Tabla 5-1 Módulos de entrada y salida

Uso de un host PROFIBUS

Número de módulo	Nombre de módulo	Тіро	Tamaño (bytes)	Comentarios
16	API Volume Total	Input	4	
17	API Volume Inventory	Input	4	
18	API Avg Density	Input	4	
19	API Avg Temperature	Input	4	
20	API CTL	Input	4	
21	ED Ref Density	Input	4	
22	ED Specific Gravity	Input	4	
23	ED Std Vol Flow	Input	4	
24	ED Std Vol Total	Input	4	
25	ED Std Vol Inv	Input	4	
26	ED Net Mass Flow	Input	4	
27	ED Net Mass Total	Input	4	
28	ED Net Mass Inv	Input	4	
29	ED Net Vol Flow	Input	4	
30	ED Net Vol Total	Input	4	
31	ED Net Vol Inv	Input	4	
32	ED Concentration	Input	4	
33	ED Baume	Input	4	
34	Ext Pressure	Output	4	
35	Ext Temperature	Output	4	
36	Start/Stop Totals	Output	1	• 0 = Parar • 1 = Iniciar
37	Reset Process Totals	Output	1	 0 = Sin acción 1 = Poner a cero
38	Reset Inv Totals	Output	1	0 = Sin acción1 = Poner a cero

Tabla 5-1 Módulos de entrada y salida continuación

5.5 Uso de la EDD

Cuando se importa en un host PROFIBUS, la EDD controla la organización de menús y parámetros específicos. Los menús y parámetros controlados por la EDD se muestran en el Apéndice C, Figuras C-4 a C-12.

5.6 Uso de los parámetros de bus PROFIBUS

Dependiendo de su host PROFIBUS, es posible que usted pueda leer y escribir parámetros de bus PROFIBUS directamente usando los servicios DP-V1. Los parámetros de bus PROFIBUS proporcionan acceso directo a toda la funcionalidad disponible a través del puerto DP del transmisor. Los parámetros de bus PROFIBUS están documentados en el Apéndice D. Tome en cuenta que si elije configurar o utilizar el transmisor modelo 2400S DP usando los parámetros de bus PROFIBUS, se requerirán varios tipos de información detallada, por ejemplo:

- Los códigos usados para representar diferentes opciones (v.g., diferentes unidades de medición)
- Los bits usados para iniciar y detener actividades (v.g., totalizadores o procedimientos de calibración) o poner a cero totales
- El significado de los bits de estatus dentro de las palabras de estatus

La información requerida se suministra en la sección correspondiente del manual o en el Apéndice D.

Capítulo 6 Configuración requerida del transmisor

6.1 Generalidades

Este capítulo describe los procedimientos de configuración que generalmente se requieren cuando se instala un transmisor por primera vez.

Se describen los siguientes procedimientos:

- Caracterización del medidor de caudal vea la Sección 6.2
- Configuración de las unidades de medición vea la Sección 6.3

Este capítulo proporciona diagramas de flujo básicos para cada procedimiento. Para diagramas de flujo más detallados, vea los diagramas de flujo para su herramienta de comunicación, proporcionados en los apéndices de este manual.

Para los parámetros y procedimientos de configuración opcional del transmisor, vea el Capítulo 8.

Nota: en todos los procedimientos que se proporcionan en este capítulo se asume que usted ha establecido comunicación con el transmisor modelo 2400S DP y que cumple con todos los requerimientos de seguridad aplicables.

Nota: si usted utiliza Pocket ProLink, la interfaz es similar a la interfaz de ProLink II que se describe en este capítulo.

6.2 Caracterización del medidor de caudal

La *caracterización* del medidor de caudal ajusta el transmisor para compensar las características únicas del sensor con el que se utiliza. Los parámetros de caracterización, o los parámetros de calibración, describen la sensibilidad del sensor al caudal, densidad y temperatura.

6.2.1 Cuándo caracterizar

Si usted pidió el transmisor junto con el sensor, entonces el medidor de caudal ya ha sido caracterizado. Usted necesita caracterizar el medidor de caudal sólo si el transmisor y el sensor están siendo usados juntos por primera vez.

6.2.2 Parámetros de caracterización

Los parámetros de caracterización que se deben configurar dependen del tipo de sensor de su medidor de caudal: "T-Series" (serie T) u "Other" (otro) (también conocido como "Straight Tube" (tubo recto) y "Curved Tube," (tubo curvado) respectivamente), como se muestra en la Tabla 6-1. La categoría "Other" incluye todos los sensores de Micro Motion excepto la serie T.

Los parámetros de caracterización se proporcionan en la etiqueta del sensor. Vea ilustraciones de etiquetas de sensor en la Figura 6-1.

	Tipo de sensor		
Parámetro	Serie T	Otro	
K1	1	1	
К2	1	1	
FD	1	1	
D1	1	1	
D2	1	1	
Temp coeff (DT) ⁽¹⁾	1	1	
Flowcal		✓ ⁽²⁾	
FCF	1		
FTG	1		
FFQ	1		
DTG	1		
DFQ1	1		
DFQ2	1		

(1) En algunas etiquetas de sensor, se muestra como TC.

(2) Vea la sección titulada "Valores de calibración de caudal."

Figura 6-1 Ejemplos de etiquetas de calibración

Serie T

Otros sensores

MODEL S/N FLOW CAL* 19.0005.13 DENS CAL* 12500142864.44 D1 0.0010 K1 12502.000 D2 0.9980 K2 14282.000 TC 4.44000 FD 310 TEMP RANGE TO C TUBE** CONN*** CASE** • CALIBRATION FACTORS REFERENCE TO G. C • MAXIMUM PRESSURE RATING AT 25 C. ACCORDING TO ANSWE B51.3 • MAXIMUM PRESSURE RATING AT 25 C. ACCORDING TO ANSWE B51.3

Valores de calibración de caudal

Se utilizan dos factores para definir la calibración de caudal:

- El factor de calibración de caudal, que es una cadena de 6 caracteres (cinco números y un punto decimal)
- El coeficiente de temperatura para caudal, que es una cadena de 4 caracteres (tres números y un punto decimal)

Estos valores se concatenan en la etiqueta del sensor, pero se utilizan diferentes etiquetas para diferentes sensores. Como se muestra en la Figura 6-1:

- Para sensores de la serie T, el valor se llama FCF.
- Para otros sensores, el valor se llama Flow Cal.

Configuración requerida del transmisor

Cuando configure el factor de calibración de caudal:

- Usando ProLink II, introduzca la cadena de 10 caracteres concatenada exactamente como se muestra, incluyendo los puntos decimales. Por ejemplo, usando el valor Flow Cal de la Figura 6-1, introduzca **19.0005.13**.
- Usando otros métodos, es posible que se requiera que usted introduzca el valor concatenado, o los dos factores por separado, es decir, introduzca una cadena de 6 caracteres y una cadena de 4 caracteres. Incluya el punto decimal en ambas cadenas. Por ejemplo, usando el valor Flow Cal de la Figura 6-1:
 - Introduzca **19.000** para el factor de calibración de caudal.
 - Introduzca **5.13** para el coeficiente de temperatura para caudal.

6.2.3 Cómo caracterizar

Para caracterizar el medidor de caudal:

- 1. Vea los diagramas de flujo de menús en la Figura 6-2.
- 2. Asegúrese de que se configure el tipo correcto de sensor.
- 3. Establezca los parámetros requeridos, como se muestra en la Tabla 6-1.

Figura 6-2 Caracterización del medidor de caudal

Host PROFIBUS con parámetros de bus⁽²⁾

- (1) Se requiere sólo para sensores de la serie T.
- (2) Para conocer detalles sobre los parámetros de bus, vea las tablas D-5 y D-3.
- (3) Usted configurará sólo un subconjunto de valores de densidad, dependiendo del tipo de sensor.

6.3 Configuración de las unidades de medición

Para cada variable de proceso, el transmisor debe configurarse para que use la unidad de medición adecuada a su aplicación.

Para configurar las unidades de medición, vea los diagramas de flujo de menú en la Figura 6-3. Para obtener detalles sobre las unidades de medición para cada variable de proceso, vea las secciones 6.3.1 a la 6.3.4.

Las unidades de medición usadas para totalizadores e inventarios se asignan automáticamente, de acuerdo a la unidad de medición configurada para la variable de proceso correspondiente. Por ejemplo, si se configura **kg/hr** (kilogramos por hora) para caudal másico, la unidad usada para el totalizador de caudal másico y el inventario de caudal másico es **kg** (kilogramos). Los códigos usados para las unidades de medición de totalizadores se muestran en las tablas D-10 a D-12.
Configuración requerida del transmisor

Nota: la configuración de la unidad de presión se requiere sólo si usted utiliza compensación de presión (vea la Sección 9.2) o si utiliza el asistente de gas (Gas Wizard) y necesita cambiar las unidades de presión (vea la Sección 8.2.1).

Figura 6-3 Configuración de las unidades de medición

- (1) Se usa para caudal másico, caudal volumétrico de líquido y caudal volumétrico estándar de gas.
- (2) Se usa para caudal másico y caudal volumétrico de líquido.
- (3) Se usa para caudal volumétrico estándar de gas.
- (4) Establezca los parámetros al código de unidad (Unit Code) deseado, como se muestra en las tablas 6-2 a 6-7. Vea las tablas D-2 y D-3, si se requiere.

6.3.1 Unidades de caudal másico

La unidad de medición de caudal másico predeterminada es **g/s**. Vea una lista completa de unidades de medición de caudal másico en la Tabla 6-2.

Tabla 6-2 Unidades de medición de caudal másico

			_	
Indicador	ProLink II	Etiqueta EDD	Código EDD	Descripción de la unidad
G/S	g/s	g_per_s	1318	Gramos por segundo
G/MIN	g/min	g_per_min	1319	Gramos por minuto
G/H	g/hr	g_per_hr	1320	Gramos por hora
KG/S	kg/s	kg_per_s	1322	Kilogramos por segundo
KG/MIN	kg/min	kg_per_min	1323	Kilogramos por minuto
KG/H	kg/hr	kg_per_hr	1324	Kilogramos por hora
KG/D	kg/day	kg_per_day	1325	Kilogramos por día
T/MIN	mTon/min	t_per_min	1327	Toneladas métricas por minuto
T/H	mTon/hr	t_per_hr	1328	Toneladas métricas por hora
T/D	mTon/day	t_per_day	1329	Toneladas métricas por día
LB/S	lbs/s	lb_per_s	1330	Libras por segundo
LB/MIN	lbs/min	lb_per_min	1331	Libras por minuto
LB/H	lbs/hr	lb_per_hr	1332	Libras por hora
LB/D	lbs/day	lb_per_day	1333	Libras por día
ST/MIN	sTon/min	Ston_per_min	1335	Toneladas cortas (2000 libras) por minuto
ST/H	sTon/hr	Ston_per_hr	1336	Toneladas cortas (2000 libras) por hora
ST/D	sTon/day	Ston_per_day	1337	Toneladas cortas (2000 libras) por día
LT/H	ITon/hr	Lton_per_hr	1340	Toneladas largas (2240 libras) por hora
LT/D	ITon/day	Lton_per_day	1341	Toneladas largas (2240 libras) por día

Unidad de caudal másico

6.3.2 Unidades de caudal volumétrico

La unidad de medición de caudal volumétrico predeterminada es l/s (litros por segundo).

Se proporcionan dos diferentes conjuntos de unidades de medición de caudal volumétrico:

- Unidades usadas generalmente para volumen de líquido vea la Tabla 6-3
- Unidades usadas generalmente para volumen estándar de gas vea la Tabla 6-4

Si está utilizando ProLink II o el indicador, por omisión sólo se muestran las unidades de caudal volumétrico de líquido. Para tener acceso a las unidades de caudal volumétrico estándar de gas, usted primero debe configurar el tipo de caudal volumétrico: líquido o estándar de gas.

Si usted quiere medir caudal volumétrico estándar de gas, se requiere una configuración adicional. Vea la Sección 8.2 para obtener más información.

Tabla 6-3 Unidades de medición de caudal volumétrico – Líquido

				-	
Indicador		Etiqueta EDD	Codigo EDD	Descripcion de la unidad	
CUFT/S	ft3/sec	CFS	1356	Pies cúbicos por segundo	
CUF/MN	ft3/min	CFM	1357	Pies cúbicos por minuto	
CUFT/H	ft3/hr	CFH	1358	Pies cúbicos por hora	
CUFT/D	ft3/day	ft3_per_day	1359	Pies cúbicos por día	
M3/S	m3/sec	m3_per_s	1347	Metros cúbicos por segundo	
M3/MIN	m3/min	m3_per_min	1348	Metros cúbicos por minuto	
M3/H	m3/hr	m3_per_hr	1340	Metros cúbicos por hora	
M3/D	m3/day	m3_per_day	1350	Metros cúbicos por día	
USGPS	US gal/sec	gal_per_s	1362	Galones americanos por segundo	
USGPM	US gal/min	GPM	1363	Galones americanos por minuto	
USGPH	US gal/hr	gal_per_hour	1364	Galones americanos por hora	
USGPD	US gal/d	gal_per_day	1365	Galones americanos por día	
MILG/D	mil US gal/day	Mgal_per_day	1366	Millones de galones americanos por día	
L/S	l/sec	L_per_s	1351	Litros por segundo	
L/MIN	l/min	L_per_min	1352	Litros por minuto	
L/H	l/hr	L_per_hr	1353	Litros por hora	
MILL/D	mil I/day	MI_per_day	1355	Millones de litros por día	
UKGPS	Imp gal/sec	ImpGal_per_s	1367	Galones imperiales por segundo	
UKGPM	Imp gal/min	ImpGal_per_min	1368	Galones imperiales por minuto	
UKGPH	Imp gal/hr	ImpGal_per_hr	1369	Galones imperiales por hora	
UKGPD	Imp gal/day	ImpGal_per_day	1370	Galones imperiales por día	
BBL/S	barrels/sec	bbl_per_s	1371	Barriles por segundo ⁽¹⁾	
BBL/MN	barrels/min	bbl_per_min	1372	Barriles por minuto ⁽¹⁾	
BBL/H	barrels/hr	bbl_per_hr	1373	Barriles por hora ⁽¹⁾	
BBL/D	barrels/day	bbl_per_day	1374	Barriles por día ⁽¹⁾	
BBBL/S	Beer barrels/sec	Beer_bbl_per_s	1642	Barriles de cerveza por segundo ⁽²⁾	
BBBL/MN	Beer barrels/min	Beer_bbl_per_min	1643	Barriles de cerveza por minuto ⁽²⁾	
BBBL/H	Beer barrels/hr	Beer_bbl_per_hr	1644	Barriles de cerveza por hora ⁽²⁾	
BBBL/D	Beer barrelsday	Beer_bbl_per_day	1645	Barriles de cerveza por día ⁽²⁾	

Unidad de caudal volumétrico

(1) Unidad basada en barriles de petróleo (42 galones americanos).

(2) Unidad basada en barriles de cerveza americanos (31 galones americanos).

Tabla 6-4 Unidades de medición de caudal volumétrico – Gas

Indicador	ProLink II	Etiqueta EDD	Código EDD	Descripción de la unidad
NM3/S	Nm3/sec	Nm3_per_s	1522	Metros cúbicos normales por segundo
NM3/MN	Nm3/min	Nm3_per_min	1523	Metros cúbicos normales por minuto
NM3/H	Nm3/hr	Nm3_per_hr	1524	Metros cúbicos normales por hora
NM3/D	Nm3/day	Nm3_per_day	1525	Metros cúbicos normales por día
NLPS	NLPS	NL_per_s	1532	Litros normales por segundo
NLPM	NLPM	NL_per_min	1533	Litros normales por minuto
NLPH	NLPH	NL_per_hr	1534	Litros normales por hora
NLPD	NLPD	NL_per_day	1535	Litros normales por día
SCFS	SCFS	SCFS	1604	Pies cúbicos estándar por segundo
SCFM	SCFM	SCFM	1360	Pies cúbicos estándar por minuto
SCFH	SCFH	SCFH	1361	Pies cúbicos estándar por hora
SCFD	SCFD	SCFD	1605	Pies cúbicos estándar por día
SM3/S	Sm3/S	Sm3_per_s	1527	Metros cúbicos estándar por segundo
SM3/MN	Sm3/min	Sm3_per_min	1528	Metros cúbicos estándar por minuto
SM3/H	Sm3/hr	Sm3_per_hr	1529	Metros cúbicos estándar por hora
SM3/D	Sm3/day	Sm3_per_day	1530	Metros cúbicos estándar por día
SLPS	SLPS	SL_per_s	1537	Litros estándar por segundo
SLPM	SLPM	SL_per_min	1538	Litros estándar por minuto
SLPH	SLPH	SL_per_hr	1539	Litros estándar por hora
SLPD	SLPD	SL_per_day	1540	Litros estándar por día

Unidad de caudal volumétrico

6.3.3 Unidades de densidad

La unidad de medición de densidad predeterminada es **g/cm3**. Vea una lista completa de unidades de medición de densidad en la Tabla 6-2.

Tabla 6-5 Unidades de medición de densidad

Unidad de densidad

Indicador	ProLink II	Etiqueta EDD	Código EDD	Descripción de la unidad
G/CM3	g/cm3	g_per_cm3	1100	Gramos por centímetro cúbico
G/L	g/l	g_per_L	1105	Gramos por litro
G/ML	g/ml	g_per_ml	1104	Gramos por mililitro
KG/L	kg/l	kg_per_L	1103	Kilogramos por litro
KG/M3	kg/m3	kg_per_m3	1097	Kilogramos por metro cúbico
LB/GAL	lbs/Usgal	lb_per_gal	1108	Libras por galón americano
LB/CUF	lbs/ft3	lb_per_ft3	1107	Libras por pie cúbico
LB/CUI	lbs/in3	lb_per_in3	1106	Libras por pulgada cúbica

Tabla 6-5 Unidades de medición de densidad continuación

Indicador	ProLink II	Etiqueta EDD	Código EDD	Descripción de la unidad
ST/CUY	sT/yd3	Ston_per_yd3	1109	Toneladas cortas por yarda cúbica
D API	degAPI	DegAPI	1113	Grados API
SGU	SGU	SGU	1114	Unidad de gravedad específica (no corregida por temperatura)

Unidad de densidad

6.3.4 Unidades de temperatura

La unidad de medición de temperatura predeterminada es °**C**. Vea una lista completa de unidades de medición de temperatura en la Tabla 6-6.

Tabla 6-6 Unidades de medición de temperatura

Indicador	ProLink II	Etiqueta EDD	Código EDD	Descripción de la unidad
°C	°C	Deg_C	1001	Grados Celsius
°F	°F	Deg_F	1002	Grados Fahrenheit
°R	°R	Deg_R	1003	Grados Rankine
°K	°K	К	1000	Kelvin

Unidad de temperatura

6.3.5 Unidades de presión

El medidor de caudal no mide presión. Usted necesita configurar las unidades de presión si cualquiera de las siguientes afirmaciones es verdadera:

- Usted configurará compensación de presión (vea la Sección 9.2). En este caso, configure la unidad de presión para que corresponda a la unidad de presión usada por el dispositivo de presión externo.
- Usted usará el asistente de gas (Gas Wizard), introducirá un valor de presión de referencia, y necesita cambiar la unidad de presión para que coincida con el valor de presión de referencia (vea la Sección 8.2).

Si usted no sabe si usará compensación de presión o el asistente de gas (Gas Wizard), no necesita configurar una unidad de presión en este momento. Puede configurar la unidad de presión después.

La unidad de medición de presión predeterminada es **PSI**. Vea una lista completa de unidades de medición de presión en la Tabla 6-7.

Tabla 6-7 Unidades de medición de presión

Indicador	ProLink II	Etiqueta EDD	Código EDD	Descripción de la unidad
FTH2O	Ft Water @ 68°F	ft. H2O @68 DegF	1154	Pies de agua a 68 °F
INW4C	In Water @ 4°C	inch H2O @4 DegC	1147	Pulgadas de agua a 4 °C
INW60	In Water @ 60°F	inch H2O @60 DegF	1146	Pulgadas de agua a 60 °F
INH2O	In Water @ 68°F	inch H2O @68 DegF	1148	Pulgadas de agua a 68 °F
mmW4C	mm Water @ 4°C	mm H2O @4 DegC	1150	Milímetros de agua a 4 °C

Unidad de presión

Tabla 6-7 Unidades de medición de presión continuación

Indicador	ProLink II	Etiqueta EDD	Código EDD	- Descripción de la unidad
mmH2O	mm Water @ 68°F	mm H2O @68 DegF	1151	Milímetros de agua a 68 °F
mmHG	mm Mercury @ 0°C	mm Hg @0 DegC	1158	Milímetros de mercurio a 0 °C
INHG	In Mercury @ 0°C	inch Hg @0 DegC	1156	Pulgadas de mercurio a 0 °C
PSI	PSI	psi	1141	Libras por pulgada cuadrada
BAR	bar	bar	1137	Bar
mBAR	millibar	milibar	1138	Milibar
G/SCM	g/cm2	g_per_cm2	1144	Gramos por centímetro cuadrado
KG/SCM	kg/cm2	kg_per_cm2	1145	Kilogramos por centímetro cuadrado
PA	pascals	Pa	1130	Pascales
KPA	Kilopascals	KiloPa	1133	Kilopascales
MPA	megapascals	MegaPa	1132	Megapascales
TORR	Torr @ 0C	torr @0 DegC	1139	Torr a 0 °C
ATM	atms	atm	1140	Atmósferas

Unidad de presión

7.1 Generalidades

Este capítulo describe cómo usar el transmisor en la operación cotidiana. Se describen los siguientes temas y procedimientos:

- Uso de las funciones I&M vea la Sección 7.2
- Registro de las variables de proceso vea la Sección 7.3
- Visualización de las variables de proceso vea la Sección 7.4
- Uso de los LEDs vea la Sección 7.5
- Visualización del estatus del transmisor y alarmas vea la Sección 7.6
- Manipulación de alarmas de estatus vea la Sección 7.7
- Visualización y uso de los totalizadores e inventarios vea la Sección 7.8

Nota: en todos los procedimientos que se proporcionan en este capítulo se asume que usted ha establecido comunicación con el transmisor modelo 2400S DP y que cumple con todos los requerimientos de seguridad aplicables.

Nota: si usted utiliza Pocket ProLink, la interfaz es similar a la interfaz de ProLink II que se describe en este capítulo.

7.2 Uso de las funciones I&M

El transmisor modelo 2400S DP implementa las siguientes funciones PROFIBUS para identificación y mantenimiento (I&M):

- I&M 0
- I&M 1

como se especifica en *Profile Guidelines Part 1: Identification & Maintenance Functions Version 1.1.1, Marzo 2005.*

Las funciones I&M contienen una variedad de información del dispositivo y del fabricante. Dos de los valores I&M los establece el usuario durante la instalación (vea la Sección 8.12). Los otros valores, incluyendo la identificación del fabricante (Manufacturer ID), son codificados internamente. La identificación del fabricante (Manufacturer ID) almacenada en el transmisor se puede usar como un código para obtener datos actuales del dispositivo y del fabricante desde el sitio web PROFIBUS (*http://www.profibus.com/IM/Man_ID_Table.xml*).

Las funciones I&M no son accesibles mediante ProLink II ni con el indicador. Si usted utiliza Siemens Simatic PDM, se requiere v6.0 SP2 ó superior. Las versiones anteriores no soportan las funciones I&M.

Para usar las funciones I&M:

1. Lea los datos desde el transmisor:

- Utilizando un host PROFIBUS con la EDD, conéctese al transmisor como Specialist. Vea la Figura C-12.
- Utilizando los parámetros de bus PROFIBUS, use el bloque I&M Functions (vea la Tabla D-9). Usted debe leer todo el dataset (conjunto de datos) de 64 bytes.
- 2. Si lo desea, ingrese en el sitio web de PROFIBUS e introduzca el código de ID de fabricante obtenido del transmisor.

7.3 Registro de las variables de proceso

Micro Motion sugiere que usted haga un registro de las variables de proceso que se muestran a continuación, bajo condiciones de operación normales. Esto le ayudará a reconocer cuándo las variables de proceso son más altas o más bajas de lo normal, y puede ayudar a realizar una fina sintonización en la configuración del transmisor.

Registre las siguientes variables de proceso:

- Caudal
- Densidad
- Temperatura
- Frecuencia de los tubos
- Voltaje de pickoff
- Ganancia de la bobina impulsora

Para ver estos valores, vea la Sección 7.4. Para obtener información sobre el uso de esta información en la solución de problemas, vea la Sección 11.13.

7.4 Visualización de las variables de proceso

Las variables de proceso incluyen mediciones tales como caudal másico, caudal volumétrico, total másico, total volumétrico, temperatura y densidad.

Usted puede ver las variables de proceso con el indicador (si su transmisor tiene un indicador), con ProLink II o con un host PROFIBUS.

Nota: si la aplicación para mediciones en la industria petrolera está habilitada, dos de las variables de proceso API son promedios: Batch Weighted Average Density (densidad promedio ponderada por lote) y Batch Weighted Average Temperature (temperatura promedio ponderada por lote). Para ambas, los promedios son calculados para el período de totalizador actual, es decir, desde la última puesta a cero del totalizador de volumen API.

7.4.1 Con el indicador

Por omisión, el indicador muestra el caudal másico, el total másico, caudal volumétrico, total volumétrico, temperatura, densidad y la ganancia de la bobina impulsora. Si se desea, usted puede configurar el indicador para que muestre otras variables de proceso. Vea la Sección 8.9.3.

El panel LCD muestra el nombre abreviado de la variable de proceso (v.g., **DENS** para densidad), el valor actual de esa variable de proceso y la unidad de medición asociada (v.g., **G/CM3**). Vea el Apéndice E para obtener información sobre los códigos y abreviaciones usados para las variables del indicador.

Uso del transmisor

Para ver una variable de proceso con el indicador, consulte la Figura 3-2 y:

- Si el desplazamiento automático está habilitado, espere hasta que la variable de proceso deseada aparezca en el panel LCD.
- Si el desplazamiento automático no está habilitado, presione **Scroll** hasta que el nombre de la variable de proceso deseada haga uno de lo siguiente:
 - Aparezca en la línea de variables de proceso, o
 - Comience a alternar con las unidades de medición

La precisión del indicador se puede configurar por separado para cada variable de proceso (vea la Sección 8.9.3). Esto afecta sólo el valor mostrado en el indicador, y no afecta al valor real como lo reporta el transmisor mediante comunicación digital.

Los valores de las variables de proceso se muestran usando la notación decimal estándar o la notación exponencial:

- Los valores < 100.000.000 se muestran en notación decimal (v.g., **1234567.8**).
- Los valores \geq 100.000.000 se muestran usando la notación exponencial (v.g., **1.000E08**).
 - Si el valor es menor que la precisión configurada para esa variable de proceso, el valor se muestra como **0** (es decir, no hay notación exponencial para números fraccionarios).
 - Si el valor es demasiado grande para mostrarse con la precisión configurada, la precisión mostrada se reduce (es decir, el punto decimal se desplaza a la derecha) según se requiera para que el valor se pueda mostrar.

7.4.2 Con ProLink II

La ventana Process Variables se abre automáticamente cuando usted se conecta al transmisor por primera vez. Esta ventana muestra los valores actuales para las variables de proceso estándar (masa, volumen, densidad, temperatura, presión externa y temperatura externa).

Para ver las variables de proceso estándar con ProLink II, si usted ha cerrado la ventana Process Variables, haga clic en **ProLink > Process Variables**.

Para ver las variables de proceso API (si la aplicación para mediciones en la industria petrolera está habilitada), haga clic en **ProLink > API Process Variables**.

Para ver las variables de proceso de densidad mejorada (si la aplicación de densidad mejorada está habilitada), haga clic en **ProLink > ED Process Variables**. Se muestran diferentes variables de proceso de densidad mejorada, dependiendo de la configuración de la aplicación de densidad mejorada.

7.4.3 Con un host PROFIBUS y la EDD

Si utiliza un host PROFIBUS con la EDD:

- Use el menú View (vea la Figura C-5) para ver las variables de proceso estándar. Las variables de proceso de volumen estándar de gas, API y densidad mejorada no se muestran.
- Use el menú Device (vea la Figura C-6) para ver todas las variables de proceso.

7.4.4 Con un host PROFIBUS y el GSD

Si utiliza un host PROFIBUS con el GSD, usted debe importar los módulos de entrada deseados hacia su host PROFIBUS (vea la Sección 5.4). Las variables de proceso seleccionadas estarán disponibles para verlas en el host PROFIBUS.

7.4.5 Con los parámetros de bus PROFIBUS

Para leer los datos de las variables de proceso con los parámetros de bus PROFIBUS:

- Para las variables de proceso de medición en la industria petrolera, utilice el bloque API (vea la Tabla D-7)
- Para las variables de proceso de densidad mejorada, utilice el bloque Enhanced Density (vea la Tabla D-8)
- Para todas las demás variables de proceso, utilice el bloque Measurement (vea la Tabla D-2)

7.5 Uso de los LEDs

El módulo interfaz de usuario proporciona tres LEDs: un LED indicador del estatus, un LED de red y un LED de dirección de software (vea las Figuras 3-1 y 3-2).

- Para transmisores que tienen un indicador, los LEDs se pueden ver con la cubierta del alojamiento del transmisor en su lugar.
- Para transmisores que no tienen un indicador, se debe quitar la cubierta del alojamiento del transmisor para ver los LEDs (vea la Sección 3.3).

Para obtener información acerca de:

- Uso del LED de red, vea la Sección 7.5.1.
- Uso del LED de dirección de software, vea la Sección 7.5.2.
- Uso del LED indicador del estatus, vea la Sección 7.6.1.

7.5.1 Uso del LED de la red

La Tabla 7-1 muestra los diferentes estados del LED de red y define cada estado.

Tabla 7-1 Estados del LED de la red, definiciones y recomendaciones

Estado del LED de la red	Definición	Comentarios
Apagado	El dispositivo no está en línea	El canal de comunicación PROFIBUS-DP no está conectado a ningún sistema host. Revise la configuración del host y el cableado, y vuelva a intentar la conexión.
Verde continuo	El dispositivo está en línea y conectado	El dispositivo está en intercambio de datos con un maestro clase 1 ó está siendo configurado por un maestro clase 2. No se requiere acción.
Verde destellando	El dispositivo está en línea pero no conectado	El dispositivo ha detectado la velocidad de transmisión de la red, pero no se ha establecido la comunicación con un host.
Rojo continuo	Error de comunicación	Revise si existe alguno de los siguientes problemas de comunicación de PROFIBUS: parámetros no válidos, configuración no válida, ranura (slot) no válida, índice no válido, telegrama C2 Acyclic Communication Initiate no válido.

7.5.2 Uso del LED de dirección de software

La Tabla 7-2 muestra los diferentes estados del LED de dirección de software y define cada estado.

Estado del LED de dirección de software	Definición
Apagado	Dispositivo en modo de direccionamiento de hardware.
Rojo continuo	El dispositivo está en modo de direccionamiento de software pero la dirección no ha sido establecida por el host.
Verde continuo	El dispositivo está en modo de direccionamiento de software y la dirección ha sido establecida por el host.

Tabla 7-2 Estados del LED de dirección de software, definiciones y recomendaciones

7.6 Visualización del estatus del transmisor

Usted puede ver el estado del transmisor usando el LED de estatus, ProLink II, un host PROFIBUS usando la EDD o los parámetros de bus PROFIBUS. Dependiendo del método elegido, se despliega información diferente.

7.6.1 Utilizando el LED indicador del estatus

El LED muestra el estatus del transmisor como se describe en la Tabla 7-3. El LED indicador del estatus no muestra el estatus de eventos ni el estatus de alarmas que tengan configurado el nivel de prioridad a Ignore (vea la Sección 8.8).

LED indicador del estatus	Prioridad de alarma	Definición
Verde	No hay alarma	Modo de operación normal
Amarillo destellando	Alarma A104	Ajuste del cero o calibración en progreso
Amarillo	Alarma de baja prioridad (información)	 Condición de alarma: no provocará error de medición La comunicación digital transmite datos de proceso
Rojo	Alarma de alta prioridad (fallo)	 Condición de alarma: provocará error de medición La comunicación digital tomará el valor predeterminado configurado para acción de fallo (vea la Sección 8.10.7)

Tabla 7-3 LED indicador del estatus del transmisor

7.6.2 Utilizando ProLink II

ProLink II proporciona una ventana Status que muestra lo siguiente:

- Estatus (de alarma) de dispositivo
- Estatus de evento
- Otros datos varios del transmisor

7.6.3 Utilizando un host PROFIBUS y la EDD

La información de estatus se encuentra en el menú View (vea la Figura C-5) y en el menú Device (vea las Figuras C-6 y C-7). El menú View muestra el estatus de alarma. El menú Device muestra:

- Estatus de alarma
- Estatus de evento
- Diagnósticos del medidor y del procesador central

7.6.4 Utilizando los parámetros de bus PROFIBUS

La información de estatus se encuentra en el bloque Diagnostic (vea la Tabla D-4).

7.7 Manipulación de alarmas de estatus

Las condiciones específicas del proceso o del medidor de caudal provocan alarmas de estatus. Cada alarma de estatus tiene un código de alarma.

Las alarmas se clasifican en tres niveles de prioridad: Fault (fallo), Information (informativa) e Ignore (ignorar). El nivel de prioridad controla la manera en que el transmisor responde a la condición de alarma.

Nota: algunas alarmas de estatus se pueden volver a clasificar, es decir, se pueden configurar para un nivel de prioridad diferente. Para obtener información sobre la configuración del nivel de prioridad, vea la Sección 8.8.

Nota: para obtener información detallada sobre una alarma de estatus específica, incluyendo posibles causas y sugerencias de solución de problemas, vea la Tabla 11-2. Antes de solucionar problemas con las alarmas de estatus, primero reconozca todas las alarmas. Esto quitará de la lista las alarmas inactivas para que usted pueda concentrar sus esfuerzos de solución de problemas en las alarmas activas.

El transmisor mantiene dos banderas de estatus para cada alarma:

- La primera bandera de estatus indica el estatus actual "active" o "inactive".
- La segunda bandera de estatus indica el estatus actual "acknowledged" (reconocida) o "unacknowledged" (no reconocida).

Además, el transmisor mantiene un historial de alarmas para las 50 ocurrencias de alarma más recientes. El historial de alarmas incluye:

- El código de alarma
- La fecha/hora de la "alarma activa"
- La fecha/hora de la "alarma inactiva"
- La fecha/hora de la "alarma reconocida"

Cuando el transmisor detecta una condición de alarma, revisa el nivel de prioridad de la alarma específica y realiza las acciones descritas en la Tabla 7-4.

	Respuesta dei transmisor					
Nivel de prioridad de alarma ⁽¹⁾	Banderas de estatus	Historial de alarma	Acción de fallo de comunicación digital			
Fault (fallo)	 Se establece la bandera "alarm active" inmediatamente Se establece la bandera "alarm unacknowledged" inmediatamente 	Se escribe el registro "alarm active" al historial de alarmas inmediatamente	Se activa después de que haya transcurrido el timeout de fallo configurado (si aplica) ⁽²⁾			
Informational (informativa)	 Se establece la bandera "alarm active" inmediatamente Se establece la bandera "alarm unacknowledged" inmediatamente 	Se escribe el registro "alarm active" al historial de alarmas inmediatamente	No se activa			
Ignore (ignorar)	 Se establece la bandera "alarm active" inmediatamente Se establece la bandera "alarm unacknowledged" inmediatamente 	No hay acción	No se activa			

Tabla 7-4 Respuestas del transmisor a las alarmas de estatus

(1) Vea la Sección 8.8 para obtener información sobre el ajuste del nivel de la prioridad de las alarmas.

(2) Vea las secciones 8.10.7 y 8.10.8 para obtener más información sobre la acción de fallo de comunicación digital y sobre el timeout de fallo.

Cuando el transmisor detecta que se ha quitado la condición de alarma:

- La primera bandera de estatus se establece a "inactive".
- La acción de fallo de comunicación digital se desactiva (sólo alarmas Fault).
- Se escribe el registro "alarm inactive" al historial de alarmas (sólo alarmas Fault e Informational).
- La segunda bandera de estatus no cambia.

Se requiere acción del operador para regresar la segunda bandera de estatus a "acknowledged" (reconocida). El reconocimiento de la alarma es opcional. Si se reconoce la alarma, se escribe el registro "alarm acknowledged" al historial de alarmas.

7.7.1 Utilizando el indicador

El indicador muestra información sólo acerca de las alarmas Fault o Informational activas, de acuerdo a los bits de estatus de las alarmas. Las alarmas Ignore son filtradas, y usted no puede tener acceso al historial de alarmas mediante el indicador.

Para ver o reconocer las alarmas usando los menús del indicador, vea el diagrama de flujo en la Figura 7-1.

Si el transmisor no tiene un indicador, o si el acceso del operador al menú de alarmas está desactivado (vea la Sección 8.9.5), se pueden ver y reconocer las alarmas usando ProLink II, un host PROFIBUS con la EDD o los parámetros de bus PROFIBUS. El reconocimiento de la alarma es opcional.

Además, se puede configurar el indicador para habilitar o inhabilitar la función Ack All (reconocer todas). Si está inhabilitada, no se muestra la pantalla Ack All y las alarmas deben ser reconocidas individualmente.

Figura 7-1 Visualización y reconocimiento de alarmas con el indicador

7.7.2 Utilizando ProLink II

ProLink II proporciona dos maneras de ver la información de las alarmas:

- La ventana Status
- La ventana Alarm Log

Ventana Status

La ventana Status muestra el estatus actual de las alarmas consideradas más útiles para información, servicio o solución de problemas, incluyendo alarmas Ignore. La ventana Status lee los bits de estatus de alarma, y no tiene acceso al historial de alarmas. La ventana Status no muestra información de reconocimiento, y usted no puede reconocer las alarmas desde la ventana Status.

Uso del transmisor

En la ventana Status:

- Las alarmas se clasifican en tres categorías: crítica, informativa y operacional. Cada categoría se muestra en un panel separado.
- Si una o más alarmas está activa en un panel, la pestaña correspondiente está en rojo.
- En un panel, un LED verde indica "inactiva" y un LED rojo LED indica "activa".

Nota: la ubicación de alarmas en los paneles Status está predefinida, y no es afectada por la prioridad de alarmas.

Para usar la ventana Status:

- 1. Haga clic en **ProLink > Status**.
- 2. Haga clic en la pestaña de la categoría de alarmas que quiere ver.

Ventana Alarm Log

La ventana Alarm Log selecciona información del historial de alarmas, y muestra todas las alarmas de los siguientes tipos:

- Todas las alarmas tipo Fault e Information activas
- Todas las alarmas tipo Fault e Information inactivas pero sin reconocer

Las alarmas Ignore nunca se muestran.

Usted puede reconocer las alarmas desde la ventana Alarm Log.

En la ventana Alarm Log:

- Las alarmas están organizadas en dos categorías: alta prioridad y baja prioridad. Cada categoría se muestra en un panel separado.
- En un panel, un LED verde indica "inactiva pero sin reconocer" y un LED rojo indica "activa".

Nota: la ubicación de alarmas en los paneles Alarm Log está predefinida, y no es afectada por la prioridad de alarmas.

Para usar la ventana Alarm Log:

- 1. Haga clic en **ProLink > Alarm Log**.
- 2. Haga clic en la pestaña de la categoría de alarmas que quiere ver.
- 3. Para reconocer una alarma, haga clic en la casilla **Ack**. Cuando el transmisor haya procesado el comando:
 - Si la alarma estaba inactiva, será eliminada de la lista.
 - Si la alarma estaba activa, será eliminada de la lista tan pronto como se corrija la condición de alarma.

7.7.3 Utilizando un host PROFIBUS con la EDD

Si utiliza un host PROFIBUS con la EDD, se puede ver la información de alarmas en la ventana Alarm Status. Usted puede abrir la ventana Alarm Status en una de las siguientes maneras:

- Haciendo clic en **Device > Device > Alarm Status**
- Haciendo clic en View > Display > Alarm Status

La ventana Alarm Status muestra el estatus actual de las alarmas consideradas más útiles para información, servicio o solución de problemas, incluyendo alarmas Ignore. Las alarmas activas se indican con una marca de verificación.

Nota: la ventana Alarm Status lee los bits de estatus de alarma, y no tiene acceso al historial de alarmas.

Usted puede utilizar la ventana Alarm Status para reconocer una sola alarma o todas las alarmas. Para reconocer una sola alarma:

- 1. Establezca el control Acknowledge Alarm a la alarma que quiera reconocer.
- 2. Envíe el comando al transmisor.

Para reconocer todas las alarmas:

- 1. Establezca el control Acknowledge All Alarms a Acknowledge.
- 2. Envíe el comando al transmisor.

7.7.4 Utilizando los parámetros de bus PROFIBUS

Utilizando los parámetros de bus PROFIBUS, usted puede usar el bloque Diagnostic para ver el estatus de un grupo de alarmas preseleccionado, ver información acerca de una alarma específica, reconocer una sola alarma o todas las alarmas y obtener información del historial de alarmas. Vea la Tabla D-4.

Para ver el estatus de un grupo de alarmas preseleccionado, use los índices 10-17.

Nota: estas son las mismas alarmas que se muestran en la ventana Status de ProLink II.

Para ver información acerca de una alarma individual:

- 1. Establezca el índice 20 (Index 20) al código de la alarma que usted quiere revisar.
- 2. Lea el índice 22 (Index 22), e interprete los datos usando los siguientes códigos:
 - 0x00 = Reconocida y eliminada
 - 0x01 = Activa y reconocida
 - 0x10 = No reconocida, pero eliminada
 - 0x11 = No reconocida, y activa
- 3. Otra información acerca de las alarmas indexadas está disponible en las siguientes ubicaciones:
 - Índice 23: número de veces que se ha activado esta alarma
 - Índice 24: la última vez que se emitió esta alarma
 - Índice 25: la última vez que se eliminó esta alarma

Para reconocer una sola alarma:

- 1. Establezca el índice 20 (Index 20) al código de la alarma que usted quiere revisar.
- 2. Escriba un valor de **0** al índice 22.

Para reconocer todas las alarmas, escriba un valor de 1 al índice 30.

Para obtener información del historial de alarmas:

1. Establezca el índice 26 (Index 26) para especificar el número del registro de alarma que quiere revisar. Los valores válidos son **0–49**.

Uso del transmisor

Nota: el historial de alarmas es un búfer circular, y los registros más recientes reemplazan a los más antiguos. Para determinar si un registro es más reciente o más antiguo que otro, usted debe comparar sus fechas y horas.

- 2. Lea los siguientes valores:
 - Índice 27: el tipo de alarma
 - Índice 29: el momento en que esta alarma cambió de estatus
 - Índice 28: el tipo de cambio de estatus:
 - 1 = Alarma emitida
 - 2 = Alarma eliminada

7.8 Uso de los totalizadores e inventarios

Los *totalizadores* mantienen un rastreo de la cantidad total de masa o volumen medida por el transmisor durante un período de tiempo. Los totalizadores se puede iniciar y detener, y los totales se pueden ver y poner a cero.

Los *inventarios* rastrean los mismos valores que los totalizadores. Cuando se inician o se detienen los totalizadores, todos los inventarios (incluyendo los inventarios de volumen API y de densidad mejorada) se inician o se detienen automáticamente. Sin embargo, cuando se ponen a cero los totalizadores, los inventarios no se ponen a cero automáticamente – usted debe poner los inventarios a cero por separado. Esto le permite a usted utilizar los inventarios para mantener los totales en ejecución aunque se ponga a cero a los totalizadores múltiples veces.

El transmisor puede almacenar valores de totalizador e inventario hasta 2⁶⁴. Los valores mayores que éste ocasionan que ocurra un desbordamiento en el totalizador interno.

7.8.1 Visualización de totales actuales para totalizadores e inventarios

Usted puede ver los totales actuales para los totalizadores e inventarios con el indicador (si su transmisor tiene un indicador), con ProLink II, con un host PROFIBUS o con los parámetros de bus PROFIBUS.

Con el indicador

Usted no puede ver los totales actuales con el indicador a menos que éste haya sido configurado para mostrarlos. Vea la Sección 8.9.3.

Para ver un valor de totalizador o de inventario, consulte la Figura 7-2 y:

- 1. Revise si está la palabra **TOTAL** en la esquina inferior izquierda del panel LCD.
 - Si el desplazamiento automático está habilitado, espere hasta que el valor deseado aparezca en el panel LCD. También puede presionar **Scroll** hasta que aparezca el valor deseado.
 - Si el desplazamiento automático no está habilitado, presione **Scroll** hasta que aparezca el valor deseado.
- 2. Consulte la Tabla 7-5 para identificar la variable de proceso y la unidad de medición.
- 3. Lea el valor actual en la línea superior del indicador.

Tabla 7-5	Valores de totalizador	e inventario en	el indicador
-----------	------------------------	-----------------	--------------

Variable de proceso	Comportamiento del indicador
Total de masa	Unidad de medición desplegada; sin alternar
Inventario de masa	La unidad de medición alterna con MASSI
Total de volumen (líquido)	Unidad de medición desplegada; sin alternar
Inventario de volumen (líquido)	La unidad de medición alterna con LVOLI
Total de volumen estándar de gas	Unidad de medición desplegada; sin alternar
Inventario de volumen estándar de gas	La unidad de medición alterna con GSV I
Total de volumen corregido API	La unidad de medición alterna con TCORR
Inventario de volumen corregido API	La unidad de medición alterna con TCORI
Total de masa neta de densidad mejorada	La unidad de medición alterna con NET M
Inventario de masa neta de densidad mejorada	La unidad de medición alterna con NETMI
Total de volumen neto de densidad mejorada	La unidad de medición alterna con NET V
Inventario de volumen neto de densidad mejorada	La unidad de medición alterna con NETVI
Total de volumen estándar de densidad mejorada	La unidad de medición alterna con STD V
Inventario de volumen estándar de densidad mejorada	La unidad de medición alterna con STDVI

Figura 7-2 Valores de totalizador e inventario en el indicador

Con ProLink II

Para ver los totales actuales para los totalizadores e inventarios con ProLink II:

- 1. Haga clic en **ProLink**.
- 2. Seleccione Process Variables, API Process Variables, o ED Process Variables.

Con un host PROFIBUS y la EDD

Si utiliza un host PROFIBUS con la EDD:

- Use el menú View (vea la Figura C-5) para ver los totales e inventarios estándar. Los totales para volumen estándar de gas, API y densidad mejorada no se muestran.
- Use el menú Device (vea la Figura C-6) para ver todos los valores de totalizador y de inventario.

Con un host PROFIBUS y el GSD

Si utiliza un host PROFIBUS con el GSD, usted debe importar los módulos de entrada deseados hacia su host PROFIBUS (vea la Sección 5.4). Las variables de proceso seleccionadas estarán disponibles para verlas en el host PROFIBUS.

Con los parámetros de bus PROFIBUS

Para ver los totales actuales para los totalizadores e inventarios usando los parámetros de bus PROFIBUS, vea la Sección 7.4.5.

7.8.2 Control de los totalizadores e inventarios

La funcionalidad específica de inicio, paro y puesta a cero depende de la herramienta que usted utilice.

Con el indicador

Si el valor requerido se muestra en el indicador, usted puede utilizar el indicador para iniciar y parar todos los totalizadores e inventarios simultáneamente, o para poner a cero totalizadores individuales. Vea el diagrama de flujo de la Figura 7-3. Usted no puede poner a cero los inventarios con el indicador.

Figura 7-3 Control de los totalizadores e inventarios con el indicador

(1) Se muestra sólo si se configura como una variable del indicador.

(2) Debe estar habilitada la aplicación para mediciones en la industria petrolera o la aplicación de densidad mejorada.

- (3) Las pantallas Event Setpoint se pueden utilizar sólo para definir o cambiar el punto de referencia (Setpoint) A para Event 1 ó Event 2. Estas pantallas se muestran sólo para tipos específicos de eventos. Para cambiar el ajuste del punto de referencia para un evento definido sobre total de masa, usted debe ingresar en el menú de gestión de totalizadores desde la pantalla de total de masa. Para cambiar el ajuste del punto de referencia para un evento definido sobre total de volumen, usted debe ingresar en el menú de gestión de totalizadores desde la pantalla de total de volumen. Vea la Sección 8.6.3 para obtener más información.
- (4) El indicador debe estar configurado para permitir el inicio y paro de los totalizadores e inventarios. Vea la Sección 8.9.5.
 (5) Todos los totalizadores e inventarios se detendrán y se iniciarán juntos, incluyendo los totalizadores e inventarios API y de densidad mejorada.
- (6) El indicador debe estar configurado para permitir la puesta a cero de los totalizadores. Vea la Sección 8.9.5.
- (7) Sólo el totalizador que se muestra actualmente en el indicador se pondrá a cero. No se pondrán a cero otros totalizadores, y ningún inventario. Asegúrese de que el totalizador que usted quiere poner a cero se muestre en el indicador antes de realizar esta puesta a cero.

Con ProLink II

Las funciones de control de totalizadores e inventarios disponibles con ProLink II se muestran en la Tabla 7-6. Tenga en cuenta lo siguiente:

- ProLink II no soporta la puesta a cero por separado del totalizador de volumen API y del inventario de volumen API. Para ponerlos a cero, usted debe poner a cero todos los totalizadores o todos los inventarios.
- Por omisión, la habilidad de poner a cero los inventarios desde ProLink II está inhabilitada. Para habilitarla:
 - a. Haga clic en **View > Preferences**.
 - b. Marque la casilla Enable Inventory Totals Reset.
 - c. Haga clic en **Apply**.

Tabla 7-6 Funciones de control de totalizadores e inventarios soportadas por ProLink II

		Puesta a cero	de inventarios
Objeto	Función	Inhabilitada	Habilitada
Totalizadores e inventarios	Inicio y paro como un grupo	1	1
Totalizadores	Puesta a cero de todos	1	1
	Puesta a cero del totalizador de masa por separado	1	1
	Puesta a cero del totalizador de volumen por separado	1	1
	Puesta a cero de los totalizadores de densidad mejorada por separado	1	1
	Puesta a cero del totalizador de volumen API por separado	No soportada	No soportada
Inventarios	Puesta a cero de todos		1
	Puesta a cero del inventario de masa por separado		1
	Puesta a cero del inventario de volumen por separado		1
	Puesta a cero de los inventarios de densidad mejorada por separado		1
	Puesta a cero del inventario de volumen API por separado	No soportada	No soportada

Para iniciar o detener todos los totalizadores e inventarios:

- 1. Haga clic en **ProLink > Totalizer Control** o **ProLink > ED Totalizer Control** (si la aplicación de densidad mejorada está habilitada).
- 2. Haga clic en el botón All Totals **Start** o All Totals **Stop**.

Nota: las funciones All Totals se duplican en estas dos ventanas por conveniencia. Usted puede iniciar o detener todos los totalizadores e inventarios desde cualquiera de las dos ventanas.

Para poner a cero todos los totalizadores:

- 1. Haga clic en **ProLink > Totalizer Control** o **ProLink > ED Totalizer Control** (si la aplicación de densidad mejorada está habilitada).
- 2. Haga clic en el botón All Totals Reset.

Para poner a cero todos los inventarios:

- 1. Haga clic en **ProLink > Totalizer Control** o **ProLink > ED Totalizer Control** (si la aplicación de densidad mejorada está habilitada).
- 2. Haga clic en el botón All Totals Reset Inventories.

Para poner a cero un totalizador o inventario individual:

- 1. Haga clic en **ProLink > Totalizer Control** o **ProLink > ED Totalizer Control** (si la aplicación de densidad mejorada está habilitada).
- 2. Haga clic en el botón adecuado (v.g., Reset Mass Total, Reset Volume Inventory, Reset Net Mass Total).

Con un host PROFIBUS y la EDD

Si utiliza un host PROFIBUS con la EDD, usted puede usar la ventana Device para detener e iniciar todos los totalizadores e inventarios juntos; poner a cero todos los totalizadores juntos; poner a cero todos los totales e inventarios estándar, API o de densidad mejorada. Vea la Figura C-6.

Con un host PROFIBUS y el GSD

Si utiliza un host PROFIBUS con el GSD, los módulos de salida 36, 37 y 38 se usan para el control de totalizadores e inventarios. Usted puede iniciar o detener todos los totalizadores e inventarios juntos, poner a cero todos los totalizadores juntos o poner a cero todos los inventarios juntos. Para usar estos módulos de salida:

- 1. Impórtelos a su host PROFIBUS.
- 2. Envíe el comando adecuado Reset al transmisor.

Con los parámetros de bus PROFIBUS

Las funciones de control de totalizadores e inventarios disponibles con los parámetros de bus PROFIBUS se muestran en la Tabla 7-7.

Tabla 7-7 Control de totalizadores e inventarios con los parámetros de bus PROFIBUS

Para lograr esto	Utilice
Detener todos los totalizadores e inventarios	Bloque Measurement (Slot 1) Index: 22 Value: 0
Iniciar todos los totalizadores e inventarios	Bloque Measurement (Slot 1) Index: 22 Value: 1
Poner a cero todos los totalizadores	Bloque Measurement (Slot 1) Index: 23 Value: 1
Poner a cero todos los inventarios	Bloque Measurement (Slot 1) Index: 24 Value: 1
Poner a cero el totalizador de masa	Bloque Measurement (Slot 1) Index: 25 Value: 1
Poner a cero el inventario de masa	Bloque Measurement (Slot 1) Index: 43 Value: 1
Poner a cero el totalizador de volumen de líquido	Bloque Measurement (Slot 1) Index: 26 Value: 1
Poner a cero el inventario de volumen de líquido	Bloque Measurement (Slot 1) Index: 44 Value: 1

Tabla 7-7 Control de totalizadores e inventarios con los parámetros de bus PROFIBUS continuación

Para lograr esto	Utilice
Poner a cero el totalizador de volumen estándar de gas	Bloque Measurement (Slot 1) Index: 41 Value: 1
Poner a cero el inventario de volumen estándar de gas	Bloque Measurement (Slot 1) Index: 42 Value: 1
Poner a cero el total de volumen de referencia API	Bloque API (Slot 6) Index: 11 Value: 1
Poner a cero el inventario de volumen de referencia API	Bloque API (Slot 6) Index: 12 Value: 1
Poner a cero el total de volumen estándar de densidad mejorada	Bloque Enhanced Density (Slot 7) Index: 17 Value: 1
Poner a cero el total de masa neta de densidad mejorada	Bloque Enhanced Density (Slot 7) Index: 18 Value: 1
Poner a cero el total de volumen neto de densidad mejorada	Bloque Enhanced Density (Slot 7) Index: 19 Value: 1
Poner a cero el inventario de volumen estándar de densidad mejorada	Bloque Enhanced Density (Slot 7) Index: 20 Value: 1
Poner a cero el inventario de masa neta de densidad mejorada	Bloque Enhanced Density (Slot 7) Index: 21 Value: 1
Poner a cero el inventario de volumen neto de densidad mejorada	Bloque Enhanced Density (Slot 7) Index: 22 Value: 1

Capítulo 8 Configuración opcional

8.1 Generalidades

Este capítulo describe los parámetros de configuración del transmisor que pueden o no usarse, dependiendo de los requerimientos de su aplicación. Para la configuración requerida del transmisor, vea el Capítulo 6.

La Tabla 8-1 muestra los parámetros que se describen en este capítulo. Los valores y rangos predeterminados para los parámetros más comúnmente usados se proporcionan en el Sección A.

Nota: en todos los procedimientos que se proporcionan en este capítulo se asume que usted ha establecido comunicación con el transmisor modelo 2400S DP y que cumple con todos los requerimientos de seguridad aplicables.

Nota: si usted utiliza Pocket ProLink, la interfaz es similar a la interfaz de ProLink II que se describe en este capítulo.

		Método			
Tema	Subtema	ProLink II	Host PROFIBUS ⁽¹⁾	Indicador	Sección
Medición de caudal volumétrico para gas		✓	1		8.2
Cutoffs		1	✓		8.3
Atenuación		1	✓		8.4
Dirección de caudal		1	✓		8.5
Eventos		1	✓		8.6
Slug flow		1	✓		8.7
Prioridad de alarmas de estatus		1	1		8.8

Tabla 8-1 Mapa de configuración

Tabla 8-1	Mapa	de	configuración	continuación
-----------	------	----	---------------	--------------

Tema	Subtema	ProLink II	Host PROFIBUS ⁽¹⁾	Indicador	Sección
Indicador ⁽²⁾	Período de actualización	1	1	✓	8.9.1
	Idioma del indicador	✓	✓	1	8.9.2
	Variables del indicador y precisión	1	1		8.9.3
	Luz de fondo del panel LCD	✓	✓		8.9.4
	Inicio/paro del totalizador	✓	✓	1	8.9.5
	Puesta a cero del totalizador	✓	✓	1	
	Desplazamiento automático	✓	✓	1	
	Rapidez de desplazamiento	✓	\checkmark	1	
	Menú Offline	✓	✓	1	
	Contraseña	✓	✓	1	
	Menú de alarmas	✓	✓	1	
	Reconocer todas las alarmas	✓	✓	1	
Ajustes de comunicación digital	Dirección de nodo de PROFIBUS		✓ ⁽³⁾	✓ ⁽⁴⁾	8.10.1
	Uso del puerto infrarrojo (IrDA)	1	1	1	8.10.2
	Dirección Modbus	✓		1	8.10.3
	Soporte de Modbus ASCII	1		1	8.10.4
	Orden de bytes de punto flotante	1			8.10.5
	Retardo adicional de la respuesta de comunicación	1			8.10.6
	Acción de fallo de comunicación digital	1	1		8.10.7
	Timeout de fallo	1	1		8.10.8
Ajustes del dispositivo		1	✓ ⁽⁵⁾		8.11
Funciones I&M			1		8.12
Parámetros del sensor		1	1		8.13
Aplicación para mediciones en la industria petrolera		1	V		8.14
Aplicación de densidad mejorada		1	1		8.15

(1) Mediante la EDD o los parámetros de bus PROFIBUS.

(2) Estos parámetros aplican sólo a los transmisores que tienen un indicador.
(3) Mediante un telegrama Set Slave Address.

(4) Mediante los interruptores físicos de dirección ubicados en la carátula del transmisor.

(5) Sólo mediante los parámetros de bus PROFIBUS.

8.2 Configuración de la medición de caudal volumétrico para gas

Se tienen disponibles dos tipos de medición de caudal volumétrico:

- Volumen de líquido (el predeterminado)
- Volumen estándar de gas

Sólo se puede realizar un tipo de medición de caudal volumétrico a la vez (es decir, si está habilitada la medición de caudal volumétrico de líquido, entonces la medición de caudal volumétrico estándar de gas está inhabilitada, y viceversa). Se tienen disponibles diferentes conjuntos de unidades de medición de caudal volumétrico, dependiendo de cuál tipo de medición de caudal volumétrico está habilitada (vea las tablas 6-3 y 6-4). Si usted quiere usar una unidad de caudal volumétrico de gas, se requiere una configuración adicional.

Nota: si usted utilizará la aplicación para mediciones en la industria petrolera o la aplicación de densidad mejorada, se requiere medición de caudal volumétrico de líquido.

El método utilizado para configurar la medición de caudal volumétrico para gas depende del método que esté utilizando: ProLink II, un host PROFIBUS con la EDD o los parámetros de bus PROFIBUS. En todos los casos, usted debe:

- Habilitar el caudal volumétrico estándar de gas
- Seleccionar la unidad de medición que va a usar
- Establecer el valor inferior de cutoff de caudal
- Especificar la densidad estándar (densidad a condiciones de referencia) de su gas

Nota: utilizando un indicador, usted sólo puede seleccionar una unidad de medición de volumen del juego disponible para el tipo de caudal volumétrico configurado. Usted no puede configurar ningún otro parámetro.

8.2.1 Utilizando ProLink II

Para configurar la medición de caudal volumétrico para gas utilizando ProLink II:

- 1. Haga clic en **ProLink > Configure > Flow**.
- 2. Configure Vol Flow Type a Std Gas Volume.
- 3. Seleccione la unidad de medición que quiere usar en la lista desplegable **Std Gas Vol Flow Units**. La unidad predeterminada es **SCFM**.
- 4. Configure el parámetro **Std Gas Vol Flow Cutoff** (vea la Sección 8.3). El valor predeterminado es **0**.
- 5. Si usted conoce la densidad estándar del gas que va a medir, introdúzcala en el campo Std Gas Density. Si no conoce la densidad estándar, puede usar el asistente para gas (Gas Wizard). Vea la siguiente sección.

Uso del asistente para gas

El asistente para gas se usa para calcular la densidad estándar del gas que va a medir.

Para usar el asistente para gas:

- 1. Haga clic en **ProLink > Configure > Flow**.
- 2. Haga clic en el botón **Gas Wizard**.
- 3. Si su gas se encuentra en la lista desplegable Choose Gas:
 - a. Habilite el botón de selección Choose Gas.
 - b. Seleccione su gas.

- 4. Si su gas no se encuentra en la lista, usted debe describir sus propiedades.
 - a. Habilite el botón de selección Enter Other Gas Property.
 - b. Habilite el método que usará para describir sus propiedades: Molecular Weight, Specific Gravity Compared to Air o Density.
 - c. Proporcione la información requerida. Tenga en cuenta que si seleccionó **Density**, usted debe introducir el valor en las unidades de densidad configuradas y debe proporcionar la temperatura y la presión a la que se determinó el valor de densidad.

Nota: asegúrese de que los valores introducidos aquí sean correctos, y de que la composición del fluido sea estable. Si no se cumple una de estas condiciones, la precisión de la medición de caudal de gas se degradará.

- 5. Haga clic en Next.
- 6. Verifique la temperatura de referencia y la presión de referencia. Si estos no son adecuados para su aplicación, haga clic en el botón **Change Reference Conditions** e introduzca nuevos valores para la temperatura de referencia y presión de referencia.
- 7. Haga clic en Next. Se despliega el valor de densidad estándar calculado.
 - Si el valor es correcto, haga clic en **Finish**. El valor se escribirá en la configuración del transmisor.
 - Si el valor no es correcto, haga clic en **Back** y modifique los valores de entrada según se requiera.

Nota: el asistente para gas muestra la densidad, la temperatura y la presión en las unidades configuradas. Si se requiere, usted puede configurar el transmisor para que use unidades diferentes. Vea la Sección 6.3.

8.2.2 Utilizando un host PROFIBUS con la EDD

Para configurar la medición de caudal volumétrico para gas usando un host PROFIBUS con la EDD:

- 1. Consultando la Figura C-8:
 - a. Habilite GSV.
 - b. Envíe el comando al transmisor.
 - c. Configure Gas density value, GSV flow units, GSV total units y GSV cutoff como se desee.
- 2. Envíe el comando al transmisor.

8.2.3 Utilizando los parámetros de bus PROFIBUS

Para configurar la medición de caudal volumétrico para gas utilizando los parámetros de bus PROFIBUS:

- 1. Consultando el bloque Measurement (Tabla D-2):
 - a. Habilite la medición de volumen estándar de gas (Index 33).
 - b. Establezca otros parámetros de medición de gas como se desee (Index 34, Index 38 e Index 40).
- 2. Envíe el comando al transmisor.

8.3 Configuración de los cutoffs

Los cutoffs son valores definidos por el usuario debajo de los cuales el transmisor reporta un valor de cero para la variable de proceso especificada. Se pueden establecer cutoffs para caudal másico, caudal volumétrico, caudal volumétrico estándar de gas y densidad.

Vea la Tabla 8-2 para conocer los valores de cutoff predeterminados y la información relacionada. Vea la Sección 8.3.1 para obtener información sobre cómo los cutoffs interactúan con otras mediciones del transmisor.

Para configurar los cutoffs:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-8.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Measurement (vea la Tabla D-2), Index 18, Index 19, Index 20 e Index 40.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador.

Tipo de cutoff	Predeterminado	Comentarios
Caudal másico	0,0 g/s	Ajuste recomendado: 5% del caudal nominal máximo del sensor
Caudal volumétrico	0,0 L/s	Límite: el factor de calibración de caudal del sensor en litros por segundo, multiplicado por 0,2
Caudal volumétrico estándar de gas	0,0 SCFM	No hay límite
Densidad	0,2 g/cm ³	Rango: 0,0–0,5 g/cm ³

Tabla 8-2 Valores de cutoff predeterminados

8.3.1 Cutoffs y caudal volumétrico

Si se habilita el caudal volumétrico de líquido:

- El cutoff de densidad se aplica al cálculo de caudal volumétrico. De acuerdo a esto, si la densidad cae por debajo de su valor de cutoff configurado, el caudal volumétrico toma un valor de cero.
- El cutoff de caudal másico no se aplica al cálculo de caudal volumétrico. Incluso si el caudal másico cae por debajo del cutoff, y por lo tanto los indicadores de caudal másico toman el valor de cero, el caudal volumétrico será calculado a partir de la variable de proceso de caudal másico real.

Si el caudal volumétrico estándar de gas está habilitado, no se aplica el cutoff de caudal másico ni el cutoff de densidad al cálculo de caudal volumétrico.

8.4 Configuración de los valores de atenuación

Un valor de atenuación es un período de tiempo, en segundos, sobre el cual el valor de la variable de proceso cambiará para reflejar 63% del cambio en el proceso real. La atenuación ayuda al transmisor a suavizar fluctuaciones de medición pequeñas y rápidas.

- Un valor de atenuación alto hace que la salida parezca ser más suave debido a que la salida debe cambiar lentamente.
- Un valor de atenuación bajo hace que la salida parezca ser más errática debido a que la salida cambia más rápidamente.

La atenuación se puede configurar para caudal, densidad y temperatura.

Cuando usted especifica un nuevo valor de la atenuación, éste se redondea automáticamente al valor inferior más cercano a un valor válido de la atenuación. Los valores de atenuación válidos se muestran en la Tabla 8-3.

Nota: para aplicaciones de gas, Micro Motion recomienda un valor mínimo de atenuación para el caudal de 2,56.

Antes de establecer los valores de atenuación, revise la Sección 8.4.1 para obtener información sobre cómo los valores de atenuación interactúan con otras mediciones del transmisor.

Para configurar los valores de atenuación:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-8.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Measurement (vea la Tabla D-2), Index 12, Index 13 e Index 14.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador.

Tabla 8-3 Valores de atenuación válidos

Variable de proceso	Valores de atenuación válidos
Caudal (másico y volumétrico)	0, 0,04, 0,08, 0,16, 40,96
Densidad	0, 0,04, 0,08, 0,16, 40,96
Temperatura	0, 0,6, 1,2, 2,4, 4,8, 76,8

8.4.1 Atenuación y medición de volumen

Cuando configure los valores de atenuación, tome en cuenta lo siguiente:

- El caudal volumétrico de líquidos se deriva de las mediciones de masa y densidad; por lo tanto, cualquier atenuación aplicada al caudal másico y a la densidad afectará a la medición de volumen de líquidos.
- El caudal volumétrico estándar de gas se deriva de la medición de caudal másico, pero no de la medición de densidad. Por lo tanto, sólo la atenuación aplicada al caudal másico afectará a la medición de volumen estándar de gas.

Asegúrese de establecer los valores de atenuación adecuadamente.

8.5 Configuración del parámetro de dirección de caudal

El parámetro *dirección de caudal* controla cómo el transmisor reporta el caudal y cómo el caudal se suma a o se resta de los totalizadores, bajo condiciones de caudal directo, caudal inverso o caudal cero.

- El caudal directo (positivo) se mueve en la dirección de la flecha impresa en el sensor.
- El *caudal inverso (negativo)* se mueve en dirección opuesta a la que indica la flecha impresa en el sensor.

Configuración opcional

Las opciones para la dirección de caudal incluyen:

- Sólo directo
- Sólo inverso
- Valor absoluto
- Bidireccional
- Negado/Sólo directo
- Negado/Bidireccional

Para conocer el efecto de la dirección de caudal sobre los totales de caudal y valores de caudal, vea la Tabla 8-4.

Para configurar la dirección de caudal:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-8.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Measurement (vea la Tabla D-2), Index 21.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador.

Tabla 8-4 Efecto de la dirección de caudal sobre los totalizadores y valores de caudal

	Caudal directo ⁽¹⁾		
Valor de dirección de caudal	Totales de caudal	Valores de caudal	
Sólo directo	Se incrementan	Positivos	
Sólo inverso	Sin cambio	Positivos	
Bidireccional	Se incrementan	Positivos	
Valor absoluto	Se incrementan	Positivos ⁽²⁾	
Negado/Sólo directo	Sin cambio	Negativos	
Negado/Bidireccional	Disminuyen	Negativos	
	Caudal cero		
Valor de dirección de caudal	Totales de caudal	Valores de caudal	
Todos	Sin cambio	0	
	Caudal inverso ⁽³⁾		
Valor de dirección de caudal	Totales de caudal	Valores de caudal	
Sólo directo	Sin cambio	Negativos	
Sólo inverso	Se incrementan	Negativos	
Bidireccional	Disminuyen	Negativos	
Valor absoluto	Se incrementan	Positivos ⁽²⁾	
Negado/Sólo directo	Se incrementan	Positivos	
Negado/Bidireccional	Se incrementan	Positivos	

(1) Fluido de proceso fluyendo en la misma dirección que la indicada por la flecha de dirección de caudal ubicada en el sensor.

(2) Consulte los bits del estatus de la comunicación digital para ver una indicación de si el caudal es positivo o negativo.

(3) Fluido de proceso fluyendo en dirección opuesta a la indicada por la flecha de dirección de caudal ubicada en el sensor.

8.6 Configuración de eventos

Un *evento* ocurre si el valor en tiempo real de una variable de proceso especificada por el usuario varía por encima o por debajo de un valor especificado por el usuario, o dentro o fuera de un rango especificado por el usuario. Usted puede configurar hasta cinco eventos.

Opcionalmente, usted puede especificar una o más acciones que ocurrirán si ocurre el evento. Por ejemplo, si ocurre el Evento 1, usted puede especificar que el transmisor detenga todos los totalizadores e inventarios y ponga a cero el totalizador de masa.

8.6.1 Definición de eventos

Para definir un evento:

- Utilizando ProLink II, vea la Figura C-3.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-9.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Diagnostic (vea la Tabla D-4).

Se requieren los siguientes pasos generales:

- 1. Seleccione el evento que va a definir (bloque Diagnostic, Index 4).
- 2. Especifique el tipo de evento (bloque Diagnostic, Index 5). Las opciones de tipo de evento se definen en la Tabla 8-5.
- 3. Asigne una variable de proceso al evento (bloque Diagnostic, Index 8).
- 4. Especifique el (los) punto(s) de referencia del evento el (los) valor(es) al (os) que el evento ocurrirá o cambiará de estado (ON a OFF, o viceversa).
 - Si el tipo de evento es High o Low, sólo se usa un punto de referencia A (bloque Diagnostic, Index 6).
 - Si el tipo de evento es In Range o Out of Range, se requieren tanto el punto de referencia A (bloque Diagnostic, Index 6) como el punto de referencia B (bloque Diagnostic, Index 7).

Nota: Si se ha asignado un total de masa o de volumen al evento 1 ó al evento 2 y también se ha configurado como una variable del indicador, si el tipo de evento es High o Low, y si el transmisor está configurado para permitir la puesta a cero de los totalizadores desde el indicador, usted puede utilizar el indicador para definir o cambiar el punto de referencia alto (punto de referencia A). Vea la Sección 7.3

- 5. Asigne el evento a una acción o acciones, si se desea. Las posibles acciones se muestran en la Tabla 8-6. Para hacer esto:
 - Utilizando ProLink II, abra el panel Discrete Input en la ventana Configuration, identifique la acción que se va a realizar, luego especifique el evento usando la lista desplegable. Vea la Figura C-3.

Nota: para consistencia con otros productos de Micro Motion, el panel Discrete Input se utiliza aquí aunque el transmisor modelo 2400S DP no proporciona una entrada discreta.

- Utilizando el indicador, vea la Figura C-15 y utilice el submenú ACT.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-10.
- Utilizando los parámetros de bus PROFIBUS, use el índice 83 (Index 83) del bloque Diagnostic (vea la Tabla D-4) para especificar el evento, y el índice 82 (Index 82) para asignar la acción.

Configuración opcional

Tabla 8-5 Tipos de evento

Тіро	Descripción
High (> A)	Predeterminado. El evento discreto ocurrirá si la variable asignada es mayor que el punto de referencia (A). ⁽¹⁾
Low (< A)	El evento discreto ocurrirá si la variable asignada es menor que el punto de referencia (A). ⁽¹⁾
In Range	El evento discreto ocurrirá si la variable asignada es mayor que o igual a el punto de referencia inferior (A) y menor que o igual a el punto de referencia superior (B). ⁽²⁾
Out of Range	El evento discreto ocurrirá si la variable asignada es menor que o igual a el punto de referencia inferior (A) o mayor que o igual a el punto de referencia superior (B). ⁽²⁾

(1) Un evento no ocurre si la variable asignada es igual al punto de referencia.

(2) Un evento ocurre si la variable asignada es igual al punto de referencia.

Tabla 8-6 Acciones de evento

Etiqueta de ProLink II	Etiqueta del indicador	Etiqueta EDD	Descripción
Start sensor zero	START ZERO	Start Sensor Zero	Inicia un procedimiento de calibración de ajuste del cero
Reset mass total	RESET MASS	Reset Mass Total	Pone a cero el totalizador de masa
Reset volume total	RESET VOL	Reset Volume Total	Pone a cero el totalizador de volumen de líquido ⁽¹⁾
Reset gas std volume total	RESET GSV	Reset GSV Total	Pone a cero el totalizador de volumen estándar de gas ⁽²⁾
Reset API ref vol total	RESET TCORR	Reset API Volume Total	Pone a cero el totalizador de volumen API corregido por temperatura ⁽³⁾
Reset ED ref vol total	RESET STD V	Reset ED Volume Total	Pone a cero el totalizador de volumen estándar de densidad mejorada ⁽⁴⁾
Reset ED net mass total	RESET NET M	Reset ED Net Mass Total	Pone a cero el totalizador de masa neto de densidad mejorada ⁽⁴⁾
Reset ED net vol total	RESET NET V	Reset ED Net Volume Total	Pone a cero el totalizador de volumen neto de densidad mejorada ⁽⁴⁾
Reset all totals	RESET ALL	Reset All Totals	Pone a cero todos los totalizadores
Start/stop all totalization	START STOP	Start/Stop All Totals	Si los totalizadores están en ejecución, esta acción detiene todos los totalizadores Si los totalizadores no están en ejecución, esta acción inicia todos los totalizadores
Increment current ED curve	INCR CURVE	Increment ED Curve	Cambia la curva activa de densidad mejorada de 0 a la curva 1, de 1 a 2, etc. $^{(4)}$
Start meter verification	START VERFY	Start Meter Verification	Inicia una prueba de verificación inteligente del medidor ⁽⁵⁾

(1) Se muestra sólo si Volume Flow Type = Liquid.

(2) Se muestra sólo si Volume Flow Type = Gas.

(3) Disponible sólo si está instalada la aplicación para mediciones en la industria petrolera.

(4) Disponible sólo si está instalada la aplicación de densidad mejorada.

(5) Aplica sólo a sistemas que tengan la verificación inteligente del medidor (Smart Meter Verification)

Ejemplo	Defina el evento discreto 1 (Discrete Event 1) para que esté activo cuando el caudal másico en dirección directa o inversa sea menor que 2 lb/min o mayor que 20 lb/min. Además, si esto ocurre, todos los totalizadores se deben detener.			
	Utilizando ProLink II:			
	1. Especifique lb/min como la unidad de caudal másico. Vea la Sección 6.3.1.			
	2. Establezca Flow Direction a Absolute Value. Vea la Sección 8.5.			
	3. Seleccione Event 1.			
	4. Configure:			
	Event Type = Out of Range			
	 Process Variable (PV) = Mass Flow Rate 			
	 Low Setpoint (A) = 2 			
	 High Setpoint (B) = 20 			
	 En el panel Discrete Input, abra la lista desplegable para Start/Stop All Totalization y seleccione Discrete Event 1. 			
	Utilizando los parámetros de bus PROFIBUS:			
	1. Especifique lb/min como la unidad de caudal másico. Vea la Sección 6.3.1.			
	2. Establezca Flow Direction a Absolute Value. Vea la Sección 8.5.			
	3. En el bloque Diagnostic, establezca los siguientes atributos:			
	 Índice de evento discreto (Index 4) = 0 			
	 Tipo de acción del evento discreto (Index 5) = 3 			
	 Variable de proceso del evento discreto (Index 8) = 0 			
	 Punto de referencia A del evento discreto (Index 6) = 2 			
	 Punto de referencia B del evento discreto (Index 7) = 20 			
	 Asignación del evento discreto (Index 83) = 57 			

• Código de acción del evento discreto (Index 82) = 9

8.6.2 Revisión e informes del estatus de los eventos

Hay varias maneras en que se puede determinar el estatus de eventos:

- ProLink II muestra automáticamente la información de los eventos en el panel Informational de la ventana Status, y también en la ventana Output Levels.
- Para los hosts PROFIBUS que usen la EDD, el estado de los eventos se muestra en el menú Device (vea la Figura C-6).
- Utilizando los parámetros de bus PROFIBUS, el estatus de los eventos se reporta en el bloque Diagnostic, Index 9 (vea la Tabla D-4).

Nota: usted puede ver el estatus de los eventos usando un host PROFIBUS con el GSD.

8.6.3 Cambio de los puntos de referencia de eventos desde el indicador

Para Event 1 ó Event 2 únicamente, el valor de Setpoint A se puede cambiar desde el indicador, bajo las siguientes circunstancias:

- Se debe asignar al evento un total de masa, total de volumen, total de medición en la industria petrolera o total de densidad mejorada.
- El tipo de evento debe ser High o Low.
- Se debe configurar el total asignado como una variable del indicador (vea la Sección 8.9.3).
- Se debe configurar el transmisor para permitir poner a cero los totalizadores desde el indicador (vea la Sección 8.9.5)

Luego, para cambiar el punto de referencia A desde el indicador:

- 1. Consultando el diagrama de flujo de gestión de totalizadores en la Figura 7-3, presione **Scroll** para ir a la pantalla del indicador adecuada:
 - Para cambiar el punto de referencia para un evento definido sobre el total de masa, presione **Scroll** para desplazarse a la pantalla de total de masa.
 - Para cambiar el punto de referencia para un evento definido sobre el total de volumen, presione **Scroll** para desplazarse a la pantalla de total de volumen.
- 2. Presione Select.
- 3. Introduzca el nuevo valor del punto de referencia. Vea la Sección 3.5.5 para obtener instrucciones sobre cómo introducir valores de punto flotante con el indicador.

8.7 Configuración de límites y duración de slug flow

Slugs – gas en un proceso de líquido o líquido en un proceso de gas – aparecen ocasionalmente en algunas aplicaciones. La presencia de slugs puede afectar la lectura de densidad del proceso considerablemente. Los parámetros de slug flow pueden ayudar al transmisor a suprimir cambios extremos en las variables de proceso, y también se pueden usar para identificar las condiciones de proceso que requieren corrección.

Los parámetros de slug flow son los siguientes:

- *Límite inferior de slug flow* el punto por debajo del cual existirá una condición de slug flow. Típicamente, éste es el punto más bajo de densidad en el rango normal de densidad de su proceso. El valor predeterminado es **0,0 g/cm3**; el rango es **0,0–10,0 g/cm3**.
- *Límite superior de slug flow* el punto por encima del cual existirá una condición de slug flow. Típicamente, éste es el punto más alto de densidad en el rango normal de densidad de su proceso. El valor predeterminado es **5,0 g/cm3**; el rango es **0,0–10,0 g/cm3**.
- *Duración de slug flow* el número de segundos que el transmisor espera a que la condición de slug flow (*fuera* de los límites de slug flow) regrese a normal (*dentro* de los límites de slug flow). El valor predeterminado es **0,0 seg**; el rango es **0,0–60,0 seg**.

Si el transmisor detecta slug flow:

- Se emite inmediatamente una alarma de slug flow.
- Durante la duración de la condición de slug flow, el transmisor mantiene el caudal másico al valor medido antes de la condición de slug flow, independientemente del caudal másico medido por el sensor. El caudal másico transmitido se establece a este valor, y todos los cálculos internos que incluyen caudal másico usarán este valor.
- Si después de que transcurre el período de duración de slug flow todavía existe la condición de slug flow, el transmisor hace que el caudal másico se vaya a **0**, independientemente del caudal másico medido por el sensor. El caudal másico se transmite como **0** y todos los cálculos internos que incluyen caudal másico usarán **0**.
- Cuando la densidad del proceso regresa a un valor dentro de los límites de slug flow, la alarma de slug flow se elimina y el caudal másico toma el valor real medido.

Para configurar los parámetros de slug flow:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-8.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Diagnostic (vea la Tabla D-4), Index 1, Index 2 e Index 3.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador.

Nota: los límites de slug flow se deben introducir en g/cm³, aun si otra unidad ha sido configurada para densidad. La duración de slug flow se introduce en segundos. El incremento del límite inferior de slug flow o la disminución del límite superior de slug flow aumentarán la posibilidad de condiciones de slug flow. Por otro lado, la disminución del límite inferior de slug flow o el incremento del límite superior de slug flow reducirán la posibilidad de condiciones de slug flow. Si se establece la duración de slug flow a 0, se forzará el caudal másico a tomar el valor de 0 tan pronto como se detecte la condición de slug flow.

8.8 Configuración de la prioridad de las alarmas de estatus

El transmisor modelo 2400S DP puede transmitir fallos en las siguientes maneras:

- Estableciendo el bit de estatus "alarm active"
- Escribiendo un registro "alarm active" al historial de alarmas
- Implementando la acción de fallo de comunicación digital (vea la Sección 8.10.7)

La *prioridad de las alarmas de estatus* determina qué métodos usará el transmisor cuando ocurra una condición de alarma específica. Vea la Tabla 8-8. (Para ver una descripción más detallada del procesamiento y manipulación de las alarmas de estatus, vea la Sección 7.7.)
	Acción del transmisor si ocurre la condición			
Nivel de prioridad	¿Se establece el bit de estatus "alarm active"?	¿Se escribe el registro "alarm active" al historial?	¿Se activa la acción de fallo? ⁽¹⁾	
Fault (fallo)	Sí	Sí	Sí	
Informational (informativa)	Sí	Sí	No	
Ignore (ignorar)	Sí	No	No	

Tabla 8-7 Niveles de prioridad de alarmas e informes de fallo

(1) Para algunas alarmas, la acción de fallo de comunicación digital no comenzará hasta que haya transcurrido el timeout de fallo. Para configurar el timeout de fallo, vea la Sección 8.8. Otros métodos de informes de fallo ocurren tan pronto como se reconoce la condición de fallo. La Tabla 8-8 incluye información sobre cuáles alarmas son afectadas por el timeout de fallo.

Algunas alarmas se pueden volver a clasificar. Por ejemplo:

- El nivel de prioridad predeterminado para la alarma A020 (factores de calibración no introducidos) es **Fault**, pero usted puede volver a configurarla a **Informational** o **Ignore**.
- El nivel de prioridad predeterminado para la alarma A102 (bobina fuera de rango) es **Informational**, pero usted puede volver a configurarla a **Ignore** o **Fault**.

Para conocer una lista de todas las alarmas de estatus y los niveles de prioridad predeterminados, vea la Tabla 8-8. (Para obtener más información sobre las alarmas de estatus, incluyendo las posibles causas y sugerencias de solución de problemas, vea la Tabla 11-2.)

Para configurar la prioridad de alarmas:

- Utilizando ProLink II, vea la Figura C-3.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-9.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Diagnostic (vea la Tabla D-4), Index 20 e Index 21.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador.

Tabla 8-8 Alarmas de estatus y niveles de prioridad

Código de alarma	Mensaje ⁽¹⁾	Prioridad predeterminada	Configurable	Afectada por timeout de fallo
A001	EEprom Checksum Error (Core Processor)	Fault	No	No
	(E)EPROM Checksum Error (CP)	_		
A002	RAM Test Error (Core Processor)	Fault	No	No
	RAM Error (CP)	_		
A003	Sensor Not Responding (No Tube Interrupt)	Fault	Sí	Sí
	Sensor Failure	_		
A004	Temperature sensor out of range	Fault	No	Sí
	Temperature Sensor Failure	_		
A005	Input Over-Range	Fault	Sí	Sí
	Input Overrange	_		
A006	Transmitter Not Characterized	Fault	Sí	No
	Not Configured	_		
A008	Density Outside Limits	Fault	Sí	Sí
	Density Overrange	_		

Código de alarma	Mensaje ⁽¹⁾	Prioridad predeterminada	Configurable	Afectada por timeout de fallo	
A009	Transmitter Initializing/Warming Up	Ignore Sí		No	
	Transmitter Initializing/Warming Up	-			
A010	Calibration Failure	Fault	No	No	
	Calibration Failure	-			
A011	Excess Calibration Correction, Zero too Low	Fault	Sí	No	
	Zero Too Low	-			
A012	Excess Calibration Correction, Zero too High	Fault	Sí	No	
	Zero Too High	-			
A013	Process too Noisy to Perform Auto Zero	Fault	Sí	No	
	Zero Too Noisy	-			
A014	Transmitter Failed	Fault	No	No	
	Transmitter Failed	-			
A016	Line RTD Temperature Out-Of-Range	Fault	Sí	Sí	
	Line RTD Temperature Out-of-Range	-			
A017	Meter RTD Temperature Out-Of-Range	Fault	Sí	Sí	
	Meter RTD Temperature Out-of-Range	-			
A020	Calibration Factors Unentered	Fault	Sí	No	
	Calibration Factors Unentered (FlowCal)	-			
A021	Unrecognized/Unentered Sensor Type	Fault	No	No	
	Incorrect Sensor Type (K1)	-			
A029	Internal Communication Failure	Fault	No	No	
	PIC/Daughterboard Communication Failure	-			
A030	Hardware/Software Incompatible	Fault	No	No	
	Incorrect Board Type	-			
A031	Undefined	Fault	No	No	
	Low Power	-			
A032 ⁽²⁾	Meter Verification Fault Alarm	Fault	No	No	
	Meter Verification/Outputs In Fault	-			
A032 ⁽³⁾	Outputs Fixed during Meter Verification	Varía ⁽⁴⁾	No	No	
	Meter Verification In Progress and Outputs Fixed	-			
A033	Sensor OK, Tubes Stopped by Process	Fault	Sí	Sí	
	Sensor OK, Tubes Stopped by Process	-			
A034 ⁽³⁾	Meter Verification Failed	Info	Sí	No	
	Meter Verification Failed	-			
A035 ⁽³⁾	Meter Verification Aborted	Info	Sí	No	
	Meter Verification Aborted	-			
A102	Drive Over-Range / Partially Full Tube	Info	Sí	No	
	Drive Overrange/Partially Full Tube	-			

Tabla 8-8 Alarmas de estatus y niveles de prioridad continuación

Código de alarma	Mensaje ⁽¹⁾	Prioridad predeterminada	Configurable	Afectada por timeout de fallo
A104	Calibration-In-Progress	Info	Sí ⁽⁵⁾	No
	Calibration in Progress	_		
A105	Slug Flow	Info	Sí	No
	Slug Flow	_		
A107	Power Reset Occurred	Info	Sí	No
	Power Reset Occurred	_		
A116	API Temperature Out-of-Limits	Info	Sí	No
	API: Temperature Outside Standard Range	_		
A117	API Density Out-of-Limits	Info	Sí	No
	API: Density Outside Standard Range	_		
A120	ED: Unable to fit curve data	Info	No	No
	ED: Unable to Fit Curve Data	_		
A121	ED: Extrapolation alarm	Info	Sí	No
	ED: Extrapolation Alarm	_		
A131 ⁽²⁾	Meter Verification Info Alarm	Info	Sí	No
	Meter Verification/Outputs at Last Value	_		
A131 ⁽³⁾	Meter Verification in Progress	Info	Sí	No
	Meter Verification In Progress	_		
A132	Simulation Mode Active	Info	Sí	No
	Simulation Mode Active	_		
A133	PIC UI EEPROM Error	Info	Sí	No
	PIC UI EEPROM Error	_		

Tabla 8-8 Alarmas de estatus y niveles de prioridad continuación

(1) Dependiendo del método que usted utilice para ver la alarma, se pueden mostrar diferentes mensajes. Esta tabla muestra dos posibles versiones de mensajes. El segundo mensaje de cada par corresponde a ProLink II.

(2) Aplica sólo a sistemas que tengan la versión original de la aplicación de verificación del medidor.

(3) Aplica sólo a sistemas que tengan la verificación inteligente del medidor (Smart Meter Verification).

(4) Si se configuran las salidas a Last Measured Value (último valor medido), la prioridad es Info. Si se configuran las salidas a Fault (fallo), la prioridad es Fault (fallo).

(5) Se puede configurar como Informational o Ignore, pero no como Fault.

8.9 Configuración del indicador

Si su transmisor tiene un indicador, usted puede configurar una variedad de parámetros que controlan la funcionalidad del indicador.

8.9.1 Período de actualización

El parámetro Update Period (período de actualización) (o Display Rate) controla qué tan a menudo se actualiza el indicador con datos actuales. El valor predeterminado es de **200 milisegundos**; el rango es de **100 milisegundos** a **10.000 milisegundos** (10 segundos).

Para configurar el período de actualización:

- Utilizando ProLink II, vea la Figura C-3.
- Utilizando el indicador, vea la Figura C-15.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-10.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Local Display (vea la Tabla D-6), Index 31.

8.9.2 Idioma

El indicador se puede configurar para que use cualquiera de los siguientes idiomas para los datos y los menús:

- Inglés
- Francés
- Alemán
- Español

Para establecer el idioma del indicador:

- Utilizando ProLink II, vea la Figura C-3.
- Utilizando el indicador, vea la Figura C-15.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-10.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Local Display (vea la Tabla D-6), Index 33.

8.9.3 Variables y precisión del indicador

El indicador puede desplegar hasta 15 variables de proceso una a una en cualquier orden. Usted puede configurar las variables de proceso que se van a desplegar en el orden en que deben aparecer. Además, puede configurar la precisión para cada variable del indicador. La precisión del indicador controla el número de dígitos a la derecha del lugar decimal. La precisión se puede fijar a cualquier valor entre **0** y **5**.

Para configurar las variables o la precisión del indicador:

- Utilizando ProLink II, vea la Figura C-3.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-10.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Local Display (vea la Tabla D-6):
 - Use los índices 16–30 (Index 16–Index 30) para especificar las variables del indicador.
 - Use los índices 14 y 15 (Index 14 e Index 15) para especificar la precisión del indicador.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador.

La Tabla 8-9 muestra un ejemplo de configuración de variables del indicador. Usted puede repetir variables, y también puede especificar None para cualquier variable del indicador excepto Variable del indicador 1. Para obtener información sobre cómo aparecerán las variables en el indicador, vea el Sección E.

Variable del indicador	Variable de proceso
Variable del indicador 1 ⁽¹⁾	Caudal másico
Variable del indicador 2	Totalizador de masa
Variable del indicador 3	Caudal volumétrico
Variable del indicador 4	Totalizador de volumen
Variable del indicador 5	Densidad
Variable del indicador 6	Temperatura
Variable del indicador 7	Temperatura externa
Variable del indicador 8	Presión externa
Variable del indicador 9	Caudal másico
Variable del indicador 10	None (ninguna)
Variable del indicador 11	None
Variable del indicador 12	None
Variable del indicador 13	None
Variable del indicador 14	None
Variable del indicador 15	None

Tabla 8-9 Ejemplo de una configuración de variables del indicador

(1) La variable de indicador 1 no se puede establecer a None.

8.9.4 Luz de fondo del panel LCD

La luz de fondo del panel LCD del indicador se puede encender o apagar. Para encender o apagar la luz de fondo:

- Utilizando ProLink II, vea la Figura C-3.
- Utilizando el indicador, vea la Figura C-15.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-10.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Local Display (vea la Tabla D-6), Index 13.

Además, ProLink II, la EDD y los parámetros de bus le permiten controlar la intensidad de la luz de fondo. Usted puede especificar un valor entre **0** y **63**; entre mayor sea el valor, mayor será la intensidad de la luz de fondo. Para controlar la intensidad de la luz de fondo:

- Utilizando ProLink II, vea la Figura C-3.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-10.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Local Display (vea la Tabla D-6), Index 32.

8.9.5 Funciones del indicador

La Tabla 8-10 muestra las funciones del indicador y describe su comportamiento cuando están habilitadas (se muestran) o inhabilitadas (están ocultas).

Parámetro	Habilitado (se muestra)	Inhabilitado (oculto)
Totalizer start/stop	Los operadores pueden iniciar o parar los totalizadores utilizando el indicador.	Los operadores no pueden iniciar o parar los totalizadores utilizando el indicador.
Totalizer reset	Los operadores pueden poner a cero los totalizadores de masa y volumen usando el indicador.	Los operadores no pueden poner a cero los totalizadores de masa y volumen usando el indicador
Auto scroll ⁽¹⁾	El indicador se desplaza automáticamente, mostrando cada variable de proceso a una rapidez configurable.	Los operadores deben utilizar el botón Scroll para ver las variables de proceso.
Off-line menu	Los operadores pueden tener acceso al menú off-line (ajuste del cero, simulación y configuración).	Los operadores no pueden tener acceso al menú off-line.
Off-line password ⁽²⁾	Los operadores deben utilizar una contraseña para tener acceso al menú off-line.	Los operadores pueden tener acceso al menú off-line sin una contraseña.
Alarm menu	Los operadores pueden tener acceso al menú de alarmas (visualización y reconocimiento de alarmas).	Los operadores no pueden tener acceso al menú de alarmas.
Acknowledge all alarms	Los operadores pueden reconocer todas las alarmas actuales al mismo tiempo.	Los operadores deben reconocer las alarmas individualmente.

Tabla 8-10 Funciones del indicador

(1) Si se habilita, tal vez quiera configurar la rapidez de desplazamiento (Scroll Rate).

(2) Si se habilita, también se debe configurar la contraseña off-line.

Para configurar las funciones del indicador:

- Utilizando ProLink II, vea la Figura C-3.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-10.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Local Display (vea la Tabla D-6), Index 4–Index 12.
- Utilizando el indicador, vea la Figura C-15.

Tenga en cuenta lo siguiente:

- Si usted usa el indicador para desactivar el acceso al menú off-line, éste desaparecerá tan pronto como usted salga del sistema de menús. Si usted quiere volver a habilitar el acceso, debe utilizar un método diferente (v.g., ProLink II o un host PROFIBUS con la EDD).
- El parámetro Scroll Rate (rapidez de desplazamiento) se utiliza para controlar la velocidad de desplazamiento cuando se habilita el desplazamiento automático. Scroll Rate define cuánto tiempo se mostrará cada variable en el indicador (vea la Sección 8.9.3). El período de tiempo se define en segundos; v.g., si Scroll Rate se establece a 10, cada variable del indicador se mostrará por 10 segundos.
- La contraseña off-line evita que usuarios no autorizados tengan acceso al menú off-line. La contraseña puede contener hasta cuatro números.
- Si usted utiliza el indicador para configurarlo:
 - Debe habilitar el desplazamiento automático (Auto Scroll) antes de poder configurar la rapidez de desplazamiento (Scroll Rate).
 - Debe habilitar la contraseña off-line antes de poder configurar la contraseña.

Configuración opcional

Configuración opcional

8.10 Configuración de la comunicación digital

Los parámetros de comunicación digital controlan la manera en que el transmisor se comunicará utilizando comunicación digital. Se pueden configurar los siguientes parámetros de comunicación digital:

- Dirección de nodo PROFIBUS-DP
- Uso del puerto infrarrojo (IrDA)
- Dirección Modbus
- Soporte de Modbus ASCII
- Orden de bytes de punto flotante
- Retardo adicional de la respuesta de comunicación
- Acción de fallo de comunicación digital
- Timeout de fallo

8.10.1 Dirección de nodo PROFIBUS-DP

La dirección de nodo de PROFIBUS-DP se puede establecer con los interruptores de dirección ubicados en el dispositivo o con un host PROFIBUS.

Nota: usted no puede establecer la dirección de nodo desde ProLink II o desde el indicador.

El transmisor funciona en modo de direccionamiento por hardware o en modo de direccionamiento por software:

- En modo de direccionamiento por hardware, los interruptores de dirección se establecen a un valor entre **0** y **126**, y la posición de los interruptores de dirección determina la dirección de nodo real. El LED de dirección de software ubicado en la carátula del transmisor está apagado (vea la Figura 3-1 ó la Figura 3-2).
- En modo de direccionamiento por software, los interruptores de dirección se establecen a **126** ó mayor, y la dirección de nodo se establece mediante un telegrama Set Slave Address desde el host. La posición de los interruptores de dirección no necesariamente coincide con la dirección de nodo real. El LED de dirección de software está encendido en rojo o en verde:
 - Rojo el transmisor no ha recibido un telegrama Set Slave Address.
 - Verde el transmisor ha recibido un telegrama Set Slave Address y reconoce la dirección.

La dirección de nodo predeterminada para el transmisor modelo 2400S DP es **126**, que permite el direccionamiento por hardware o por software.

Para establecer la dirección de nodo utilizando los interruptores de dirección:

- 1. Quite la cubierta del alojamiento del transmisor como se describe en la Sección 3.3.
- 2. Identifique los tres interruptores de dirección en el módulo interfaz de usuario de su transmisor (vea la Figura 3-1 ó la Figura 3-2).
- 3. Para cada interruptor, inserte una pequeña cuchilla en la ranura para girar la flecha a la posición deseada. Por ejemplo, para establecer la dirección de nodo a **60**:
 - a. Gire la flecha en el interruptor izquierdo para apuntar al dígito **0**.
 - b. Gire la flecha en el interruptor central para apuntar al dígito 6.
 - c. Gire la flecha en el interruptor derecho para apuntar al dígito **0**.
- 4. Apague y encienda el transmisor. En este momento, la nueva dirección de nodo es reconocida por el transmisor, pero no por el host. Usted debe actualizar la configuración del host para la nueva dirección.

Para establecer la dirección de nodo con el software:

- 1. Asegúrese de que el transmisor esté en modo de direccionamiento por software (el LED de dirección de software es rojo o verde). Si es así, ignore este paso y vaya al Step 2. Si está en modo de direccionamiento por hardware (el LED de dirección por software está apagado):
 - a. Establezca los interruptores de dirección a **126** ó superior.
 - b. Apague y encienda el transmisor. En este momento, el transmisor entra en el modo de direccionamiento por software, y el LED de dirección de software se enciende en rojo.
- 2. Envíe un telegrama Set Slave Address desde el host. No es necesario apagar y encender el transmisor. En este momento, la nueva dirección de nodo es reconocida tanto por el transmisor como por el host, y el LED de dirección de software se enciende en verde.

Para regresar la dirección de nodo a **126** (a veces se requiere para mantenimiento):

- Debido a que un telegrama Set Slave Address no puede especificar una dirección de nodo de 126, usted debe establecer esta dirección mediante los interruptores de dirección. Si el transmisor está actualmente en modo de direccionamiento por hardware (el LED de dirección de software está apagado), ignore este paso y vaya al Step 2. Si está actualmente en modo de direccionamiento por software (el LED de dirección de software está en rojo o en verde), cambie al modo de direccionamiento por hardware, como se indica a continuación:
 - a. Establezca los interruptores de dirección a cualquier valor entre 0 y 125 (v.g., 100).
 - b. Apague y encienda el transmisor. El transmisor entra en el modo de direccionamiento por hardware, y el LED de dirección de software se apaga.
- 2. Establezca los interruptores de dirección a 126.
- 3. Apague y encienda el transmisor.

8.10.2 Uso del puerto infrarrojo (IrDA)

El puerto infrarrojo (IrDA) en el indicador se puede habilitar o inhabilitar. Si se habilita, se puede configurar para acceso de sólo lectura o de lectura/escritura.

Para habilitar o inhabilitar el puerto infrarrojo:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando los menús del indicador, vea la Figura C-15.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-10.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Local Display (vea la Tabla D-6), Index 34.

Para configurar el puerto infrarrojo para acceso de sólo lectura o de lectura/escritura:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando los menús del indicador, vea la Figura C-15.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-10.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Local Display (vea la Tabla D-6), Index 35.

8.10.3 Dirección de Modbus

Nota: la dirección de Modbus aplica sólo cuando usted se conecta al puerto de servicio desde una herramienta que use el protocolo Modbus. Después de la puesta en marcha inicial, las conexiones del puerto de servicio se usan generalmente sólo para solución de problemas o para procedimientos específicos, tales como calibración de temperatura. ProLink II se utiliza generalmente para conexiones del puerto de servicio, y por omisión ProLink II usará la dirección estándar del puerto de servicio en lugar de la dirección Modbus configurada. Vea la Sección 4.4 para obtener más información.

El conjunto de direcciones Modbus válidas depende de si se tiene habilitado o inhabilitado el soporte de Modbus ASCII (vea la Sección 8.10.4). Las direcciones Modbus válidas son las siguientes:

- Modbus ASCII habilitado: 1-15, 32-47, 64-79, 96-110
- Modbus ASCII inhabilitado: 0-127

Para configurar la dirección Modbus:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando el indicador, vea la Figura C-15.

Nota: esta funcionalidad no se puede configurar mediante el protocolo PROFIBUS.

8.10.4 Soporte de Modbus ASCII

Cuando el soporte de Modbus ASCII está habilitado, el puerto de servicio puede aceptar solicitudes de conexión que usen Modbus ASCII o Modbus RTU. Cuando el soporte de Modbus ASCII está inhabilitado, el puerto de servicio no puede aceptar solicitudes de conexión que usen Modbus ASCII. Sólo las conexiones de Modbus RTU son aceptadas.

La principal razón de inhabilitar el soporte Modbus ASCII es permitir una gama más amplia de direcciones Modbus para el puerto de servicio.

Para habilitar o inhabilitar el soporte Modbus ASCII:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando el indicador, vea la Figura C-15.

Nota: esta funcionalidad no se puede configurar mediante el protocolo PROFIBUS.

8.10.5 Orden de bytes de punto flotante

Nota: este parámetro afecta sólo a las comunicaciones Modbus. La comunicación PROFIBUS no cambia.

Se usan cuatro bytes para transmitir valores de punto flotante. Para conocer el contenido de los bytes, vea la Tabla 8-11.

Tabla 8-11	Contenido de bytes en comandos de Modbus y respuestas
------------	---

Byte	Bits	Definiciones
1	SEEEEEE	S = Signo E = Exponente
2	ЕММММММ	E = Exponente M = Mantisa
3	МММММММ	M = Mantisa
4	МММММММ	M = Mantisa

El orden de bytes predeterminado para el transmisor modelo 2400S es **3–4 1–2**. Es posible que usted necesite cambiar el orden de bytes para que coincida con el orden usado por un host remoto o un PLC.

Para configurar el orden de bytes usando ProLink II, vea la Figura C-2.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador ni con el protocolo PROFIBUS.

8.10.6 Retardo adicional de la respuesta de comunicación

Nota: este parámetro afecta sólo a las comunicaciones Modbus. La comunicación PROFIBUS no cambia.

Algunos hosts o PLCs funcionan a velocidades más bajas que el transmisor. Para sincronizar la comunicación con estos dispositivos, usted puede configurar un retardo adicional para agregarlo a cada respuesta que el transmisor envía al host remoto.

La unidad básica de retardo es 2/3 del tiempo de un caracter como se calcula para el ajuste actual de velocidad de transmisión del puerto serial y los parámetros de transmisión de caracteres. Esta unidad de retardo básica se multiplica por el valor configurado para llegar al retardo adicional total. Usted puede especificar un valor en el rango de 1 a 255.

Para configura el retardo adicional de la respuesta de comunicación usando ProLink II, vea la Figura C-2.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador ni con el protocolo PROFIBUS.

8.10.7 Acción de fallo de comunicación digital

Nota: este parámetro afecta tanto la comunicación PROFIBUS como la comunicación Modbus.

La acción de fallo de comunicación digital controla la manera en que las variables de proceso serán transmitidas mediante comunicación digital durante las condiciones de fallo. La Tabla 8-12 muestra las opciones para la acción de fallo de comunicación digital.

Nota: la acción de fallo de comunicación digital no afecta a los bits de estatus de las alarmas. Por ejemplo, si la acción de fallo de comunicación digital se establece a None, los bits de estatus de las alarmas todavía se establecerán si ocurre una alarma. Vea la Sección 7.7 para obtener más información.

Tabla 8-12 Opciones de acción de fallo de comunicación digital

Opción		
Etiqueta de ProLink II	Etiqueta EDD	Definición
Upscale	Upscale	 Las variables de proceso indican que el valor es mayor que el límite superior del sensor. Los totalizadores se detienen.
Downscale	Downscale	 Las variables de proceso indican que el valor es menor que el límite inferior del sensor. Los totalizadores se detienen.
Zero	IntZero-All 0	 Las variables de caudal toman el valor que representa caudal cero. La densidad es transmitida como cero. La temperatura es transmitida como 0 °C, o el equivalente si se utilizan otras unidades (v.g. 32 °F). Los totalizadores se detienen.

Tabla 8-12 Opciones de acción de fallo de comunicación digital continuación

Opción		
Etiqueta de ProLink II	Etiqueta EDD	Definición
Not-A-Number (NAN)	Not-a-Number	 Las variables de proceso reportan IEEE NAN. La ganancia de la bobina impulsora es transmitida tal como se mide. Los enteros Modbus escalados son transmitidos como Max Int. Los totalizadores se detienen.
Flow to Zero	IntZero-Flow 0	 Las variables de caudal toman el valor que representa caudal cero; Otras variables de proceso son transmitidas tal como se miden. Los totalizadores se detienen.
None (predeterminado)	None	 Las variables de proceso son transmitidas tal como se miden. Los totalizadores se incrementan si están en ejecución.

Para configurar la acción de fallo de comunicación digital:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-9.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Diagnostic (vea la Tabla D-4), Index 18.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador.

Nota: la acción de fallo de comunicación digital es afectada por el timeout predeterminado configurado. Vea la Sección 8.10.8.

8.10.8 Timeout (tiempo de espera) de fallo

Por omisión, el transmisor activa la acción de fallo de comunicación digital tan pronto como se detecte el fallo. El timeout de fallo (timeout del último valor medido) le permite retardar la acción de fallo de comunicación digital por un intervalo especificado, sólo para ciertos fallos. Durante el período de timeout de fallo, la comunicación digital transmite el último valor medido.

Nota: el timeout de fallo aplica sólo a la acción de fallo de comunicación digital. El bit de estatus "alarm active" se establece tan pronto como se detecta el fallo (todos los niveles de prioridad de alarma), y el registro "alarm active" se escribe inmediatamente al historial (sólo alarmas Fault e Informational). Para obtener más información sobre la manipulación de alarmas, vea la Sección 7.7. Para obtener más información sobre la prioridad de alarmas, vea la Sección 8.8.

El timeout de fallo aplica sólo a fallos específicos. Otros fallos se transmiten inmediatamente, independientemente del ajuste de timeout de fallo. Para obtener información sobre cuáles fallos son afectados por el timeout de fallo, vea la Tabla 8-8.

Para configurar el timeout de fallo:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-9.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Diagnostic (vea la Tabla D-4), Index 19.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador.

8.11 Configuración de los ajustes del dispositivo

Los ajustes del dispositivo se usan para describir los componentes del medidor de caudal. La Tabla 8-13 muestra y define los ajustes de dispositivo.

Parámetro	Descripción
Descriptor	Cualquier descripción suministrada por el usuario. No se utiliza en el procesamiento del transmisor, por lo tanto no se requiere. Longitud máxima: 16 caracteres.
Message (mensaje)	Cualquier mensaje suministrado por el usuario. No se utiliza en el procesamiento del transmisor, por lo tanto no se requiere. Longitud máxima: 32 caracteres.
Date (fecha)	Cualquier fecha seleccionada por el usuario. No se utiliza en el procesamiento del transmisor, por lo tanto no se requiere.

Tabla 8-13 Ajustes de dispositivo

Para configurar los ajustes del dispositivo utilizando ProLink II, vea la Figura C-2.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador ni con el protocolo PROFIBUS.

Si usted introduce una fecha, use las flechas izquierda y derecha ubicadas en la parte superior del calendario mostrado en ProLink II para seleccionar el año y el mes, luego haga clic en una fecha.

8.12 Configuración de los valores de las funciones I&M de PROFIBUS

La mayoría de los valores de las funciones I&M se configuran en la fábrica y no pueden ser cambiados por el usuario. Dos valores de funciones I&M pueden ser configurados por el usuario:

- Etiqueta de identificación del dispositivo
- Etiqueta de identificación de la ubicación del dispositivo

Para configurar estos valores:

- Utilizando ProLink II, vea la Figura C-2. Se requiere ProLink II v2.6 ó posterior.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-12. Usted debe conectarse como Specialist para usar el menú I&M Functions.
- Utilizando los parámetros de bus PROFIBUS, vea la Tabla D-9.

Nota: estos valores no pueden ser configurados mediante los menús del indicador.

8.13 Configuración de los parámetros del sensor

Los parámetros del sensor se usan para describir el sensor del medidor de caudal. Un parámetro del sensor (tubo curvado o recto) debe establecerse durante la caracterización (vea la Sección 6.2). Los parámetros del sensor restantes no se usan en el procesamiento del transmisor, y no se requieren:

- Número de serie
- Material del sensor
- Material del revestimiento
- Brida

Configuración opcional

Para configurar los parámetros del sensor:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-10.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Device Information (vea la Tabla D-5), Index 7–Index 12.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador.

8.14 Configuración de la aplicación para mediciones en la industria petrolera

Los *parámetros API* determinan los valores que se utilizarán en los cálculos relacionados con API. Los parámetros API están disponibles sólo si la aplicación para mediciones en la industria petrolera está habilitada en su transmisor.

Nota: la aplicación para mediciones en la industria petrolera requiere unidades de medición de volumen de líquido. Si usted piensa usar las variables de proceso API, asegúrese de que se especifique la medición de caudal volumétrico de líquido. Vea la Sección 8.2.

8.14.1 Acerca de la aplicación para mediciones en la industria petrolera

Algunas aplicaciones que miden caudal volumétrico de líquidos o densidad de líquidos son muy sensibles a los factores de temperatura, y deben cumplir con las normas del American Petroleum Institute (API) para mediciones. La aplicación para mediciones en la industria petrolera permite la *Corrección por efectos de temperatura en el volumen de líquidos*, o CTL.

Términos y definiciones

Los siguientes términos y definiciones son relevantes a la aplicación de mediciones en la industria petrolera:

- API Instituto Americano del Petróleo
- *CTL* Corrección por efectos de temperatura en el volumen de líquidos. El valor CTL se utiliza para calcular el valor VCF
- *TEC* Coeficiente de expansión térmica
- *VCF* Factor de corrección del volumen. El factor de corrección que se aplicará a las variables del proceso que dependen del volumen. El VCF se puede calcular después de derivar la CTL

Métodos de derivación de la CTL

Hay dos métodos de derivación para la CTL:

- El Método 1 se basa en la densidad observada y en la temperatura observada.
- El Método 2 se basa en una densidad de referencia suministrada por el usuario (o coeficiente de expansión térmica, en algunos casos) y en la temperatura observada.

Tablas de referencia API

Las tablas de referencia están organizadas por temperatura de referencia, método de derivación de la CTL, tipo de líquido y unidades de densidad. La tabla seleccionada aquí controla todas las opciones restantes.

- Temperatura de referencia:
 - Si usted especifica una tabla 5x, 6x, 23x ó 24x, la temperatura de referencia predeterminada es 60 °F, y no se puede cambiar.
 - Si usted especifica una tabla $53x \circ 54x$, la temperatura de referencia predeterminada es 15 °C. Sin embargo, usted puede cambiarla, como se recomienda en algunas ubicaciones (por ejemplo, a 14,0 \circ 14,5 °C).
- Método de derivación de la CTL:
 - Si usted especifica una tabla con número impar (5, 23 ó 53), se derivará la CTL utilizando el método 1 descrito anteriormente.
 - Si usted especifica una tabla con número par (6, 24 ó 54), se derivará la CTL utilizando el método 2 descrito anteriormente.
- Las letras *A*, *B*, *C* o *D* que se utilizan para terminar los nombres de tablas definen el tipo líquido para el cual se diseñó la tabla:
 - Las tablas *A* se utilizan con aplicaciones de crudo y JP4.
 - Las tablas *B* se utilizan con productos generalizados.
 - Las tablas *C* se utilizan con líquidos que tengan una densidad base constante o un coeficiente de expansión térmica conocido.
 - Las tablas *D* se utilizan con aceites lubricantes.
- Tablas diferentes utilizan diferentes unidades de densidad:
 - Grados API
 - Densidad relativa (SG)
 - Densidad base (kg/m³)

La Tabla 8-14 resume estas opciones.

	Método de		Unidad de densidad y rango		
Tabla	de la CTL	Temperatura base	Grados API	Densidad base	Densidad relativa
5A	Método 1	60 °F, no configurable	0 a +100		
5B	Método 1	60 °F, no configurable	0 a +85		
5D	Método 1	60 °F, no configurable	–10 a +40		
23A	Método 1	60 °F, no configurable			0,6110 a 1,0760
23B	Método 1	60 °F, no configurable			0,6535 a 1,0760
23D	Método 1	60 °F, no configurable			0,8520 a 1,1640
53A	Método 1	15 °C, configurable		610 a 1075 kg/m³	
53B	Método 1	15 °C, configurable		653 a 1075 kg/m³	
53D	Método 1	15 °C, configurable		825 a 1164 kg/m³	
			Temperatura	de referencia	Soporta
6C	Método 2	60 °F, no configurable	60 °F		Grados API
24C	Método 2	60 °F, no configurable	60 °F		Densidad relativa
54C	Método 2	15 °C, configurable	15 °C		Densidad base en kg/m ³

Tabla 8-14 Tablas de temperatura de referencia API

8.14.2 Procedimiento de configuración

Los parámetros de configuración API se muestran y se definen en la Tabla 8-15.

Tabla 8-15 parámetros API

Variable	Descripción
Table type	Especifica la tabla que se utilizará para la unidad de temperatura de referencia y densidad de referencia. Seleccione la tabla que se ajuste a sus requerimientos. Vea las <i>Tablas de referencia API</i> .
User defined TEC ⁽¹⁾	Coeficiente de expansión térmica. Introduzca el valor que se utilizará en el cálculo de la CTL.
Temperature units ⁽²⁾	Sólo lectura. Despliega la unidad utilizada para temperatura de referencia en la tabla de referencia.
Density units	Sólo lectura. Despliega la unidad utilizada para la densidad de referencia en la tabla de referencia.
Reference temperature	 Sólo lectura, a menos que el tipo de tabla sea 53x ó 54x. Si es configurable: Especifique la temperatura de referencia que se utilizará en el cálculo de la CTL. Introduzca la temperatura de referencia en °C.

(1) Configurable si el tipo de tabla es 6C, 24C ó 54C.

(2) En la mayoría de los casos, la unidad de temperatura utilizada en la tabla de referencia API también debe ser la unidad de temperatura configurada para que el transmisor utilice en el procesamiento general. Para configurar la unidad de temperatura, vea la Sección 6.3.4.

Para configurar la aplicación para mediciones en la industria petrolera:

- Utilizando ProLink II, vea la Figura C-3.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-11.
- Utilizando los parámetros de bus PROFIBUS, use el bloque API (vea la Tabla D-7), Index 13–Index 15.

Nota: esta funcionalidad no se puede configurar mediante los menús del indicador.

Para el valor de temperatura que se va a usar en el cálculo de la CTL, usted puede usar los datos de temperatura del sensor, o puede configurar compensación de temperatura externa para usar un valor de temperatura estático o datos de temperatura de un dispositivo de temperatura externa.

- Para utilizar los datos de temperatura del sensor, no se requiere acción alguna.
- Para configurar la compensación de temperatura externa, vea la Sección 9.3.

8.15 Configuración de la aplicación de densidad mejorada

Los sensores de Micro Motion proporcionan mediciones directas de densidad, pero no de concentración. La aplicación de densidad mejorada calcula variables de proceso de densidad mejorada, tales como concentración o densidad a temperatura de referencia, a partir de los datos de proceso de densidad, corregidos adecuadamente para temperatura.

Nota: para obtener una descripción detallada de la aplicación de densidad mejorada, vea el manual titulado Aplicación de densidad mejorada de Micro Motion: teoría, configuración y uso.

Nota: la aplicación de densidad mejorada requiere unidades de medición de volumen de líquido. Si usted piensa usar las variables de proceso de densidad mejorada, asegúrese de que se especifique la medición de caudal volumétrico de líquido. Vea la Sección 8.2.

8.15.1 Acerca de la aplicación de densidad mejorada

El cálculo de densidad mejorada requiere una curva de densidad mejorada, que especifica la relación entre la temperatura, la concentración y la densidad para el fluido de proceso que se va a medir. Micro Motion suministra un conjunto de seis curvas estándar de densidad mejorada (vea la Tabla 8-16). Si ninguna de estas curvas es adecuada para su fluido de proceso, usted puede configurar una curva personalizada o puede comprar una curva personalizada en Micro Motion.

La variable derivada, especificada durante la configuración, controla el tipo de medición de concentración que se producirá. Cada variable derivada permite el cálculo de un subconjunto de variables de proceso de densidad mejorada (vea la Tabla 8-17). Las variables de proceso de densidad mejorada disponibles se pueden utilizar en el control de procesos, en la misma forma en que se utiliza el caudal másico, el caudal volumétrico y otras variables de proceso. Por ejemplo, se puede definir un evento con relación a una variable de proceso de densidad mejorada.

- Para todas las curvas estándar, la variable derivada es Mass Conc (Dens).
- Para las curvas personalizadas, la variable derivada puede ser cualquiera de las variables que se muestran en la Tabla 8-17.

El transmisor puede mantener hasta seis curvas en cualquier momento, pero sólo una curva puede estar activa (usada para medición) a la vez. Todas las curvas que están en la memoria del transmisor deben usar la misma variable derivada.

Tabla 8-16 Curvas estándar y unidades de medición asociadas

Nombre	Descripción	Unidad de densidad	Unidad de temperatura
Deg Balling	La curva representa el extracto porcentual, por masa, en solución, de acuerdo a °Balling. Por ejemplo, si un mosto es 10 °Balling y el extracto en la solución es 100% de sacarosa, el extracto es 10% de la masa total.	g/cm ³	°F
Deg Brix	La curva representa una escala de hidrómetro para soluciones de sacarosa que indica el porcentaje por masa de sacarosa en la solución a una temperatura dada. Por ejemplo, 40 kg de sacarosa mezclada con 60 kg de agua produce una solución de 40 °Brix.	g/cm ³	°C
Deg Plato	La curva representa el extracto porcentual, por masa, en solución, de acuerdo a °Plato. Por ejemplo, si un mosto es 10 °Plato y el extracto en la solución es 100% de sacarosa, el extracto es 10% de la masa total.	g/cm³	°F
HFCS 42	La curva representa una escala de hidrómetro para soluciones de HFCS 42 (jarabe de maíz de alta fructosa) que indica el porcentaje por masa de HFCS en la solución.	g/cm ³	°C
HFCS 55	La curva representa una escala de hidrómetro para soluciones de HFCS 55 (jarabe de maíz de alta fructosa) que indica el porcentaje por masa de HFCS en la solución.	g/cm ³	°C
HFCS 90	La curva representa una escala de hidrómetro para soluciones de HFCS 90 (jarabe de maíz de alta fructosa) que indica el porcentaje por masa de HFCS en la solución.	g/cm ³	°C

Tabla 8-17 Variables derivadas y variables de proceso disponibles

	Variables de proceso disponibles					
Variable derivada – etiqueta de ProLink II y definición	Densidad a temperatura de referencia	Caudal volumétrico estándar	Gravedad específica	Concentración	Caudal másico neto	Caudal volumétrico neto
Density @ Ref Densidad a temperatura de referencia Masa/unidad de volumen, corregida a una temperatura de referencia dada	✓	<i>s</i>				
SG Gravedad específica La relación de la densidad de un fluido de proceso a una temperatura dada con respecto a la densidad del agua a una temperatura dada. Las dos condiciones de temperatura dada no necesitan ser la misma.	1	/	1			
Mass Conc (Dens) Concentración de masa derivada de la densidad de referencia La masa porcentual de soluto o de material en suspensión en la solución total, derivada de la densidad de referencia	<i>✓</i>	✓		 Image: A start of the start of	1	
Mass Conc (SG) Concentración de masa derivada de la gravedad específica La masa porcentual de soluto o de material en suspensión en la solución total, derivada de la gravedad específica	/	<i>✓</i>	1		J	

Tabla 8-17 Variables derivadas y variables de proceso disponibles continuación

	valiables de proceso disponibles					
Variable derivada – etiqueta de ProLink II y definición	Densidad a temperatura de referencia	Caudal volumétrico estándar	Gravedad específica	Concentración	Caudal másico neto	Caudal volumétrico neto
Volume Conc (Dens) Concentración de volumen derivado de la densidad de referencia El volumen porcentual de soluto o de material en suspensión en la solución total, derivado de la densidad de referencia	1	1		1		4
Volume Conc (SG) Concentración de volumen derivado de la gravedad específica El volumen porcentual de soluto o de material en suspensión en la solución total, derivado de la gravedad específica	/	/	✓	/		1
Conc (Dens) <i>Concentración derivada de la densidad de referencia</i> La masa, volumen, peso o número de moles de soluto o de material en suspensión en proporción a la solución total, derivados de la densidad de referencia	1	/		1		
Conc (SG) <i>Concentración derivada de la gravedad</i> <i>específica</i> La masa, volumen, peso o número de moles de soluto o de material en suspensión en proporción a la solución total, derivados de la gravedad específica	1	1	1	1		

Variables de proceso disponibles

8.15.2 Procedimiento de configuración

Las instrucciones completas de configuración para la aplicación de densidad mejorada se proporcionan en el manual titulado *Aplicación de densidad mejorada de Micro Motion: teoría, configuración y uso.*

Nota: el manual de densidad mejorada usa ProLink II como la herramienta de configuración estándar para la aplicación de densidad mejorada. Debido a que la estructura de menús definida en la EDD es muy similar a los menús de ProLink II, usted puede seguir las instrucciones para ProLink II y adaptarlas a su host.

El procedimiento de configuración típico simplemente configura la aplicación de densidad mejorada para que use una curva estándar. Se requieren los siguientes pasos:

- 1. Configure la unidad de medición de densidad del transmisor para que coincida con la unidad usada por la curva (como se muestra en la Tabla 8-16).
- 2. Configure la unidad de medición de temperatura del transmisor para que coincida con la unidad usada por la curva (como se muestra en la Tabla 8-16).
- 3. Establezca la variable derivada a Mass Conc (Dens).
- 4. Especifique la curva activa.

Configuración opcional

Configuración opcional

Para realizar estos pasos:

- Con ProLink II, vea las figuras C-2 y C-3.
- Con un host PROFIBUS y la EDD, vea las Figuras C-8 y C-11. •
- Con los parámetros de bus PROFIBUS, use el bloque Measurement y el bloque Enhanced • Density (vea las tablas D-2 y D-8).

Configuración opcional

Valores predeterminados

Capítulo 9 Compensación de presión y compensación de temperatura externa

9.1 Generalidades

Este capítulo describe los siguientes procedimientos:

- Configuración de la compensación de presión vea la Sección 9.2
- Configuración de la compensación de temperatura externa vea la Sección 9.3
- Obtención de datos de temperatura o presión externas vea la Sección 9.4

Nota: en todos los procedimientos que se proporcionan en este capítulo se asume que usted ha establecido comunicación con el transmisor modelo 2400S DP y que cumple con todos los requerimientos de seguridad aplicables.

Nota: si usted utiliza Pocket ProLink, la interfaz es similar a la interfaz de ProLink II que se describe en este capítulo.

9.2 Compensación de presión

El transmisor modelo 2400S DP puede compensar el efecto de la presión sobre los tubos de caudal del sensor. *El efecto de la presión* se define como el cambio en la sensibilidad de caudal y densidad del sensor debido al cambio en la presión del proceso con respecto a la presión de calibración.

Nota: la compensación de presión es un procedimiento opcional. Realice este procedimiento sólo si lo requiere su aplicación.

9.2.1 Opciones

Existen dos maneras de implementar la compensación de presión:

- Usted puede usar un módulo de salida para obtener los datos de presión del sistema. Vea la Sección 9.4.
- Si la presión de operación es un valor estático conocido, usted puede configurar ese valor en el transmisor.

Nota: asegúrese de que su valor de presión sea exacto, o que su dispositivo de medición de presión sea preciso y fiable.

9.2.2 Factores de corrección de presión

Cuando se configura la compensación de presión, usted debe proporcionar la presión de calibración de caudal – la presión a la cual fue calibrado el medidor de caudal (por lo tanto, este valor define la presión a la cual no se afectará el factor de calibración). Consulte el documento de calibración enviado con su sensor. Si los datos no están disponibles, introduzca **20 PSI**.

Se pueden configurar dos factores de presión adicionales: uno para caudal y uno para densidad. Estos se definen como se indica a continuación:

- Factor de caudal el cambio porcentual en el caudal por psi
- Factor de densidad el cambio en la densidad del fluido, en g/cm³/psi

No todos los sensores o aplicaciones requieren factores de corrección de presión. Para los valores de corrección de presión que se usarán, obtenga los valores de efecto de presión en la hoja de datos del producto correspondiente a su sensor, luego invierta los signos (v.g., si el factor de caudal es 0,000004 % por PSI, introduzca un factor de caudal para corrección de presión de -0,000004 % por PSI).

9.2.3 Configuración

Para habilitar y configurar la compensación de presión:

- Con ProLink II, vea la Figura 9-1.
- Con un host PROFIBUS con la EDD, vea la Figura 9-2.
- Con los parámetros de bus PROFIBUS, vea la Figura 9-3.

Figura 9-1 Compensación de presión – ProLink II

 Se debe configurar la unidad de medición de presión de manera que coincida con la unidad de presión usada por el dispositivo externo o el valor de presión estática. Vea la Sección 6.3.
 Vea la Sección 9.4.

Figura 9-3 Compensación de presión – Parámetros de bus PROFIBUS

9.3 Compensación de temperatura externa

Se puede usar compensación de temperatura externa con la aplicación de medición de petróleo o con la aplicación de densidad mejorada:

- Si la compensación de temperatura externa está habilitada, se usa un valor de temperatura externa (o un valor de temperatura estática), en lugar del valor de temperatura del sensor, sólo en cálculos para medición en la industria petrolera o de densidad mejorada. El valor de temperatura del sensor se usa para todos los demás cálculos.
- Si la compensación de temperatura externa está inhabilitada, se usa el valor de temperatura del sensor para todos los cálculos.

Existen dos maneras de implementar la compensación de temperatura externa:

- Usted puede usar un módulo de salida para obtener los datos de temperatura del sistema. Vea la Sección 9.4.
- Si la temperatura de operación es un valor estático conocido, usted puede configurar ese valor en el transmisor.

Nota: asegúrese de que su valor de temperatura sea exacto, o que su dispositivo de medición de temperatura sea preciso y fiable.

Para habilitar y configurar la compensación de temperatura externa:

- Con ProLink II, vea la Figura 9-4.
- Con un host PROFIBUS con la EDD, vea la Figura 9-5.
- Con los parámetros de bus PROFIBUS, vea la Figura 9-3.

Compensación de presión y compensación de temperatura externa

Figura 9-4 Compensación de temperatura externa – ProLink II

Figura 9-5 Compensación de temperatura externa – Host PROFIBUS con la EDD

Figura 9-6 Compensación de temperatura externa – Parámetros de bus PROFIBUS

- (1) Vea las tablas D-3 y D-2 para obtener más información acerca de los parámetros de bus.
- (2) Se debe configurar la unidad de medición de temperatura de manera que coincida con la unidad de temperatura usada por el dispositivo externo o el valor de temperatura estática. Vea la Sección 6.3.
- (3) Vea la Sección 9.4.

9.4 Obtención de datos de temperatura y presión externas

Los módulos de salida usados para obtener los datos de presión y/o temperatura externa se muestran en la Tabla 9-1. Use métodos estándar para implementar la conexión requerida.

Tabla 9-1 Módulos de salida usados para compensación de presión o temperatura

Número de módulo	Nombre de módulo	Tamaño
34	Presión externa	4 bytes
35	Temperatura externa	4 bytes

Valores predeterminados

Capítulo 10 Prestaciones de medición

10.1 Generalidades

Este capítulo describe los siguientes procedimientos:

- Verificación del medidor vea la Sección 10.3
- Validación del medidor y ajuste de los factores del medidor vea la Sección 10.4
- Calibración del ajuste del cero vea la Sección 10.5
- Calibración de densidad vea la Sección 10.6
- Calibración de temperatura vea la Sección 10.7

Nota: en todos los procedimientos que se proporcionan en este capítulo se asume que usted ha establecido comunicación con el transmisor modelo 2400S DP y que cumple con todos los requerimientos de seguridad aplicables.

Nota: si usted utiliza Pocket ProLink, la interfaz es similar a la interfaz de ProLink II que se describe en este capítulo.

10.2 Validación del medidor, verificación del medidor y calibración

El transmisor modelo 2400S soporta los siguientes procedimientos para la evaluación y ajuste de las prestaciones de medición:

- *Verificación del medidor* establece la confianza en las prestaciones del sensor mediante el análisis de variables secundarias asociadas con el caudal y la densidad
- *Validación del medidor* confirma las prestaciones mediante la comparación de las mediciones del sensor con respecto a un patrón primario
- *Calibración* establece la relación entre la variable de proceso (caudal, densidad o temperatura) y la señal producida por el sensor

La calibración y la validación del medidor están disponibles en todos los transmisores modelo 2400S DP. La verificación del medidor está disponible sólo si se pidió la opción de verificación del medidor con el transmisor.

Estos tres procedimientos se describen y se comparan en las secciones 10.2.1 a la 10.2.4. Antes de realizar cualquiera de estos procedimientos, revise estas secciones para garantizar que esté realizando el procedimiento adecuado a sus propósitos.

10.2.1 Verificación del medidor

La verificación del medidor evalúa la integridad estructural de los tubos del sensor comparando la rigidez actual de los tubos con respecto a la rigidez medida en la fábrica. La rigidez se define como la carga por unidad de deflexión, o como la fuerza divida entre el desplazamiento. Debido a que un cambio en la integridad estructural cambia la respuesta del sensor a la masa y a la densidad, este valor se puede usar como un indicador de prestaciones de medición. Los cambios en la rigidez de los tubos son ocasionados generalmente por erosión, corrosión o daño a los tubos.

Micro Motion recomienda realizar la verificación del medidor a intervalos regulares.

Existen dos versiones de la aplicación de verificación del medidor: la versión original y la verificación inteligente del medidor (Smart Meter Verification) de Micro Motion. La Tabla 10-1 muestra los requerimientos para la versión original y la verificación inteligente del medidor. La Tabla 10-2 proporciona una comparación de las dos versiones.

Nota: si usted tiene instalada una versión anterior de ProLink II o de la EDD, no podrá tener acceso a las características adicionales de la verificación inteligente del medidor. Si tiene instalada una versión actualizada de ProLink II o de la EDD con la versión original de la verificación del medidor, los procedimientos de verificación del medidor serán un poco diferentes que los que se muestran aquí.

Tabla 10-1 Requerimientos de versión para la aplicación de verificación del medidor

Tipo de requerimiento	Versión original	Verificación inteligente del medidor	
Transmisor	v1.0	v1.4	
Requerimientos de ProLink II	v2.5	v2.9	
Requerimientos de la EDD	Carpeta 2400SDP_pdmrev1_00	Carpeta 2400SDP_pdmrev1_40	

Aplicación de verificación del medidor

Aplicación de verificación del medidor

Tabla 10-2 Comparison of meter verification features and functions: original version vs. Smart Meter Verification Verification

	· · · · · · · · · · · · · · · · · · ·				
Característica o función	Versión original	Verificación inteligente del medidor			
Interrupción del proceso	No es necesario detener el caudal	No es necesario detener el caudal			
Interrupción de la medición	Tres minutos. Las salidas toman los siguientes valores: • Último valor medido • Valor de fallo configurado	 Opción del usuario: Continuar con la medición. No se interrumpe la medición. La prueba tarda aproximadamente 90 segundos. Ultimo valor medido. Las salidas quedan fijas y la medición se interrumpe durante aproximadamente 140 segundos. Valor de fallo configurado. Las salidas quedan fijas y la medición se interrumpe durante aproximadamente 140 segundos. 			
Almacenamiento de resultados	Se guardan los resultados sólo de pruebas ejecutadas con ProLink II, y se guardan en el PC	Se almacenan en el transmisor los veinte resultados más recientes, independientemente de la herramienta utilizada para ejecutar el procedimiento. Para las pruebas ejecutadas con ProLink II, se almacenan datos adicionales en el PC.			
Datos de resultados en el indicador	Pasa/fallo/cancelar para la prueba actual	Para todos los resultados almacenados en el transmisor: • Pasa/fallo/cancelar • Código de cancelación (si es relevante) • Rigidez de los pickoffs derecho e izquierdo			

Tabla 10-2 Comparison of meter verification features and functions: original version vs. Smart Meter Verification continuación

Característica o función	Versión original	Verificación inteligente del medidor
Datos de resultados con la EDD	Pasa/precaución/cancelar para la prueba actual	Para todos los resultados almacenados en el transmisor: • Pasa/precaución/cancelar • Código de cancelación (si es relevante) • Rigidez de los pickoffs derecho e izquierdo • Tabla de comparación para los resultados almacenados • Gráfica de comparación para los resultados almacenados
Datos de resultados con ProLink II	Para todos los resultados almacenados en el PC: • Pasa/fallo/cancelar • Código de cancelación (si es relevante) • Rigidez de los pickoffs derecho e izquierdo • Metadatos de ejecución de la prueba • Gráficas de comparación • Informes de prueba • Exportación de datos y capacidades de manipulación	Para todos los resultados almacenados en el transmisor: • Pasa/fallo/cancelar • Código de cancelación (si es relevante) • Rigidez de los pickoffs derecho e izquierdo • Metadatos de ejecución de la prueba • Gráficas de comparación • Informes de prueba • Exportación de datos y capacidades de manipulación
Métodos de puesta en marcha	Manual	Manual Programador Evento

Aplicación de verificación del medidor

10.2.2 Validación del medidor y factores del medidor

La validación del medidor compara un valor de medición reportado por el transmisor con un patrón de medición externo. La validación del medidor requiere un punto de datos.

Nota: para que la validación del medidor sea útil, el patrón de medición externo debe ser más preciso que el sensor. Vea la hoja de datos del sensor para conocer su especificación de precisión.

Si la medición de caudal másico, caudal volumétrico o densidad del transmisor es considerablemente diferente con respecto al patrón de medición externo, tal vez quiera ajustar el factor de medidor correspondiente. Un factor de medidor es el valor por el cual el transmisor multiplica el valor de la variable de proceso. Los factores del medidor predeterminados son **1**,**0**, con lo que no hay diferencia entre los datos obtenidos del sensor y los datos reportados externamente.

Los factores del medidor se utilizan generalmente para comparar el medidor de caudal respecto a un patrón de Pesos y Medidas. Es posible que usted necesite calcular y ajustar los factores del medidor periódicamente para cumplir con las regulaciones.

10.2.3 Calibración

El medidor de caudal mide variables de proceso de acuerdo a puntos de referencia fijos. La calibración ajusta esos puntos de referencia. Se pueden realizar tres tipos de calibración:

- Cero, o sin caudal
- Calibración de densidad
- Calibración de temperatura

La calibración de densidad y la calibración de temperatura requieren dos puntos de datos (bajo y alto) y una medición externa para cada uno. La calibración del ajuste del cero requiere un punto de datos. La calibración produce un cambio en el offset y/o en la pendiente de la línea que representa la relación entre el valor real del proceso y el valor transmitido.

Prestaciones de medición

Nota: para que la calibración de densidad o de temperatura sea útil, las mediciones externas deben ser exactas.

Los medidores de caudal de Micro Motion con el transmisor modelo 2400S son calibrados en la fábrica, y normalmente no necesitan calibrarse en campo. Calibre el medidor de caudal sólo si debe hacerlo para cumplir con requerimientos regulatorios. Contacte con Micro Motion antes de calibrar su medidor de caudal.

Nota: Micro Motion recomienda usar la validación del medidor y los factores de medidor, en lugar de la calibración, para comparar el medidor con respecto a un patrón regulatorio o para corregir algún error de medición.

10.2.4 Comparación y recomendaciones

Cuando escoja entre verificación, validación de medidor y calibración, considere los siguientes factores:

- Interrupción del proceso y de la medición
 - La verificación inteligente del medidor proporciona una opción que permite continuar la medición del proceso durante la prueba.
 - La versión original de la verificación del medidor requiere aproximadamente tres minutos para ejecutarse. Durante estos tres minutos, el caudal puede continuar (siempre y cuando se mantenga una suficiente estabilidad); sin embargo, la medición se detiene.
 - La validación del medidor para densidad no interrumpe el proceso ni su medición. Sin embargo, la validación del medidor para caudal másico o caudal volumétrico requiere que se pare el proceso el tiempo que dura la prueba.
 - La calibración requiere que se pare el proceso. Además, la calibración de densidad y de temperatura requiere que se reemplace el fluido de proceso con fluidos de baja densidad y de alta densidad, o fluidos de baja temperatura y alta temperatura. La calibración del cero requiere que se detenga el caudal a través del sensor.
- Requerimientos de medición externa
 - Ninguna versión de verificación del medidor requiere mediciones externas.
 - La calibración del cero no requiere mediciones externas.
 - La calibración de densidad, calibración de temperatura y validación del medidor requieren mediciones externas. Para obtener buenos resultados, las mediciones externas deben ser muy precisas.
- Ajuste de la medición
 - La verificación del medidor es un indicador de la condición del sensor, pero no cambia la medición interna del medidor de caudal en ninguna forma.
 - La validación del medidor no cambia la medición interna del medidor de caudal en ninguna forma. Si usted decide ajustar un factor de medidor como resultado del procedimiento de validación del medidor, sólo la medición reportada cambia – la medición básica no cambia. Usted puede revertir el cambio regresando el factor del medidor a su valor anterior.
 - La calibración cambia la interpretación de datos del proceso del transmisor, y de acuerdo a eso, cambia la medición básica. Si usted realiza una calibración del cero, puede regresar al ajuste de cero de fábrica (o, si utiliza ProLink II, al ajuste de cero anterior). Sin embargo, si usted realiza una calibración de densidad o una calibración de temperatura, no puede regresar a los factores de calibración anteriores a menos que los haya registrado manualmente.

Micro Motion recomienda que usted compre la opción de verificación de medidor y realice una verificación de ese medidor frecuentemente.

Valores predeterminados

10.3 Realizar una verificación del medidor

10.3.1 Preparación para la prueba de verificación del medidor

Fluido del proceso y condiciones del proceso

La prueba de verificación del medidor se puede realizar en cualquier fluido de proceso. No es necesario hacer coincidir las condiciones de fábrica.

Durante la prueba, las condiciones del proceso deben ser estables. Para maximizar la estabilidad:

- Mantenga una temperatura y una presión constantes.
- Evite cambios en la composición del fluido (v.g., caudal en dos fases, asentamiento, etc.).
- Mantenga un caudal constante. Para tener una mayor certeza de la prueba, reduzca o detenga el caudal.

Si la estabilidad varía fuera de los límites de prueba, la prueba se cancelará. Verifique la estabilidad del proceso y repita la prueba.

Configuración del transmisor

La verificación del medidor no es afectada por ninguno de los parámetros configurados para caudal, densidad o temperatura. No es necesario cambiar la configuración del transmisor.

Lazos de control y medición del proceso

Si se configurarán las salidas del transmisor a Last Measured Value (Último valor medido) o Fault (Fallo) durante la prueba, las salidas quedarán fijas durante dos minutos (verificación inteligente del medidor) o tres minutos (versión original). Inhabilite todos los lazos de control durante el tiempo que dure la prueba, y asegúrese de que cualquier dato transmitido durante este período sea manipulado adecuadamente.

Límite de incertidumbre de especificación

El límite de incertidumbre de especificación define el grado aceptable de variación a partir de resultados de la fábrica, en términos de porcentaje. La variación que se encuentre dentro del límite se reporta como Pass (pasa). La variación que esté fuera del límite se reporta como Fail (fallo) o Caution (precaución).

- En la verificación inteligente del medidor, el límite de incertidumbre de especificación se establece en la fábrica y no se puede configurar.
- En la versión original de verificación del medidor, el límite de incertidumbre de especificación es configurable. Sin embargo, Micro Motion recomienda utilizar el valor predeterminado. Contacte con el servicio al cliente de Micro Motion antes de cambiar el límite de incertidumbre de especificación.

10.3.2 Ejecutar la prueba de verificación del medidor, versión original

Para realizar la verificación del medidor:

- Utilizando ProLink II, siga el procedimiento ilustrado en la Figura 10-1.
- Utilizando el menú del indicador, siga el procedimiento ilustrado en Figura 10-2. Vea una ilustración completa del menú del indicador para verificación del medidor en la Figura C-17.
- Utilizando un host PROFIBUS con la EDD, consulte la Figura C-7 y siga el procedimiento ilustrado en la Figura 10-4.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Diagnostic (vea la Tabla D-4) y siga el procedimiento ilustrado en la Figura 10-4.

Nota: si usted comienza una prueba de verificación del medidor en forma remota, el indicador del transmisor muestra el siguiente mensaje

SENSOR VERFY/x%

Figura 10-1 Procedimiento de verificación del medidor – ProLink II

(2) Los resultados de la prueba de verificación del medidor no se guardan hasta que se hace clic en Finish.

Figura 10-2 Procedimiento de verificación del medidor – Menú del indicador

Número de paso	Descripción del paso	Interfaz ⁽¹⁾
1	Establecer el estado de la salida	Bloque Diagnostic (Slot 3) Index 54
2	Establecer el límite de incertidumbre	Bloque Diagnostic (Slot 3) Index 55
3	Iniciar/cancelar el procedimiento	Bloque Diagnostic (Slot 3) Index 53
4	Revisar el estado actual del algoritmo	Bloque Diagnostic (Slot 3) Index 56
5	Leer el porcentaje de terminación	Bloque Diagnostic (Slot 3) Index 61
6	Revisar el estado de cancelación del algoritmo	Bloque Diagnostic (Slot 3) Index 58
7	Revisar la rigidez de entrada	Bloque Diagnostic (Slot 3) Index 59
8	Revisar la rigidez de salida	Bloque Diagnostic (Slot 3) Index 60
9	Leer el código de cancelación	Bloque Diagnostic (Slot 3) Index 57

Tabla 10-3 Interfaz de parámetros de bus PROFIBUS para verificación del medidor

(1) Para obtener información detallada, vea la Tabla D-4.

10.3.3 Realizar una verificación inteligente del medidor

Para ejecutar una prueba de verificación inteligente del medidor:

- Usando ProLink II, vea la Figura 10-5.
- Usando el indicador, vea las Figuras 10-6 y 10-7.
- Usando un host PROFIBUS con la EDD, consulte la Figura C-7 y siga el procedimiento ilustrado en la Figura 10-8.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Diagnostic (vea la Tabla D-4) y siga el procedimiento ilustrado en la Figura 10-9.

Nota: si usted inicia una prueba de verificación inteligente del medidor utilizando ProLink II, la EDD o los parámetros de bus PROFIBUS, y si las salidas están configuradas a Last Measured Value (Último valor medido) o Fault (Fallo), el indicador del transmisor muestra el siguiente mensaje:

Transmisores modelo 2400S de Micro Motion® para PROFIBUS-DP

Figura 10-5 Prueba de verificación inteligente del medidor – ProLink II

Figura 10-6 Menú de nivel superior para la verificación inteligente del medidor - Indicador

Prestaciones de medición

Figura 10-8 Prueba de verificación inteligente del medidor – EDD

Tabla 10-4 PROFIBUS bus parameters test interface for Smart Meter Verification

Número de paso	Descripción de paso	Interfaz ⁽¹⁾
1	Establecer el estado de la salida	Bloque Diagnostic (Slot 3)
	 A Fault (Fallo) o Last Measured Value (Último valor medido) 	Index 54
	 A Continue Measurement (Continuar con la medición) 	Index 53

Número de paso	Descripción de paso	Interfaz ⁽¹⁾
2	Iniciar/cancelar la prueba	Bloque Diagnostic (Slot 3)
	 Fault (Fallo) o Last Measured Value (Último valor medido) 	Index 53
	 Continue Measurement (Continuar con la medición) 	No aplicable (prueba iniciada por el paso anterior)
3	Revisar el estado actual del algoritmo	Bloque Diagnostic (Slot 3) Index 56
4	Leer el porcentaje de terminación	Bloque Diagnostic (Slot 3) Index 61
5	Revisar el estado de cancelación del algoritmo	Bloque Diagnostic (Slot 3) Index 58
6	Revisar la rigidez de entrada	Bloque Diagnostic (Slot 3) Index 59
7	Revisar la rigidez de salida	Bloque Diagnostic (Slot 3) Index 60
8	Leer el código de cancelación	Bloque Diagnostic (Slot 3) Index 57

Tabla 10-4 PROFIBUS bus parameters test interface for Smart Meter Verification continuación

(1) Para obtener más información, vea la Tabla D-4.

10.3.4 Lectura e interpretación de los resultados de la prueba de verificación del medidor

Pasa/fallo/cancelar

Cuando se completa la prueba de verificación del medidor, el resultado será reportado como Pass (pasa), Fail (fallo) o Caution (precaución) (dependiendo de la herramienta que esté utilizando), o Abort (cancelar):

- Pass (pasa) El resultado de la prueba está dentro del límite de incertidumbre de especificación. En otras palabras, la rigidez de los pickoffs izquierdo y derecho concuerda con los valores de fábrica más o menos el límite de incertidumbre de especificación. Si el ajuste del cero y la configuración del transmisor coinciden con los valores de fábrica, el sensor cumplirá con las especificaciones de fábrica para la medición de caudal y densidad. Se espera que los medidores pasen la verificación cada vez que se ejecute la prueba.
- *Fail/Caution* (fallo/precaución) El resultado de la prueba no está dentro del límite de incertidumbre de especificación. Micro Motion recomienda que usted repita inmediatamente la prueba de verificación del medidor. Si estaba utilizando la verificación inteligente del medidor, con las salidas configuradas a Continue Measurement (continuar con la medición), cambie la configuración a Last Measured Value (último valor medido) o Fault (fallo).
 - Si el medidor pasa la segunda prueba, se puede ignorar el primer resultado Fail/Caution (fallo/precaución).
 - Si el medidor no pasa la segunda prueba, es posible que los tubos de caudal estén dañados. Use su conocimiento de procesos para determinar las posibilidades de que ocurran daños y qué acciones se deben tomar. Estas acciones podrían incluir la extracción del medidor del servicio y revisar físicamente los tubos. Como mínimo, usted debe realizar una validación de caudal y una calibración de densidad.
- *Abort* (cancelar) Ocurrió un problema con la prueba de verificación del medidor (v.g., inestabilidad del proceso). Los códigos de cancelación se muestran y se definen en la Tabla 10-5, y se proporcionan acciones recomendadas para cada código.

Código de	Descripción	Acción sugerida
1	Cancelación iniciada por el usuario	No se requiere ninguna. Espere 15 segundos antes de iniciar otra prueba.
3	Desplazamiento de frecuencia	Asegúrese de que la temperatura, el caudal y la densidad sean estables, y vuelva a ejecutar la prueba.
5	Ganancia alta en la bobina impulsora	Asegúrese de que el caudal sea estable, minimice el arrastre de gas y vuelva a ejecutar la prueba.
8	Caudal inestable	Revise las recomendaciones para caudal estable en la Sección 10.3.1 y vuelva a ejecutar la prueba.
13	No hay datos de referencia de fábrica para una prueba de verificación del medidor realizada en aire	Contacte con el servicio al cliente de Micro Motion y proporcione el código de cancelación.
14	No hay datos de referencia de fábrica para una prueba de verificación del medidor realizada en agua	Contacte con el servicio al cliente de Micro Motion y proporcione el código de cancelación.
15	No existen datos de configuración para la verificación del medidor	Contacte con el servicio al cliente de Micro Motion y proporcione el código de cancelación.
Otro	Cancelación general.	Repita la prueba. Si se cancela la prueba nuevamente, contacte con el servicio al cliente de Micro Motion y proporcione el código de cancelación

Tabla 10-5 Códigos de cancelación de verificación del medidor

Datos detallados de la prueba con ProLink II

Para cada prueba, se almacenan los siguientes datos en el transmisor:

- Horas de encendido en el momento de la prueba (verificación inteligente del medidor)
- Resultado de la prueba
- Rigidez de los pickoffs izquierdo y derecho, en términos de variación porcentual con respecto al valor de la fábrica. Si se cancela la prueba, se almacena un 0 para estos valores.
- Código de cancelación, si corresponde

ProLink II almacena información descriptiva adicional para cada prueba en la base de datos del PC local, incluyendo:

- Hora y fecha del sistema del PC
- Datos de identificación del medidor de caudal actual
- Parámetros actuales de la configuración de caudal y densidad
- Valores actuales de ajuste del cero
- Valores actuales del proceso para caudal másico, caudal volumétrico, densidad, temperatura y presión externa
- (Opcional) Descripciones de cliente y prueba introducidas por el usuario

Si utiliza la verificación inteligente del medidor y ejecuta una prueba de verificación del medidor desde ProLink II, ProLink II primero revisa si hay nuevos resultados de prueba en el transmisor y sincroniza la base de datos local, si se requiere. Durante este paso, ProLink II muestra el siguiente mensaje:

Synchronizing x out of y Please wait

Nota: si usted solicita una acción mientras la sincronización está en curso, ProLink II le pregunta si quiere completar la sincronización o no. Si usted selecciona No, es posible que la base de datos de ProLink II no incluya los resultados de la última prueba almacenados en el transmisor.

Los resultados de la prueba están disponibles al final de cada prueba, en las siguientes formas:

- Una gráfica de los resultados de la prueba (vea la Figura 10-10).
- Un informe de la prueba que incluye información de la prueba actual, la gráfica de los resultados e información básica de la verificación del medidor. Usted puede exportar este informe a un archivo HTML o puede imprimirlo en la impresora predeterminada.

Nota: para ver la gráfica y el informe de pruebas anteriores sin ejecutar una prueba, haga clic en View Previous Test Results (ver los resultados de la prueba anterior) y Print Report (imprimir informe) desde el primer panel de verificación del medidor. Vea la Figura 10-5. Los informes de prueba están disponibles sólo para las pruebas iniciadas desde ProLink II.

Figura 10-10 Gráfica de los resultados de la prueba

Valores predeterminados

Prestaciones de medición

La gráfica de los resultados de la prueba muestra los resultados para todas las pruebas de la base de datos de ProLink II, graficadas con respecto al límite de incertidumbre de especificación. La rigidez de entrada y la rigidez de salida se grafican por separado. Esto ayuda a distinguir entre los cambios locales y uniformes en los tubos del sensor.

Esta gráfica soporta el análisis de tendencias, que puede ser útil en la detección de problemas del medidor antes de que sean graves.

Tenga en cuenta lo siguiente:

- Es posible que la gráfica del resultado de la prueba no muestre todos los resultados de la prueba, y tal vez los contadores de prueba no sean continuos. ProLink II almacena información acerca de todas las pruebas iniciadas desde ProLink II y todas las pruebas disponibles en el transmisor cuando se sincroniza la base de datos de pruebas. Sin embargo, el transmisor sólo almacena los veinte resultados de prueba más recientes. Para garantizar un conjunto de resultados completo, utilice siempre ProLink II para iniciar las pruebas, o sincronice la base de datos de ProLink II antes de que se sobreescriban los datos.
- La gráfica usa diferentes símbolos para diferenciar entre las pruebas iniciadas desde ProLink II y las pruebas iniciadas con una herramienta distinta. Se tiene disponible un informe sólo para las pruebas iniciadas desde ProLink II.
- Usted puede hacer doble clic en la gráfica para manipular la presentación en una amplia variedad de maneras (cambiar mosaicos, cambiar fuentes, colores, bordes y cuadrículas, etc.), y para exportar los datos a formatos adicionales (incluyendo "a la impresora").

Usted puede exportar esta gráfica a un archivo CSV para usarlo en aplicaciones externas.

Datos detallados de la prueba con el indicador

Nota: requiere la verificación inteligente del medidor. No se tienen datos detallados de prueba con la versión original de la aplicación de verificación del medidor.

Para cada prueba de verificación inteligente del medidor, se almacenan los siguientes datos en el transmisor:

- Horas de encendido en el momento de la prueba
- Resultado de la prueba
- Rigidez de los pickoffs izquierdo y derecho, en términos de variación porcentual con respecto al valor de la fábrica. Si se cancela la prueba, se almacena un 0 para estos valores.
- Código de cancelación, si corresponde

Para ver estos datos, vea las Figuras 10-6 y 10-11.

Nota: si usted utiliza un host PROFIBUS con la EDD o los parámetros de bus PROFIBUS para ejecutar la prueba de verificación del medidor, el medidor ha fallado en la prueba si la rigidez de entrada o la rigidez de salida está fuera de límites.

Prestaciones de medición

Datos detallados de la prueba con el comunicador

Nota: requiere la verificación inteligente del medidor. No se tienen datos detallados de prueba con la versión original de la aplicación de verificación del medidor.

Para cada prueba de verificación inteligente del medidor, se almacenan los siguientes datos en el transmisor:

- Horas de encendido en el momento de la prueba
- Resultado de la prueba
- Rigidez de los pickoffs izquierdo y derecho, en términos de variación porcentual con respecto al valor de la fábrica. Si se cancela la prueba, se almacena un 0 para estos valores.
- Código de cancelación, si corresponde

Para ver estos datos, vea la Figura 10-12.

Figura 10-12 Datos de la prueba de verificación del medidor – EDD

Datos detallados de la prueba con los parámetros de bus PROFIBUS

Nota: requiere la verificación inteligente del medidor. No se tienen disponibles datos detallados de prueba con la versión original de la aplicación de verificación del medidor.

Para cada prueba de verificación inteligente del medidor, se almacenan los siguientes datos en el transmisor:

- Horas de encendido en el momento de la prueba
- Resultado de la prueba
- Rigidez de los pickoffs izquierdo y derecho, en términos de variación porcentual con respecto al valor de la fábrica. Si se cancela la prueba, se almacena un 0 para estos valores.
- Código de cancelación, si corresponde

Para ver estos datos, vea la Figura 10-13.

Figura 10-13 Datos de la prueba de verificación del medidor – Parámetros de bus PROFIBUS

Vea la Tabla 10-6.

 Tabla 10-6
 Interfaz de datos de prueba con los parámetros de bus PROFIBUS para la verificación inteligente del medidor

Número de paso	Descripción de paso	Interfaz ⁽¹⁾
1	Establecer el índice (Index)	Bloque Diagnostic (Slot 3) Index 87
2	Leer el contador de pruebas	Bloque Diagnostic (Slot 3) Index 88
3	Leer el tiempo de inicio de la prueba	Bloque Diagnostic (Slot 3) Index 89
4	Leer el resultado de la prueba	Bloque Diagnostic (Slot 3) Index 90
5	Leer la rigidez del LPO	Bloque Diagnostic (Slot 3) Index 91
6	Leer la rigidez del RPO	Bloque Diagnostic (Slot 3) Index 92

(1) Para obtener más información, vea la Tabla D-4.

Valores predeterminados

10.3.5 Configuración de una ejecución automática o remota de la prueba de verificación del medidor

Nota: requiere la verificación inteligente del medidor. La programación no está disponible con la versión original de la aplicación de verificación del medidor.

Existen tres maneras de ejecutar una prueba de verificación inteligente del medidor automáticamente:

- Definirla como una acción de evento
- Configurar una ejecución automática de una sola vez
- Configurar una ejecución recurrente

Usted puede utilizar estos métodos en cualquier combinación. Por ejemplo, puede especificar que se ejecute una prueba de verificación inteligente del medidor tres horas a partir de ahora, cada 24 horas comenzando ahora, cada vez que ocurra un evento discreto específico.

- Para definir la verificación del medidor como una acción de evento, vea la Sección 8.6.
- Para configurar una ejecución automática de una sola vez, configurar una ejecución recurrente, ver la cantidad de horas que faltan para la siguiente prueba programada o para eliminar un programa:
 - Con ProLink II, haga clic en Tools > Meter Verification > Schedule Meter Verification.
 - Con el indicador, vea las Figuras 10-6 y 10-14.
 - Con la EDD, vea la Figura 10-15.
 - Con los parámetros de bus PROFIBUS, vea la Figura 10-16.

Tenga en cuenta lo siguiente:

- Si está configurando una ejecución automática de una sola vez, especifique la hora de inicio en términos de horas a partir del momento en que está configurando la prueba. Por ejemplo, si ahora son las 2:00 y usted especifica 3,5 horas, la prueba iniciará a las 5:30.
- Si está configurando una ejecución recurrente, especifique la cantidad de horas que transcurrirán entre cada ejecución. La primera prueba se iniciará cuando haya transcurrido la cantidad de horas especificada, y se repetirá en el mismo intervalo hasta que se elimine el programa. Por ejemplo, si ahora son las 2:00 y usted especifica 2 horas, la primera prueba se iniciará a las 4:00, la siguiente a las 6:00, etc.
- Si elimina el programa, se eliminarán también los ajustes tanto de ejecución de una sola vez como los de la ejecución recurrente.

Figura 10-14 Programador de verificación inteligente del medidor - Indicador

Valores predeterminados

Figura 10-16 Programador de verificación inteligente del medidor – Parámetros de bus PROFIBUS

Vea la Tabla 10-7.

Tabla 10-7 Interfaz del programador con los parámetros de bus PROFIBUS para la verificación inteligente del medidor

Número de paso	Descripción de paso	Interfaz ⁽¹⁾
1	Fijar las horas hasta la primera prueba	Bloque Diagnostic (Slot 3) Index 93
2	Fijar las horas entre pruebas	Bloque Diagnostic (Slot 3) Index 94

(1) Para obtener más información, vea la Tabla D-4.

10.4 Realizar una validación del medidor

Para realizar una validación del medidor, mida una muestra del fluido de proceso y compare la medición con el valor reportado del medidor de caudal.

Use la siguiente fórmula para calcular un factor del medidor:

 $NuevoFactorMedidor = FactorMedidorConfigurado \times \frac{PatrónExterno}{MediciónRealTransmisor}$

Los valores válidos para los factores del medidor están en un rango de **0,8** a **1,2**. Si el factor del medidor calculado excede estos límites, contacte con el departamento de servicio al cliente de Micro Motion.

Para configurar los factores del medidor:

- Utilizando ProLink II, vea la Figura C-2.
- Utilizando los menús del indicador, vea la Figura C-16.
- Utilizando un host PROFIBUS con la EDD, vea la Figura C-8.
- Utilizando los parámetros de bus PROFIBUS, use el bloque Measurement, Index 15, 16 y 17 (vea la Tabla D-2).

Ejemplo	Se instala y se prueba el medidor de caudal por primera vez. La medición de masa del medidor es de 250,27 lb; la medición del dispositivo de referencia es de 250 lb. Se determina un factor del medidor para caudal másico como se indica a continuación:
	FactorMedidorCaudalMásico = $1 \times \frac{250}{250,27} = 0,9989$
	El primer factor del medidor para caudal másico es de 0,9989.
	Un año después, se prueba el medidor de caudal otra vez. La medición de masa del medidor es de 250,07 lb; la medición del dispositivo de referencia es de 250,25 lb. Se determina un nuevo factor del medidor para caudal másico como se indica a continuación:
	FactorMedidorCaudalMásico = $0,9989 \times \frac{250,25}{250,07} = 0,9996$
	El nuevo factor del medidor para caudal másico es de 0,9996.

10.5 Realizar una calibración de ajuste del cero

El ajuste del cero del medidor de caudal establece el punto de referencia del medidor cuando no hay caudal. El cero del medidor fue ajustado en la fábrica, y no se debería requerir un ajuste en campo. Sin embargo, es posible que usted desee hacer un ajuste del cero en campo para cumplir con los requerimientos locales o para confirmar el ajuste del cero de fábrica.

Cuando usted ajusta el cero del medidor de caudal, es posible que necesite ajustar el parámetro zero time. *Zero time* es la cantidad de tiempo que el transmisor toma para determinar su punto de referencia de caudal cero. El valor predeterminado de zero time es 20 segundos.

- Un valor de zero time *grande* puede producir una referencia de cero más precisa pero es más probable que resulte en fallo de ajuste del cero. Esto se debe a la mayor posibilidad de caudal ruidoso que provoca calibración incorrecta.
- Un valor de zero time *pequeño* es menos probable que resulte en fallo de ajuste del cero pero puede producir una referencia de cero menos precisa.

Para la mayoría de las aplicaciones, el valor predeterminado de zero time es adecuado.

Nota: no ajuste el cero del medidor de caudal si está activa una alarma de alta prioridad. Corrija el problema, luego ajuste el cero del medidor. Usted puede ajustar el cero del medidor de caudal si está activa una alarma de baja prioridad. Vea la Sección 7.6 para obtener información sobre cómo ver los estatus y alarmas del transmisor.

Prestaciones de medición

Si falla el procedimiento de ajuste del cero, se proporcionan dos funciones de recuperación:

- Restaurar el ajuste del cero anterior, disponible sólo desde ProLink II y sólo durante el procedimiento actual de ajuste del cero. Una vez que haya cerrado el cuadro de diálogo Calibration o se haya desconectado del transmisor, ya no se puede restaurar el ajuste del cero anterior.
- Restaurar el ajuste del cero de fábrica, disponible mediante:
 - El indicador (vea la Figura C-16)
 - ProLink II, en el cuadro de diálogo Calibration (vea la Figura C-1)
 - Un host PROFIBUS con la EDD (vea la Figura C-7)
 - Los parámetros de bus PROFIBUS (bloque Calibration, Index 42; vea la Tabla D-3).

Si se desea, usted puede usar una de estas funciones para volver a poner el medidor en operación mientras corrige el fallo del ajuste del cero (vea la Sección 11.8).

10.5.1 Preparación para el ajuste del cero

Para prepararse para el procedimiento de ajuste del cero:

- 1. Encienda el medidor de caudal. Permita que el medidor se precaliente por aproximadamente 20 minutos.
- 2. Corra el fluido del proceso a través del sensor hasta que la temperatura del sensor alcance la temperatura de operación normal del proceso.
- 3. Cierre la válvula de corte ubicada aguas abajo desde el sensor.
- 4. Asegúrese de que el sensor esté completamente lleno con el fluido.
- 5. Asegúrese de que el caudal del proceso se haya detenido completamente.

A PRECAUCIÓN

Si hay fluido fluyendo a través del sensor durante la calibración del cero, la calibración puede ser inexacta, provocando medición inexacta del proceso.

Para mejorar la precisión de la calibración del cero del sensor y de la medición, asegúrese de que el caudal de proceso a través del sensor se haya detenido completamente.

10.5.2 Procedimiento de ajuste del cero

Para ajustar el cero del medidor de caudal:

- Utilizando el botón Zero, vea la Figura 10-17.
- Utilizando el menú del indicador, vea la Figura 10-18. Vea una ilustración completa del menú de ajuste del cero del indicador en la Figura C-16.
- Utilizando ProLink II, vea la Figura 10-19.
- Utilizando un host PROFIBUS con la EDD, use la ventana Zero Calibration en el menú Device. Vea la Figura C-16.
- Utilizando los parámetros de bus PROFIBUS, vea la Figura 10-21.

Prestaciones de medición

Tenga en cuenta lo siguiente:

- Si se pidió el transmisor con un indicador:
 - El botón Zero no está disponible.
 - Si el menú off-line (fuera de línea) ha sido inhabilitado, usted no podrá ajustar el cero del transmisor con el indicador. Para obtener información acerca de la habilitación e inhabilitación del menú off-line, vea la Sección 8.9.5.
 - Usted no puede cambiar el parámetro zero time con el indicador. Si usted necesita cambiar el valor de zero time, debe utilizar ProLink II o el protocolo PROFIBUS.
- Si se pidió el transmisor sin un indicador, el botón Zero está disponible.
 - Usted no puede cambiar el valor de zero time con el botón Zero. Si usted necesita cambiar el valor de zero time, debe utilizar ProLink II o el protocolo PROFIBUS.
 - El botón Zero se encuentra en la tarjeta de la interfaz de usuario, debajo de la cubierta del alojamiento del transmisor (vea la Figura 3-1). Para obtener instrucciones para quitar la cubierta del alojamiento del transmisor, vea la Sección 3.3.
 - Para presionar el botón Zero, utilice un objeto con punta fina que entre en la abertura (3,5 mm ó 0.14 in.). Sostenga el botón presionado hasta que el LED indicador del estatus ubicado en el módulo interfaz de usuario comience a destellar en amarillo.
- Durante el procedimiento de ajuste del cero, el LED indicador del estatus ubicado en el módulo de interfaz de usuario destella en amarillo.

Figura 10-17 Botón Zero – Procedimiento de ajuste del cero del medidor de caudal

Figura 10-18 Menú del indicador – Procedimiento de ajuste del cero del medidor de caudal

Figura 10-19 ProLink II – Procedimiento de ajuste del cero del medidor de caudal

Compensación

Figura 10-20 Host PROFIBUS con EDD - Procedimiento de ajuste del cero del medidor de caudal

Figura 10-21 Parámetros de bus PROFIBUS – Procedimiento de ajuste del cero del medidor de caudal

Valores predeterminados

Prestaciones de medición

10.6 Realizar una calibración de densidad

La calibración de densidad incluye los siguientes puntos de calibración:

- Todos los sensores:
 - Calibración D1 (baja densidad)
 - Calibración D2 (alta densidad)
- Sólo sensores de la serie T:
 - Calibración D3 (opcional)
 - Calibración D4 (opcional)

Para sensores de la serie T, las calibraciones opcionales D3 y D4 podrían mejorar la exactitud de la medición de densidad. Si usted elige realizar la calibración D3 y D4:

- No realice la calibración D1 ó D2.
- Realice la calibración D3 si usted tiene un fluido calibrado.
- Realice ambas calibraciones, D3 y D4 si usted tiene dos fluidos calibrados (diferentes de aire y agua).

Se deben realizar las calibraciones que usted elija sin interrupción, en el orden que se muestra aquí.

Nota: antes de realizar la calibración, registre sus parámetros actuales de calibración. Si usted está usando ProLink II, puede hacer esto salvando la configuración actual a un archivo en el PC. Si la calibración falla, restaure los valores conocidos.

Usted puede calibrar para densidad con ProLink II, con un host PROFIBUS con la EDD o con los parámetros de bus PROFIBUS.

10.6.1 Preparación para la calibración de densidad

Antes de comenzar la calibración de densidad, vea los requerimientos en esta sección.

Requerimientos del sensor

Durante la calibración de densidad, el sensor debe estar completamente lleno con el fluido de calibración, y el caudal a través del sensor debe ser lo más bajo que su aplicación permita. Esto se logra normalmente cerrando la válvula de corte ubicada aguas abajo desde del sensor, luego llenando el sensor con el fluido adecuado.

Fluidos de calibración de densidad

La calibración de densidad D1 y D2 requiere un fluido D1 (baja densidad) y un fluido D2 (alta densidad). Usted puede utilizar aire y agua. Si usted está calibrando un sensor de la serie T, el fluido D1 debe ser aire y el fluido D2 debe ser agua.

A PRECAUCIÓN

Para sensores de la serie T, se debe realizar la calibración D1 en aire y la calibración D2 en agua.

Prestaciones de medición

Para la calibración de densidad D3, el fluido D3 debe cumplir con los siguientes requerimientos:

- Densidad mínima de 0,6 g/cm³
- Diferencia mínima de 0,1 g/cm³ entre la densidad del fluido D3 y la densidad del agua. La densidad del fluido D3 puede ser mayor o menor que la densidad del agua

Para la calibración de densidad D4, el fluido D4 debe cumplir con los siguientes requerimientos:

- Densidad mínima de 0,6 g/cm³
- Diferencia mínima de 0,1 g/cm³ entre la densidad del fluido D4 y la densidad del fluido D3. La densidad del fluido D4 debe ser mayor que la densidad del fluido D3
- Diferencia mínima de 0,1 g/cm³ entre la densidad del fluido D4 y la densidad del agua. La densidad del fluido D4 puede ser mayor o menor que la densidad del agua

10.6.2 Procedimientos de calibración de densidad

Para realizar una calibración de densidad D1 y D2:

- Con ProLink II, vea la Figura 10-22.
- Con un host PROFIBUS con la EDD, vea la Figura 10-23.
- Con los parámetros de bus PROFIBUS, vea la Figura 10-24.

Para realizar una calibración de densidad D3 ó una calibración de densidad D3 y D4:

- Con ProLink II, vea la Figura 10-25.
- Con un host PROFIBUS con la EDD, vea la Figura 10-26.
- Con los parámetros de bus PROFIBUS, vea la Figura 10-27.

Figura 10-22 Calibración de densidad D1 y D2 – ProLink II

Figura 10-23 Calibración de densidad D1 y D2 – Host PROFIBUS con EDD

(1) Los valores K1 y K2 se muestran en la sección Density del menú Configuration Parameters. Es posible que usted necesite volver a cargar los valores del transmisor para ver los resultados de la calibración de densidad.

Figura 10-24 Calibración de densidad D1 y D2 – Parámetros de bus PROFIBUS

Figura 10-25 Calibración de densidad D3 ó D3 y D4 – ProLink II

Figura 10-26 Calibración de densidad D3 ó D3 y D4 – Host PROFIBUS con EDD

Figura 10-27 Calibración D3 ó D3 y D4 – Parámetros de bus PROFIBUS

10.7 Realizar una calibración de temperatura

La calibración de temperatura es un procedimiento de dos partes: calibración de offset de temperatura y calibración de pendiente de temperatura. Se debe completar el procedimiento entero sin interrupción. Para realizar la calibración de temperatura, usted debe utilizar ProLink II. Vea la Figura 10-28.

Figura 10-28 Calibración de temperatura – ProLink II

Capítulo 11 Solución de problemas

11.1 Generalidades

Este capítulo describe las pautas y procedimientos para solucionar problemas en el medidor de caudal. La información de este capítulo le permitirá:

- Categorizar el problema
- Determinar si usted puede corregir el problema
- Tomar medidas correctivas (si es posible)
- Contactar a la agencia de soporte adecuada

Nota: en todos los procedimientos que se proporcionan en este capítulo se asume que usted ha establecido comunicación con el transmisor modelo 2400S DP y que cumple con todos los requerimientos de seguridad aplicables.

Nota: si usted utiliza Pocket ProLink, la interfaz es similar a la interfaz de ProLink II que se describe en este capítulo.

ADVERTENCIA

El uso de los clips del puerto de servicio para comunicarse con el transmisor en un área peligrosa puede provocar una explosión.

Antes de utilizar los clips del puerto de servicio para comunicarse con el transmisor en un área peligrosa, asegúrese de que la atmósfera esté libre de gases explosivos.

11.2 Guía de temas de solución de problemas

Consulte la Tabla 11-1 para ver una lista de los temas de solución de problemas que se describen en este capítulo.

Tabla 11-1 Temas de solución de problemas y sus ubicaciones

Sección	Tema	
Sección 11.4	El transmisor no funciona	
Sección 11.5	El transmisor no se comunica	
Sección 11.6	Revisión del dispositivo de comunicación	
Sección 11.7	Diagnóstico de problemas de cableado	
Sección 11.7.1	Revisión del cableado de la fuente de alimentación	
Sección 11.7.2	Revisión del cableado PROFIBUS	
Sección 11.7.3	Revisión de la tierra	
Sección 11.8	Fallo de ajuste del cero o de calibración	

Solución de problemas

Sección	Tema	
Sección 11.9	Condiciones de fallo	
Sección 11.10	Modo de simulación	
Sección 11.11	LEDs del transmisor	
Sección 11.12	Alarmas de estatus	
Sección 11.13	Revisión de las variables de proceso	
Sección 11.14	Revisión de slug flow	
Sección 11.15	Revisión de los tubos del sensor	
Sección 11.16	Revisión de la configuración de medición de caudal	
Sección 11.17	Revisión de la caracterización	
Sección 11.18	Revisión de la calibración	
Sección 11.19	Restauración de una configuración funcional	
Sección 11.20	Revisión de los puntos de prueba	
Sección 11.21	Revisión de los circuitos del sensor	

labla 11-1 lemas de solucion de problemas y sus ubicaciones <i>con</i>	continuacion
--	--------------

11.3 Servicio al cliente de Micro Motion

Para hablar con un representante de servicio al cliente, contacte con el departamento de servicio al cliente de Micro Motion. La información de contacto se proporciona en la Sección 1.10.

Antes de contactar al departamento de servicio al cliente de Micro Motion, revise la información de solución de problemas y los procedimientos de este capítulo, y tenga los resultados disponibles para discusión con el técnico.

11.4 El transmisor no funciona

Si el transmisor no está recibiendo alimentación, los tres LEDs ubicados en la interfaz de usuario estarán apagados.

1. Revise la fuente de alimentación al transmisor, como se describe en la Sección 11.7.1.

2. Revise la conexión a tierra, como se describe en la Sección 11.7.3.

Si los procedimientos no indican un problema con las conexiones eléctricas, contacte con el departamento de servicio al cliente de Micro Motion.

11.5 El transmisor no se comunica

Si el transmisor no parece estar comunicándose, es posible que el cableado esté defectuoso o que el dispositivo de comunicación no sea compatible. Revise el cableado y el dispositivo de comunicación:

- Para ProLink II y Pocket ProLink, vea la Sección 11.6 y el Capítulo 4.
- Para un host PROFIBUS, vea la Sección 11.6, la Sección 11.7.2 y el Capítulo 5. Asegúrese de que el host PROFIBUS esté configurado para usar la dirección de nodo adecuada.

Si usted está intentando comunicarse mediante el puerto infrarrojo (IrDA), asegúrese de que el puerto esté habilitado y que no haya una conexión activa mediante los clips del puerto de servicio. Vea la Sección 8.10.2.

Solución de problemas

11.6 Revisión del dispositivo de comunicación

Asegúrese de que su dispositivo de comunicación sea compatible con su transmisor.

ProLink II

Se requiere ProLink II v2.5 ó superior. Para revisar la versión de ProLink II:

- 1. Inicie ProLink II.
- 2. Haga clic en **Help > About ProLink**.

Verifique que ProLink II se pueda conectar a otros dispositivos que usen el mismo tipo de conexión (v.g., puerto de servicio). Si no se puede conectar a otros dispositivos, vea el manual de ProLink II para ayuda de solución de problemas.

Pocket ProLink

Se requiere Pocket ProLink v1.3 ó superior. Para revisar la versión de Pocket ProLink:

- 1. Inicie Pocket ProLink.
- 2. Toque el icono Information (signo de interrogación) ubicado en la parte inferior de la pantalla principal.

Host PROFIBUS

El transmisor modelo 2400S DP es compatible con todos los hosts PROFIBUS. Revise que su host PROFIBUS esté configurado correctamente y haga una conexión a otros dispositivos de la red.

11.7 Diagnóstico de problemas de cableado

Use los procedimientos de esta sección para revisar la instalación del transmisor para detectar problemas de cableado.

ADVERTENCIA

Si se quita la cubierta del alojamiento del transmisor en atmósferas explosivas mientras el dispositivo está energizado, se puede exponer al transmisor a condiciones ambientales que pueden ocasionar una explosión.

Antes de quitar la cubierta del alojamiento del transmisor en atmósferas explosivas, asegúrese de apagar el dispositivo y esperar cinco minutos.

11.7.1 Revisión del cableado de la fuente de alimentación

Para revisar el cableado de la fuente de alimentación:

- 1. Siga los procedimientos adecuados para garantizar que el proceso de revisión del cableado de la fuente de alimentación no interfiera con los lazos de medición y control existentes.
- 2. Apague el transmisor.
- 3. Si el transmisor está en un área peligrosa, espere cinco minutos.

- 4. Consultando la Figura B-1:
 - a. Afloje los cuatro tornillos cautivos de la cubierta del alojamiento del transmisor y quite esta cubierta.
 - b. Afloje los dos tornillos cautivos de la interfaz de usuario.
 - c. Levante con cuidado el módulo interfaz de usuario, desenganchándolo del conector ubicado en el transmisor.
- 5. Consultando la Figura B-2:
 - a. Afloje el tornillo de la lengüeta de advertencia (Warning).
 - b. Levante la lengüeta de advertencia (Warning).
- 6. Asegúrese de que los hilos de la fuente de alimentación estén conectados a los terminales correctos. Vea la Figura B-2.
- 7. Verifique que los hilos de la fuente de alimentación estén haciendo buen contacto, y que no estén sujetados en el aislante del conductor.
- 8. Revise la etiqueta de voltaje ubicada en el interior del compartimiento de cableado de campo. Verifique que el voltaje suministrado al transmisor concuerde con el voltaje especificado en la etiqueta.
- 9. Utilice un voltímetro para probar el voltaje en los terminales de la fuente de alimentación del transmisor. Verifique que esté dentro de los límites especificados. Para alimentación de CC, es posible que usted necesite calcular el cable. Vea el manual de instalación de su transmisor para conocer los requerimientos de alimentación.

11.7.2 Revisión del cableado PROFIBUS

Para revisar el cableado PROFIBUS:

- 1. Siga los procedimientos adecuados para garantizar que el proceso de revisión del cableado PROFIBUS no interfiera con los lazos de medición y control existentes.
- 2. Consultando la Figura B-1:
 - a. Afloje los cuatro tornillos cautivos de la cubierta del alojamiento del transmisor y quite esta cubierta.
 - b. Afloje los dos tornillos cautivos de la interfaz de usuario.
 - c. Levante con cuidado el módulo interfaz de usuario, desenganchándolo del conector ubicado en el transmisor.
- Revise visualmente el cableado PROFIBUS. Asegúrese de que los hilos estén insertados en los terminales correctos (vea la Figura B-2), que haya buen contacto en ambos extremos, que el cable no esté doblado y que la cubierta del cable esté intacta. Reemplace el cable si es necesario.
- 4. Verifique que el interruptor de resistencia de terminación interna esté en la posición correcta para su instalación. Vea la Figura 3-1 ó 3-2.

11.7.3 Revisión de la tierra

El conjunto de sensor / transmisor se debe conectar a tierra. Vea el manual de instalación de su sensor para conocer los requerimientos e instrucciones de puesta a tierra.

Solución de problemas

11.8 Fallo de ajuste del cero o de calibración

Si un procedimiento de ajuste del cero o de calibración falla, el transmisor enviará una alarma de estatus indicando la causa del fallo. Vea la Sección 11.12 para conocer soluciones específicas para las alarmas de estatus que indican fallo de calibración.

11.9 Condiciones de fallo

Si se reporta un fallo, determine la naturaleza exacta del fallo revisando las alarmas de estatus (vea la Sección 7.6). Una vez que usted ha identificado la(s) alarma(s) de estatus asociada(s) con la condición de fallo, consulte la Sección 11.12.

Algunas condiciones de fallo pueden corregirse apagando y encendiendo el transmisor. Esta acción puede borrar lo siguiente:

- Fallo de ajuste del cero
- Totalizador interno detenido

11.10 Modo de simulación

La simulación le permite definir valores arbitrarios para caudal másico, temperatura y densidad. El modo de simulación tiene varios usos:

- Puede ayudar a determinar si un problema se encuentra en el transmisor o en otra parte del sistema. Por ejemplo, la oscilación de señal o ruido es muy común. El origen podría ser el host PROFIBUS, el medidor, una conexión a tierra no adecuada u otros varios factores. Al configurar la simulación para obtener una señal plana, usted puede determinar el punto donde se introduce el ruido.
- Se puede usar para analizar la respuesta del sistema o para sintonizar el lazo.

Si el modo de simulación está activo, los valores simulados se almacenan en las mismas ubicaciones de memoria usadas para los datos de proceso provenientes del sensor. Por lo tanto, los valores simulados se usarán en todo el funcionamiento del transmisor. Por ejemplo, la simulación afectará:

- Todos los valores de caudal másico, temperatura o densidad mostrados en el indicador o transmitidos mediante comunicación digital
- Los valores de total e inventario de masa
- Todos los cálculos y datos de volumen, incluyendo valores transmitidos, total de volumen e inventario de volumen
- Todos los valores relacionados registrados por Data Logger (una utilidad de ProLink II para el registro de valores)

Por lo anterior, no habilite la simulación cuando su proceso no pueda tolerar estos efectos, y asegúrese de inhabilitar la simulación cuando haya terminado las pruebas.

Nota: a diferencia de los valores reales de caudal másico y densidad, los valores simulados no son compensados por temperatura.

La simulación no cambia los valores de diagnóstico.

El modo de simulación está disponible sólo mediante ProLink II. Para configurar la simulación, consulte la Figura C-3 y siga los pasos que se indican a continuación:

1. Habilite el modo de simulación.

- 2. Para caudal másico:
 - a. Especifique el tipo de simulación que quiere: valor fijo, diente de sierra (onda triangular) u onda senoidal.
 - b. Introduzca los valores requeridos.
 - Si usted especificó una simulación de valor fijo, introduzca un valor fijo.
 - Si especificó una simulación de onda de dientes de sierra u onda senoidal, introduzca un valor mínimo, un valor máximo y un período de onda. Los valores mínimo y máximo se introducen en las unidades de medición actuales; el período de onda se introduce en segundos.
- 3. Repita el Paso 2 para temperatura y densidad.

Para usar el modo de simulación para localizar problemas, habilite el modo de simulación y revise la señal en varios puntos entre el transmisor y el dispositivo receptor.

Asegúrese de inhabilitar la simulación cuando complete las pruebas.

11.11 LEDs del transmisor

El módulo interfaz de usuario incluye tres LEDs:

- Un LED indicador del estatus. Vea la Tabla 7-3 para obtener información sobre el comportamiento del LED indicador del estatus. Si el LED indicador del estatus indica una condición de alarma:
 - a. Vea el código de la alarma utilizando los procedimientos descritos en la Sección 7.6.
 - b. Identifique la alarma (vea la Sección 11.12).
 - c. Corrija la condición.
 - d. Si se desea, reconozca la alarma utilizando los procedimientos descritos en la Sección 7.7.
- Un LED de red. Vea la Tabla 7-1 para obtener información sobre el comportamiento del LED de red. El LED de red indica el estado del dispositivo en la red, y no indica el estatus del dispositivo. La solución de problemas se debe enfocar en la red y no en el dispositivo.
- Un LED de dirección de software. Vea la Tabla 7-2 para obtener información sobre el comportamiento del LED de dirección de software. Es posible que usted necesite establecer la dirección de nodo para el transmisor modelo 2400S DP, o que necesite configurar el host PROFIBUS para usar la dirección de nodo existente.

11.12 Alarmas de estatus

Los códigos de alarmas de estatus son reportados en el panel LCD (para transmisores que tienen indicadores), y las alarmas de estatus pueden ser vistas con ProLink II o con un host PROFIBUS. Todas las alarmas de estatus posibles se muestran en la Tabla 11-2, junto con el mensaje del host PROFIBUS o de ProLink II, causas posibles y soluciones recomendadas.

Tal vez sea útil para usted reconocer todas las alarmas antes de comenzar con los procedimientos de solución de problemas. Esto quitará de la lista las alarmas inactivas y le permite a usted concentrarse en las alarmas activas.

Código de alarma	Mensaje ⁽¹⁾	Causa	Solución recomendada
A001	EEprom Checksum Error (Core Processor)	Se ha detectado una incongruencia de checksum no corregible	 Apague y encienda el medidor de caudal. El medidor de caudal podría necesitar servicio.
	(E)EPROM Checksum Error (CP)		Contacte con Micro Motion.
A002	RAM Test Error (Core Processor)	Error de checksum de la ROM o no se puede escribir a una ubicación de RAM	 Apague y encienda el medidor de caudal. El medidor de caudal podría necesitar servicio.
	RAM Error (CP)		
A003	Sensor Not Responding (No Tube Interrupt)	Fallo de continuidad del circuito de la bobina	Revise si hay condición de slug flow. Vea la Sección 11.14.
	Sensor Failure	o incongruencia LPO-RPO en el impulso	 Revise los puntos de prueba. Vea la Sección 11.20. Revise los circuitos del sensor. Vea la Sección 11.21. Revise que los tubos del sensor no estén obstruidos. Si el problema persiste, contacte con Micro Motion.
A004	Temperature sensor out of range	Combinación de A016 y A017 • Revise los circuitos del RTD. Vea la Secciór • Verifique que la temperatura del proceso es	 Revise los circuitos del RTD. Vea la Sección 11.21. Verifique que la temperatura del proceso esté dentro del range del sensor y del transmisor
	Temperature Sensordel rango del sensor y del transFailure• Si el problema persiste, contac	Si el problema persiste, contacte con Micro Motion.	
A005 Input Over-Range El caudal medido ha • Si hay otras alarmas (gene	 Si hay otras alarmas (generalmente, A003, A006, A008, A102		
	Input Overrange	máximo de caudal del sensor ($\Delta T > 200 \ \mu$ s) de alarma. Si la alarma A005 persiste, las sugerencias proporcionadas aquí. • Verifique el proceso y revise que no ha de slug flow. Vea la Sección 11.14. • Revise los puntos de prueba. Vea la S • Revise los circuitos del sensor. Vea la • Revise que no haya erosión en los tub Vea la Sección 11.15. • Si el problema persiste, contacte con M	 de alarma. Si la alarma A005 persiste, continúe con las sugerencias proporcionadas aquí. Verifique el proceso y revise que no haya condición de slug flow. Vea la Sección 11.14. Revise los puntos de prueba. Vea la Sección 11.20. Revise los circuitos del sensor. Vea la Sección 11.21. Revise que no haya erosión en los tubos del sensor. Vea la Sección 11.15. Si el problema persiste, contacte con Micro Motion.
A006	Transmitter Not Characterized	Combinación de A020 y A021 -	 Revise la caracterización. Específicamente, verifique los valores FCF y K1. Vea la Sección 6.2.
	Not Configured		• Si el problema persiste, contacte con Micro Motion.
A008 Density Outside Limits La densidad medida ha	• Si hay otras alarmas (generalmente, A003, A006,		
	Density Overrange	excedido 0–10 g/cmº	 A102 o A105), primero corrija esas condiciones de alarma. Si la alarma A008 persiste, continúe con las sugerencias proporcionadas aquí. Verifique el proceso. Revise si hay aire en los tubos de caudal, si los tubos no están llenos, si hay materiales extraños en los tubos, o el revestimiento en los tubos (vea la Sección 11.15). Revise si hay condición de slug flow. Vea la Sección 11.14. Revise los circuitos del sensor. Vea la Sección 11.21. Verifique los factores de calibración en la configuración del transmisor. Vea la Sección 6.2. Revise los puntos de prueba. Vea la Sección 11.20. Si el problema persiste, contacte con Micro Motion.
A009	Transmitter Initializing/ Warming Up Transmitter Initializing/ Warming Up	El transmisor está en modo de proceso de encendido	 Permita que el medidor se precaliente (aproximadamente 30 segundos). El error debe desaparecer una vez que el medidor de caudal esté listo para la operación normal. Si la alarma no desaparece, asegúrese de que el sensor esté completamente lleno o completamente vacío. Revise los circuitos del sensor. Vea la Sección 11.21.

Tabla 11-2 Alarmas de estatus y soluciones

|--|

Código de alarma	Mensaje ⁽¹⁾	Causa	Solución recomendada
A010	Calibration Failure Calibration Failure	Ajuste mecánico del cero: el cero resultante fue mayor que 3 μs Calibraciones de temperatura/densidad: muchas causas posibles	 Si la alarma aparece durante un ajuste del cero del transmisor, asegúrese de que no haya caudal a través del sensor, luego vuelva a intentar. Encienda y apague el medidor de caudal, luego vuelva a intentar. Si es adecuado, restaure el ajuste del cero de fábrica para que el medidor de caudal vuelva a funcionar.
A011	Excess Calibration Correction, Zero too Low	Vea A010	 Asegúrese de que no haya caudal a través del sensor, luego vuelva a intentar. Encienda y apague el medidor de caudal, luego
	Zero loo Low		 vuelva a intentar. Si es adecuado, restaure el ajuste del cero de fábrica para que el medidor de caudal vuelva a funcionar.
A012	Excess Calibration Correction, Zero too High	Vea A010	 Asegúrese de que no haya caudal a través del sensor, luego vuelva a intentar.
	Zero Too High	 Encienda y apague el medidor de cauda vuelva a intentar. Si es adecuado, restaure el ajuste del ce para que el medidor de caudal vuelva a 	 Encienda y apague el medidor de caudal, luego vuelva a intentar. Si es adecuado, restaure el ajuste del cero de fábrica para que el medidor de caudal vuelva a funcionar.
A013	Process too Noisy to Perform Auto Zero	Vea A010	Quite o reduzca las fuentes de ruido electromecánico, luego vuelva a intentar. Entre las fuentes de ruido,
	Zero Too Noisy		se incluyen: - Bombas mecánicas - Tensión del tubo en el sensor - Interferencia eléctrica - Efectos de vibración de maquinaria cercana • Encienda y apague el medidor de caudal, luego vuelva a intentar. • Si es adecuado, restaure el ajuste del cero de fábrica para que el medidor de caudal vuelva a funcionar.
A014	Transmitter Failed	Muchas causas posibles	 Apague y encienda el medidor de caudal. El transmisor podría necesitar servicio. Contacte con
4010		Et and an and a damage	Micro Motion.
A016 Line RTD Temperature El valor calo Out-Of-Range la resistenci	la resistencia del RTD	 Revise los circuitos del RTD. vea la Sección TT.21. Verifique que la temperatura del proceso esté dentro del rango del sensor y del transmisor 	
	Line RTD Temperature Out-of-Range	los límites	Si el problema persiste, contacte con Micro Motion.
A017 Meter RTD Temperature Out-Of-Range El valor calculado para la resistencia del RTD • Revise la	 Revise los circuitos del RTD. Vea la Sección 11.21. Verifique que la temperatura del proceso esté dentro 		
	Meter RTD Temperature Out-of-Range	 de caja/medidor está fuera de los límites 	 el rango del sensor y del transmisor. Revise la caracterización. Específicamente, verifique los valores FCF y K1. Vea la Sección 6.2. Si el problema persiste, contacte con Micro Motion.
A020	Calibration Factors Unentered	No se ha introducido el factor de calibración de caudal y/o K1 desde el último master reset	 Revise la caracterización. Específicamente, verifique los valores FCF y K1. Vea la Sección 6.2. Si el problema persiste, contacte con Micro Motion.
	Calibration Factors Unentered (FlowCal)		
A021	Unrecognized/Unentered Sensor Type	El sensor es reconocido como de tubo recto	Revise la caracterización. Específicamente, verifique los valores FCF y K1. Vea la Sección 6.2.
	Incorrect Sensor Type (K1)	un tubo curvado, o viceversa	Si el problema persiste, contacte con Micro Motion.
A029	Internal Communication Failure	Fallo de la electrónica del transmisor	Apague y encienda el medidor de caudal.Contacte con Micro Motion.
	PIC/Daughterboard Communication Failure		

Código de alarma	Mensaje ⁽¹⁾	Causa	Solución recomendada
A030	Hardware/Software Incompatible	El software instalado no es compatible con el tipo de tarjeta programado	Contacte con Micro Motion.
	Incorrect Board Type		
A031	Undefined	El transmisor no está recibiendo suficiente alimentación	Revise la fuente de alimentación al transmisor. Vea la Sección 11.7.1.
	Low Power		
A032 ⁽²⁾	Meter Verification Fault Alarm	Verificación del medidor en progreso, con las salidas establecidas a fallo	 Deje que se complete el procedimiento. Si se desea, cancele el procedimiento y vuelva a iniciar con las salidas establecidas al último valor medido.
	Meter Verification/ Outputs In Fault		
A032 ⁽³⁾	Outputs Fixed during Meter Verification	Verificación del medidor en progreso, con las	 Deje que se complete el procedimiento. Si se desea, cancele el procedimiento y vuelva a iniciar con los colidos configurados a Continuo.
	Meter Verification In Progress and Outputs Fixed	Fault (fallo) o Last Measured Value (último valor medido).	Measurement (continuar con la medición).
A033	Sensor OK, Tubes Stopped by Process	No hay señal de los pickoffs LPO o RPO, lo	 Verifique el proceso. Revise si hay aire en los tubos de caudal, si los tubos no están llenos, si hay materiales extraños en los tubos, o el revestimiento
	Sensor OK, Tubes Stopped by Process	del sensor no están vibrando	en los tubos (vea la Sección 11.15).
A034 ⁽³⁾	Meter Verification Failed	Los resultados de la prueba no estuvieron dentro de los límites aceptables.	Vuelva a ejecutar la prueba. Si la prueba falla otra vez, vea la Sección 10.3.4.
	Meter Verification Failed		
A035 ⁽³⁾	Meter Verification Aborted	La prueba no se completó, tal vez se debió a una cancelación manual.	Si desea, lea el código de cancelación, vea la Sección 10.3.4, y tome la acción adecuada.
	Meter Verification Aborted		
A102	Drive Over-Range/ Partially Full Tube	La alimentación de la bobina impulsora (corriente/ voltaje) está a su máximo	 Ganancia excesiva en la bobina impulsora. Vea la Sección 11.20.3. Revise los circuitos del sensor. Vea la Sección 11.21. Si es la única alarma activa, puede ser ignorada. Si se desea, vuelva a configurar la prioridad de la alarma a Ignore (vea la Sección 8.8).
	Drive Overrange/ Partially Full Tube		
A104	Calibration-In-Progress	Un procedimiento de	• Deje que el medidor de caudal complete la calibración.
_	Calibration in Progress	calibracion esta en orogreso • Para proc progreso puede cal de zero tii calibració	 Para procedimientos de calibración del cero, usted puede cancelar la calibración, ajustar el parámetro de zero time a un valor menor y volver a iniciar la calibración.
A105	Slug Flow	La densidad ha excedido	Vea la Sección 11.14.
	Slug Flow	los limites de slug flow (densidad) definidos por el usuario	
A107	Power Reset Occurred	Se ha reiniciado el transmisor	 No se requiere acción. Si se desea, vuelva a configurar la prioridad de la alarma a Ignore (vea la Sección 8.8).
	Power Reset Occurred		
A116	API Temperature Out-of-Limits	La temperatura del proceso está fuera de los límites de extrapolación definidos por API	 Verifique el proceso. Verifique la configuración de temperatura y tabla de referencia API. Vea la Sección 8.14.
	API: Temperature Outside Standard Range		

Tabla 11-2 Alarmas de estatus y soluciones continuación

Código de alarma	Mensaje ⁽¹⁾	Causa	Solución recomendada
A117	API Density Out-of-Limits	La densidad del proceso está fuera de los límites de extrapolación definidos por API	 Verifique el proceso. Verifique la configuración de densidad y tabla de referencia API. Vea la Sección 8.14.
	API: Density Outside Standard Range		
A120	ED: Unable to fit curve data	Los valores configurados para la curva de densidad no cumplen con los requerimientos de precisión	 Verifique la configuración de densidad mejorada. Vea la Sección 8.15.
	ED: Unable to Fit Curve Data		
A121	ED: Extrapolation alarm	Los cálculos de densidad mejorada están fuera del rango de datos configurado	 Verifique la temperatura del proceso. Verifique la densidad del proceso. Verifique la configuración de densidad mejorada. Si se desea, vuelva a configurar la prioridad de la alarma a Ignore (vea la Sección 8.8).
	ED: Extrapolation Alarm		
A131 ⁽²⁾	Meter Verification Info Alarm	Verificación del medidor en progreso, con las salidas establecidas al último valor medido	 Deje que se complete el procedimiento. Si se desea, cancele el procedimiento y vuelva a iniciar con las salidas establecidas a fallo.
	Meter Verification/ Outputs at Last Value		
A131 ⁽³⁾	Meter Verification in Progress	Verificación del medidor en progreso, con las salidas configuradas para continuar transmitiendo los datos del proceso.	Deje que se complete el procedimiento.
A132	Simulation Mode Active	El modo de simulación está habilitado	 Inhabilite el modo de simulación. Vea la Sección 11.10.
	Simulation Mode Active		
A133	PIC UI EEPROM Error	Los datos de EEPROM del módulo de la interfaz de usuario se corrompieron	Contacte con Micro Motion.
	PIC UI EEPROM Error		

Tabla 11-2 Alarmas de estatus y soluciones continuación

(1) Dependiendo del método que usted utilice para ver la alarma, se pueden mostrar diferentes mensajes. Esta tabla muestra dos posibles versiones de mensajes. El segundo mensaje de cada par corresponde a ProLink II.

(2) Aplica sólo a sistemas que tengan la versión original de la aplicación de verificación del medidor.

(3) Aplica sólo a sistemas que tengan la verificación inteligente del medidor (Smart Meter Verification).

11.13 Revisión de las variables de proceso

Micro Motion sugiere que usted haga un registro de las variables de proceso que se muestran a continuación, bajo condiciones de operación normales. Esto le ayudará a reconocer cuando las variables de proceso sean más altas o más bajas que lo normal.

- Caudal
- Densidad
- Temperatura
- Frecuencia de los tubos
- Voltaje de pickoff
- Ganancia de la bobina impulsora
Solución de problemas

Para la solución de problemas, revise las variables de proceso tanto bajo condiciones normales de caudal como con los tubos llenos pero sin caudal. A excepción del caudal, usted debe ver poco o nada de cambio entre las condiciones de caudal y sin caudal. Si usted ve una diferencia grande, registre los valores y contacte con el Departamento de servicio al cliente de Micro Motion para obtener ayuda.

Los valores no usuales para las variables de proceso pueden indicar varios problemas diferentes. La Tabla 11-3 muestra varios problemas y soluciones recomendadas.

Síntoma Causa		Solución recomendada		
Caudal diferente de cero estable bajo condiciones	Tubería mal alineada (especialmente en instalaciones nuevas)	Corrija la tubería.		
sin caudal	Válvula abierta o con fuga	Revise o corrija el mecanismo de la válvula.		
	Ajuste del cero incorrecto en el sensor	 Vuelva a ajustar el cero del medidor de caudal o restaure el ajuste del cero de fábrica o el ajuste anterior. Vea la Sección 10.5. 		
Caudal diferente de cero	Válvula o sello con fuga	Revise la tubería.		
sin caudal	Slug flow	Vea la Sección 11.14.		
	Tubo de caudal obstruido	 Revise la ganancia de la bobina impulsora y la frecuencia de los tubos. Purgue los tubos de caudal. 		
	Orientación del sensor incorrecta	 La orientación del sensor debe ser adecuada para el fluido del proceso. Vea el manual de instalación de su sensor. 		
	Problema de cableado	Revise los circuitos del sensor. Vea la Sección 11.21.		
	Vibración en la tubería a un caudal cercano a la frecuencia de los tubos del sensor	Revise el medio ambiente y quite la fuente de vibración.		
	Valor de atenuación demasiado bajo	Revise la configuración. Vea la Sección 8.4.		
	Tensión de montaje en el sensor	 Revise el montaje del sensor. Asegúrese de que: El sensor no se esté usando para apoyar la tubería. El sensor no se esté usando para corregir la alineación de la tubería. El sensor no sea demasiado pesado para la tubería. 		
	Cross-talk en el sensor	 Revise que no haya un sensor con frecuencia de tubos similar (±0,5 Hz) en el medio ambiente. 		
Lectura de caudal	Slug flow	Vea la Sección 11.14.		
diferente de cero errática cuando el caudal está	Valor de atenuación demasiado bajo	Revise la configuración. Vea la Sección 8.4.		
estable	Tubo de caudal obstruido	 Revise la ganancia de la bobina impulsora y la frecuencia de los tubos. Purgue los tubos de caudal. 		
	Ganancia de la bobina impulsora excesiva o errática	Vea la Sección 11.20.3.		
	Problema de cableado de la salida	 Verifique el cableado entre el transmisor y el dispositivo receptor. Vea el manual de instalación de su transmisor. 		
	Problema con el dispositivo receptor	Pruebe con otro dispositivo receptor.		
	Problema de cableado	Revise los circuitos del sensor. Vea la Sección 11.21.		

Tabla 11-3 Problemas y soluciones de variables de proceso

Síntoma Causa		Solución recomendada		
Caudal inexacto	Factor de calibración de caudal incorrecto	Verifique la caracterización. Vea la Sección 6.2.		
	Unidad de medición inadecuada	Revise la configuración. Vea la Sección 11.16.		
	Ajuste del cero incorrecto en el sensor	 Vuelva a ajustar el cero del medidor de caudal o restaure el ajuste del cero de fábrica o el ajuste anterior. Vea la Sección 10.5. 		
	Factores de calibración de densidad incorrecta	Verifique la caracterización. Vea la Sección 6.2.		
	Puesta a tierra del medidor de caudal incorrecta	Vea la Sección 11.7.3.		
	Slug flow	Vea la Sección 11.14.		
	Problema de cableado	Revise los circuitos del sensor. Vea la Sección 11.21.		
Lectura de densidad inexacta	Problema con el fluido del proceso	 Use los procedimientos estándar para revisar la calidad del fluido de proceso. 		
	Factores de calibración de densidad incorrecta	Verifique la caracterización. Vea la Sección 6.2.		
	Problema de cableado	Revise los circuitos del sensor. Vea la Sección 11.21.		
	Puesta a tierra del medidor de caudal incorrecta	Vea la Sección 11.7.3.		
	Slug flow	Vea la Sección 11.14.		
	Cross-talk en el sensor	 Revise que no haya un sensor con frecuencia de tubos similar (±0,5 Hz) en el medio ambiente. 		
	Tubo de caudal obstruido	 Revise la ganancia de la bobina impulsora y la frecuencia de los tubos. Purgue los tubos de caudal. 		
	Orientación del sensor incorrecta	 La orientación del sensor debe ser adecuada para el fluido del proceso. Vea el manual de instalación de su sensor. 		
	Fallo del RTD	 Revise si hay condiciones de alarma y siga el procedimiento de solución de problemas para la alarma indicada. 		
	Las características físicas del sensor han cambiado	 Revise que no haya corrosión, erosión o daño en los tubos. Vea la Sección 11.15. 		
Lectura de temperatura muy diferente a la temperatura del proceso	Fallo del RTD	 Revise si hay condiciones de alarma y siga el procedimiento de solución de problemas para la alarma indicada. Verifique la configuración "Use external temperature" e inhabilítela si es adecuado. Vea la Sección 9.3. 		
Lectura de temperatura un poco diferente a la temperatura del proceso	Fuga de calor en el sensor	Aísle el sensor.		
Lectura de densidad más alta de lo normal	Tubo de caudal obstruido	• Revise la ganancia de la bobina impulsora y la frecuencia de los tubos. Purgue los tubos de caudal.		
	Valor K2 incorrecto	• Verifique la caracterización. Vea la Sección 6.2.		
Lectura de densidad más	Slug flow	Vea la Sección 11.14.		
baja de lo normal	Valor K2 incorrecto	Verifique la caracterización. Vea la Sección 6.2.		
Frecuencia de tubos más alta de lo normal	Erosión del sensor	Contacte con Micro Motion.		

Tabla 11-3 Problemas y soluciones de variables de proceso continuación

Síntoma	Causa	Solución recomendada
Frecuencia de tubos más baja de lo normal	Tubo de caudal obstruido, corrosión o erosión	 Purgue los tubos de caudal. Realice una verificación del medidor. Vea la Sección 11.15.
Voltajes de pickoff más bajos de lo normal	Varias causas posibles	Vea la Sección 11.20.4.
Ganancia de la bobina impulsora más alta de lo normal	Varias causas posibles	Vea la Sección 11.20.3.

Tabla 11-3 Problemas y soluciones de variables de proceso continuación

11.14 Revisión de slug flow

Se emite una alarma de slug flow cuando la densidad de proceso medida está fuera de los límites de slug flow configurados (es decir, la densidad es mayor o menor que el rango normal configurado). La condición de slug flow es ocasionada generalmente por gas que entra en un proceso de líquido o por líquido que entra en un proceso de gas. Vea una descripción de la funcionalidad de slug flow en la Sección 8.7.

Si ocurre una condición de slug flow:

- Revise el proceso para ver si no hay cavitación, flasheo o fugas.
- Cambie la orientación del sensor.
- Supervise la densidad.
- Si se desea, introduzca nuevos límites de slug flow (vea la Sección 8.7).
 - El incremento del límite inferior de slug flow o la disminución del límite superior de slug flow aumentarán la posibilidad de condiciones de slug flow.
 - La disminución del límite inferior de slug flow o el incremento del límite superior de slug flow reducirán la posibilidad de condiciones de slug flow.
- Si se desea, incremente la duración de slug (vea la Sección 8.7).

11.15 Revisión de los tubos del sensor

La corrosión, la erosión o los daños a los tubos del sensor pueden afectar la medición del proceso. Para revisar estas condiciones, realice el procedimiento de verificación del medidor, si está disponible. Vea el Capítulo 10. Si el procedimiento de verificación del medidor no está disponible, realice una inspección visual, o realice una calibración de densidad y revise si hay cambio en los valores K1 y K2. Contacte con el servicio al cliente de Micro Motion.

11.16 Revisión de la configuración de medición de caudal

El uso de una unidad de medición de caudal incorrecta puede ocasionar que el transmisor produzca niveles de salida no esperados, con efectos en el proceso no predecibles. Asegúrese de que la unidad de medición de caudal configurada sea correcta. Revise las abreviaciones; por ejemplo, *g/min* representa gramos por minuto, no galones por minuto. Vea la Sección 6.3.

11.17 Revisión de la caracterización

Un transmisor que está caracterizado incorrectamente para su sensor podría transmitir valores de variables de proceso inexactos. Tanto el valor K1 como el valor Flow Cal (FCF) deben ser adecuados para el sensor. Si estos valores son incorrectos, es posible que el sensor no vibre correctamente o puede enviar datos de proceso inexactos.

Si usted descubre que cualquiera de los datos de caracterización es incorrecto, realice una caracterización completa. Vea la Sección 6.2.

11.18 Revisión de la calibración

Una calibración inadecuada puede ocasionar que el transmisor transmita valores de variables de proceso inesperados. Si el transmisor parece estar operando correctamente pero envía valores de variables de proceso inesperados, la causa puede ser una calibración inadecuada.

Micro Motion calibra cada transmisor en fábrica. Por lo tanto, usted sólo debe sospechar de una calibración inapropiada si el transmisor ha sido calibrado después de haberlo enviado de la fábrica. Antes de realizar una calibración, considere una validación o una verificación del medidor y seleccione el procedimiento adecuado (vea la Sección 10.2). Contacte con el departamento de servicio al cliente de Micro Motion para obtener ayuda.

11.19 Restauración de una configuración funcional

A veces puede ser más fácil comenzar a partir de una configuración funcional conocida que solucionar problemas en la configuración existente. Para hacer esto, usted puede:

- Restaurar un archivo de configuración guardado mediante ProLink II, si existe uno disponible. Vea la Figura C-1.
- Restaurar la configuración de fábrica. Para hacer esto:
 - Utilizando ProLink II, vea la Figura C-2. Se requiere ProLink II v2.6 ó superior.
 - Utilizando un host PROFIBUS y la EDD, vea la Figura C-10.
 - Utilizando los parámetros de bus PROFIBUS, use el bloque Diagnostic, Index 51 (vea la Tabla D-4).

Ambas acciones sobreescribirán la configuración existente. Asegúrese de que la configuración existente haya sido documentada o guardada adecuadamente.

11.20 Revisión de los puntos de prueba

Algunas alarmas de estatus que indican un fallo del sensor o condición de sobrerrango pueden ser causadas por problemas diferentes a un sensor defectuoso. Usted puede diagnosticar el fallo del sensor o las alarmas de estatus de sobrerrango revisando los puntos de prueba del medidor de caudal. Los *puntos de prueba* incluyen voltajes de pickoff izquierdo y derecho, ganancia de la bobina impulsora y frecuencia de los tubos. Estos valores describen la operación actual del sensor.

Valores predeterminados

11.20.1 Obtención de los puntos de prueba

Para obtener los valores de puntos de prueba:

- Con el indicador, configure los puntos de prueba requeridos como variables del indicador. Vea la Sección 8.9.3.
- Con ProLink II:
 - a. Haga clic en **ProLink > Diagnostic Information**.
 - b. Observe o registre los valores mostrados para **Tube Frequency**, Left Pickoff, Right Pickoff y Drive Gain.
- Con un host PROFIBUS con la EDD, use la ventana Meter Diagnostics en el menú Device (vea la Figura C-7).
- Con los parámetros de bus PROFIBUS, lea los índices 32, 33, 35 y 36 en el bloque Diagnostic (vea la Tabla D-4).

11.20.2 Evaluación de los puntos de prueba

Use las siguientes recomendaciones para evaluar los puntos de prueba:

- Si la ganancia de la bobina impulsora es errática, negativa o saturada, consulte la Sección 11.20.3.
- Si el valor para el pickoff izquierdo o derecho no es igual al valor adecuado de la Tabla 11-4, de acuerdo a la frecuencia del tubo de caudal del sensor, consulte la Sección 11.20.4.
- Si los valores para los pickoffs izquierdo y derecho son iguales a los valores adecuados de la Tabla 11-4, de acuerdo a la frecuencia de los tubos de caudal del sensor, registre sus datos del diagnóstico de problemas y contacte con el departamento de servicio al cliente de Micro Motion.

Sensor ⁽¹⁾	Valor de pickoff
Sensores CMF ELITE®	3,4 mV cresta a cresta por Hz de acuerdo a la frecuencia del tubo de caudal del sensor
Sensores F025, F050, F100	3,4 mV cresta a cresta por Hz de acuerdo a la frecuencia del tubo de caudal del sensor
Sensores F200	2,0 mV cresta a cresta por Hz de acuerdo a la frecuencia del tubo de caudal del sensor
Sensores H025, H050, H100	3,4 mV cresta a cresta por Hz de acuerdo a la frecuencia del tubo de caudal del sensor
Sensores H200	2,0 mV cresta a cresta por Hz de acuerdo a la frecuencia del tubo de caudal del sensor
Sensores R025, R050 ó R100	3,4 mV cresta a cresta por Hz de acuerdo a la frecuencia del tubo de caudal del sensor
Sensores R200	2,0 mV cresta a cresta por Hz de acuerdo a la frecuencia del tubo de caudal del sensor
Sensores de la serie T	0,5 mV cresta a cresta por Hz de acuerdo a la frecuencia del tubo de caudal del sensor
Sensores CMF400 I.S.	2,7 mV cresta a cresta por Hz de acuerdo a la frecuencia del tubo de caudal del sensor

Tabla 11-4 Valores de pickoff del sensor

(1) Si su sensor no aparece en la lista, contacte con Micro Motion.

11.20.3 Problemas de ganancia de la bobina impulsora

Los problemas de ganancia de la bobina impulsora pueden aparecer en varias formas diferentes:

- Ganancia saturada o excesiva (cerca del 100%)
- Ganancia errática (v.g., cambio rápido de positiva a negativa)
- Ganancia negativa

Solución de problemas

Vea una lista de posibles problemas y soluciones en la Tabla 11-5.

Tabla 11-5	Problemas	de ganancia de	la bobina impulsora,	, causas y soluciones
------------	-----------	----------------	----------------------	-----------------------

Causa	Solución posible
Slug flow excesivo	Vea la Sección 11.14.
Cavitación o flasheo	 Incremente la presión de entrada o la retropresión en el sensor. Si se ubica una bomba aguas arriba desde el sensor, incremente la distancia entre la bomba y el sensor.
Tubo de caudal obstruido	Purgue los tubos de caudal.
Amarre mecánico de los tubos del sensor	 Asegúrese de que los tubos del sensor estén libres para vibrar. Entre los problemas posibles se incluyen: Tensión de la tubería. Revise que no haya tensión en la tubería. Desplazamiento de tubo lateral debido al efecto de golpe de ariete. Si ésta es una posibilidad, contacte con Micro Motion. Tubos deformados debido a presurización excesiva. Si ésta es una posibilidad, contacte con Micro Motion.
El tipo de sensor configurado es incorrecto	 Verifique la configuración del tipo de sensor, luego verifique la caracterización del sensor. Vea la Sección 6.2.
Bobina impulsora o de pickoff izquierdo del sensor abiertas	Contacte con Micro Motion.
Fallo en la tarjeta o módulo de la bobina impulsora, tubo de caudal fracturado o desequilibrio del sensor	Contacte con Micro Motion.

11.20.4 Bajo voltaje de pickoff

El bajo voltaje de pickoff puede ser causado por varios problemas. Vea la Tabla 11-6.

Tabla 11-6 Causas y soluciones del bajo voltaje de pickoff

Causa	Solución posible
Slug flow	Vea la Sección 11.14.
No hay vibración en los tubos del sensor	Revise que los tubos no estén obstruidos.
Humedad en la electrónica del sensor	• Elimine la humedad en la electrónica del sensor.
Sensor dañado	 Asegúrese de que el sensor esté libre para vibrar (que no haya amarre mecánico). Entre los problemas posibles se incluyen: Tensión de la tubería. Revise que no haya tensión en la tubería. Desplazamiento de tubo lateral debido al efecto de golpe de ariete. Si ésta es una posibilidad, contacte con Micro Motion. Tubos deformados debido a presurización excesiva. Si ésta es una posibilidad, contacte con Micro Motion. Pruebe los circuitos del sensor. Vea la Sección 11.21. Contacte con Micro Motion.

11.21 Revisión de los circuitos del sensor

Los problemas con los circuitos del sensor pueden ocasionar varias alarmas, incluyendo fallo del sensor y varias condiciones de fuera de rango. Las pruebas involucran:

- Revisión del cable que conecta el transmisor al sensor
- Medición de las resistencias de los pares de pines del sensor
- Verificación de que los circuitos no estén en corto entre sí o con la caja del sensor

Solución de problemas

Nota: para revisar los circuitos del sensor, usted debe quitar el transmisor del sensor. Antes de realizar esta prueba, asegúrese de que se hayan realizado todos los otros diagnósticos aplicables. Las capacidades de diagnóstico del transmisor modelo 2400S han mejorado considerablemente, y pueden proporcionar información más útil que estas pruebas.

- 1. Siga los procedimientos adecuados para garantizar que el proceso de revisión de los circuitos del sensor no interfiera con los lazos de medición y control existentes.
- 2. Apague el transmisor.
- 3. Si el transmisor está en un entorno peligroso, espere cinco minutos.
- 4. Revise el cable del sensor y su conexión:
 - a. Consultando la Figura B-1, afloje los cuatro tornillos cautivos de la cubierta del alojamiento del transmisor y quite esta cubierta.
 - b. Afloje los dos tornillos cautivos de la interfaz de usuario.
 - c. Levante con cuidado el módulo interfaz de usuario, desenganchándolo del conector ubicado en el transmisor.
 - d. Consultando la Figura B-2, desconecte el cable PROFIBUS y los conductores de alimentación.
 - e. Dos tornillos cautivos (cabeza hexagonal de 2,5 mm) sostienen el transmisor en el alojamiento. Afloje los tornillos y levante con cuidado el transmisor alejándolo del alojamiento. Permita que el transmisor cuelgue temporalmente.
 - f. Asegúrese de que el cable esté enchufado completamente y que haga buen contacto. Si no es así, acomode el cable, vuelva a montar el transmisor al sensor y revise que funcione.
 - g. Si no se resuelve el problema, desconecte el cable del paso de cables quitando el clip de retención (vea la Figura 11-1), y tirando del conector hacia fuera del paso de cables. Ponga el transmisor a un lado.
 - h. Revise que no haya signos de daño en el cable. Si el cable está dañado, contacte con Micro Motion.

Figura 11-1 Acceso a los pines del paso de cable

5. Usando un multímetro digital (DMM), revise las resistencias internas del sensor para cada circuito del medidor de caudal. La Tabla 11-7 define los circuitos del medidor de caudal y el rango de resistencia para cada uno. Consulte la Figura 11-2 para identificar los pines del paso de cables. Para cada circuito, ponga los conductores del DMM en los pares de pines y registre los valores.

Nota: para tener acceso a todos los pines del paso de cables, es posible que necesite quitar la abrazadera y girar el transmisor a una posición diferente.

En esta prueba:

- No debe haber circuitos abiertos, es decir, no debe haber lecturas de resistencia infinita.
- Los valores nominales de resistencia varían 40% por 100 °C. Sin embargo, la confirmación de un circuito abierto o en corto es más importante que una ligera desviación con respecto a los valores de resistencia que se muestran aquí.
- Las lecturas de los circuitos LPO y RPO deben ser las mismas o muy cercanas (± 10%).
- Las lecturas en los pares de pines deben ser estables.
- Los valores de resistencia reales dependen del modelo del sensor y de la fecha de fabricación. Contacte con Micro Motion para obtener datos más detallados.

Si aparece un problema, o si la resistencia está fuera de rango, contacte con Micro Motion.

Tabla 11-7 Rangos nominales de resistencia para los circuitos del medidor de caudal

Circuito	Pares de pines	Rango de resistencia nominal ⁽¹⁾
Bobina impulsora	Bobina impulsora + y –	8–1500 Ω
Pickoff izquierdo	Pickoff izquierdo + y -	16–1000 Ω
Pickoff derecho	Pickoff derecho + y -	16–1000 Ω
Sensor de temperatura del tubo de caudal	RTD + y RTD –	100 Ω a 0 °C 0,38675 Ω / °C
Compensador de longitud de conductor (LLC)/RTD		
Sensores de la serie T	RTD – y RTD compuesto	300 Ω a 0 °C 1,16025 Ω / °C
Sensores CMF400 I.S.	RTD – y resistencia fija	39,7–42,2 Ω
 Sensores F300 Sensores H300 Sensores F025A, F050A, F100A Sensores CMFS 	RTD – y resistencia fija	44,3–46,4 Ω
Todos los otros sensores	RTD – y compensador de longitud de conductor (LLC)	0

(1) Los valores de resistencia reales dependen del modelo del sensor y de la fecha de fabricación. Contacte con Micro Motion para obtener datos más detallados.

Figura 11-2 Pines del paso de cables

(1) Funciona como una resistencia fija para los siguientes sensores: F300, H300, F025A, F050A, F100A, CMF400 I.S., CMFS. Funciona como un RTD compuesto para los sensores de la serie T. Para todos los demás sensores, funciona como un compensador de longitud de conductor (LLC).

- 6. Usando el multímetro digital, revise cada pin como se indica a continuación:
 - a. Revise entre el pin y la caja del sensor.
 - b. Revise entre el pin y los otros pines como se describe a continuación:
 - Bobina impulsora + contra todos los otros pines excepto Bobina impulsora -
 - Bobina impulsora contra todos los otros pines excepto Bobina impulsora +
 - Pickoff izquierdo + contra todos los otros pines excepto Pickoff izquierdo -
 - Pickoff izquierdo contra todos los otros pines excepto Pickoff izquierdo +
 - Pickoff derecho + contra todos los otros pines excepto Pickoff derecho -
 - Pickoff derecho contra todos los otros pines excepto Pickoff derecho +
 - RTD + contra todos los otros pines excepto RTD y LLC/RTD
 - RTD contra todos los otros pines excepto RTD + y LLC/RTD
 - LLC/RTD contra todos los otros pines excepto RTD + y RTD -

Con el DMM en su rango más alto, debe haber una resistencia infinita en cada punta. Si hay algo de resistencia, hay un corto con la caja del sensor o entre los pines. Vea la Tabla 11-8 para conocer las posibles causas y soluciones. Si no se resuelve el problema, contacte con Micro Motion.

Tabla 11-8 Causas y soluciones de corto de sensor y cable con respecto a la caja

Causa	Solución posible
Humedad dentro del alojamiento del transmisor	 Asegúrese de que el alojamiento del transmisor esté seco y no haya corrosión.
Líquido o humedad dentro de la caja del sensor	Contacte con Micro Motion.
Corto interno en el paso de cables (pasaje sellado para cableado proveniente del sensor al transmisor)	Contacte con Micro Motion.

Para regresar a operación normal:

- 1. Siga los procedimientos adecuados para garantizar que el proceso de reconexión del transmisor no interfiera con los lazos de medición y control existentes.
- 2. Instale la conexión de sensor del transmisor en el paso de cable:
 - a. Gire el conector hasta que se inserten los pines.
 - b. Empuje hacia abajo hasta que el borde del conector esté al ras con la muesca del paso de cables.
 - c. Vuelva a poner el clip de retención deslizando la lengüeta del clip sobre el borde del conector (vea la etiqueta de instrucciones en el componente).
- 3. Vuelva a poner el transmisor en el alojamiento, y apriete los tornillos.
- 4. Vuelva a conectar los hilos de alimentación, baje la lengüeta de advertencia (Warning) y apriete el tornillo de la lengüeta.
- 5. Vuelva a conectar el cable PROFIBUS a los terminales PROFIBUS en el transmisor.
- 6. Enchufe el módulo interfaz de usuario en el transmisor. Hay cuatro posibles posiciones; seleccione la posición que sea más conveniente.
- 7. Apriete los tornillos de la interfaz de usuario.
- 8. Vuelva a poner la cubierta del alojamiento del transmisor en el módulo interfaz de usuario, y apriete los tornillos.
- 9. Encienda el transmisor.

Apéndice A Valores predeterminados y rangos

A.1 Generalidades

Este apéndice proporciona información sobre los valores predeterminados para la mayoría de los parámetros de los transmisores. Donde es adecuado, también se definen los rangos válidos.

Estos valores predeterminados representan la configuración del transmisor después de un master reset (restablecimiento maestro). Dependiendo de cómo se pidió el transmisor, es posible que ciertos valores hayan sido configurados en la fábrica.

A.2 Valores predeterminados y rangos usados más frecuentemente

La siguiente tabla contiene los valores predeterminados y los rangos para los ajustes de transmisor utilizados más frecuentemente.

Тіро	Ajuste	Predeterminado	Rango	Comentarios
Caudal	Dirección de caudal	Directo		
	Atenuación de caudal	0,64 seg	0,0–40,96 seg	El valor introducido por el usuario es corregido al valor inferior más cercano en la lista de valores preestablecidos. Para aplicaciones de gas, Micro Motion recomienda un valor mínimo de 2,56.
	Factor de calibración de caudal	1.00005.13		Para sensores de la Serie T, este valor representa los factores FCF y FT concatenados. Vea la Sección 6.2.2.
	Unidades de caudal másico	g/s		
	Cutoff de caudal másico	0,0 g/s		 Ajuste recomendado: Uso estándar – 0,2% del caudal nominal máximo del sensor Dosificación por lotes vacío- lleno-vacío – 2,5% del caudal nominal máximo del sensor
	Tipo de caudal volumétrico	Volumen de líquido		
	Unidades de caudal volumétrico	L/s		
	Cutoff de caudal volumétrico	0/0 L/s	0,0– <i>x</i> L/s	<i>x</i> se obtiene multiplicando el factor de calibración por 0,2, usando unidades de L/s.
Factores del	Factor de masa	1,00000		
médidor	Factor de densidad	1,00000		
	Factor de volumen	1,00000		

Tabla A-1 Valores predeterminados y rangos de transmisor

Valores predeterminados y rangos

Tabla A-1	Valores predeterminados	y rangos de transmisor	continuación
-----------	-------------------------	------------------------	--------------

Тіро	Ajuste	Predeterminado	Rango	Comentarios
Densidad	Atenuación de densidad	1,28 seg	0,0–40,96 seg	El valor introducido por el usuario es corregido al valor más cercano en la lista de valores preestablecidos.
	Unidades de densidad	g/cm ³		
	Cutoff de densidad	0,2 g/cm ³	0,0–0,5 g/cm ³	
	D1	0,00000		
	D2	1,00000		
	K1	1000,00		
	K2	50,000.00		
	FD	0,00000		
	Coeficiente de temperatura	4,44		
Slug flow	Límite inferior de slug flow	0,0 g/cm ³	0,0–10,0 g/cm ³	
	Límite superior de slug flow	5,0 g/cm ³	0,0–10,0 g/cm ³	
	Duración de slug	0,0 seg	0,0–60,0 seg	
Temperatura	Atenuación de temperatura	4,8 seg	0,0–38,4 seg	El valor introducido por el usuario es corregido al valor inferior más cercano en la lista de valores preestablecidos.
	Unidades de temperatura	°C		
	Factor de calibración de temperatura	1.00000T0.0000		
Presión	Unidades de presión	PSI		
	Factor de caudal	0,00000		
	Factor de densidad	0,00000		
	Presión de calibración	0,00000		
Sensor de la	D3	0,00000		
serie I	D4	0,00000		
	K3	0,00000		
	K4	0,00000		
	FTG	0,00000		
	FFQ	0,00000		
	DTG	0,00000		
	DFQ1	0,00000		
_	DFQ2	0,00000		
Eventos 1-5	Tipo	Bajo		
	Variable	Densidad		
	Punto de referencia (setpoint)	0,0		
	Unidades de punto de referencia	g/cm ³		

Tabla A-1 Valores predeterminados y rangos de transmisor continuación

Тіро	Ajuste	Predeterminado	Rango	Comentarios
Indicador	Luz de fondo encendida/apagada	On		
	Intensidad de la luz de fondo	63	0–63	
	Período de actualización	200 milisegundos	100–10,000 milisegundos	
	Variable 1	Caudal másico		
	Variable 2	Total de masa		
	Variable 3	Caudal volumétrico		
	Variable 4	Total de volumen		
	Variable 5	Densidad		
	Variable 6	Temperatura		
	Variable 7	Ganancia de la bobina impulsora		
	Variable 8–15	None (ninguna)		
	Inicio/paro de totalizador del indicador	Inhabilitado		
	Puesta a cero de totalizador del indicador	Inhabilitada		
	Desplazamiento automático del indicador	Inhabilitado		
	Menú offline del indicador	Habilitado		
	Contraseña offline del indicador	Inhabilitada		
	Menú de alarmas del indicador	Habilitado		
	Reconocer todas las alarmas del indicador	Habilitado		
	Contraseña offline	1234		
	Rapidez de desplazamiento automático	10 seg		
Comunicación digital	Dirección de nodo PROFIBUS-DP	126		
	Puerto infrarrojo habilitado/ inhabilitado	Inhabilitado		
	Protección contra escritura del puerto infrarrojo	Sólo lectura		
	Dirección Modbus	1		
	Soporte de Modbus ASCII	Habilitado		
	Orden de bytes de punto flotante	3–4 1–2		
	Acción de fallo	None (ninguna)		
	Timeout de fallo	0 segundos	0,0–60,0 seg	

Apéndice B Componentes del transmisor

B.1 Generalidades

Este apéndice proporciona ilustraciones de los componentes y de cableado del transmisor, para usarse en la solución de problemas. Para obtener información detallada sobre los procedimientos de instalación y cableado, vea el manual de instalación del transmisor.

B.2 Componentes del transmisor

El transmisor modelo 2400S DP se monta en un sensor. La Figura B-1 proporciona una vista de componentes del transmisor modelo 2400S DP.

Figura B-1 Transmisor modelo 2400S DP – Vista de componentes

B.3 Terminales y conectores

La Figura B-2 muestra los terminales y los conectores que se encuentran debajo del módulo interfaz de usuario:

- Para tener acceso al conector PROFIBUS, usted debe quitar la cubierta del alojamiento del transmisor y el módulo interfaz de usuario.
- Para tener acceso a los terminales de la fuente de alimentación o al tornillo de puesta a tierra, usted debe quitar la cubierta del alojamiento del transmisor y el módulo interfaz de usuario, aflojar el tornillo de la lengüeta de advertencia (Warning) y abrir esta lengüeta.

Para instrucciones detalladas, vea el manual titulado *Transmisores modelo 2400S de Micro Motion: Manual de instalación*.

Figura B-2 Terminales

Apéndice C Diagramas de flujo de menús – Transmisores modelo 2400S DP

C.1 Generalidades

Este apéndice proporciona los siguientes diagramas de flujo de menús para el transmisor modelo 2400S DP:

- Menús de ProLink
 - Menú principal vea la Figura C-1
 - Menú de configuración vea las Figuras C-2 y C-3
- Menús de EDD
 - Menú principal vea la Figura C-4
 - Menú View vea la Figura C-5
 - Menú del dispositivo vea las Figuras C-6 y C-7
 - Menú de configuración vea las Figuras C-8 a C-11
 - Menú de especialista vea la Figura C-12
- Menús del indicador
 - Menú off-line: Nivel superior vea la Figura C-13
 - Mantenimiento off-line: Información de versión vea la Figura C-14
 - Mantenimiento off-line: Configuración vea la Figura C-15
 - Mantenimiento off-line: Ajuste del cero vea la Figura C-16
 - Mantenimiento off-line: Verificación del medidor vea la Figura C-17

Para información sobre los códigos y abreviaciones utilizadas en el indicador, vea el Apéndice E.

Para conocer los procedimientos de calibración y verificación del medidor, vea el Capítulo 10.

C.2 Información de la versión

Estos diagramas de flujo de los menús se basan en:

- Software del transmisor v1.10
- ProLink II v2.5
- EDD rev1

Los menús pueden variar un poco para diferentes versiones de estos componentes.

Diagramas de flujo de menús - Transmisores modelo 2400S DP

C.3 Diagramas de flujo de menús de ProLink II

Figura C-1 Menú principal de ProLink II

para mediciones en la industria petrolera.

(1) Se muestra sólo si Vol Flow Type es Liquid Volume.

(2) Se muestra sólo si Vol Flow Type es Standard Gas Volume.

(3) Todos los valores de este panel son de sólo lectura, y se muestran sólo para fines informativos.

(4) Requiere ProLink II v2.6 ó posterior.

Figura C-3 Menú de configuración ProLink II continuación

⁽²⁾ Disponible sólo si está instalada la aplicación para mediciones en la industria petrolera.

(3) Disponible sólo si está instalada la aplicación de densidad mejorada.

C.4 Diagramas de flujo de menús de EDD

Si usted se conecta como usuario Maintenance, el menú de funciones I&M (vea la Figura C-12) no está disponible. Todos los demás menús de EDD están disponibles.

Si usted se conecta como usuario Specialist, todos los menús de EDD están disponibles.

Figura C-4 EDD – Menú principal

- (1) Sólo volumen de líquido.
- (2) Disponible sólo si la medición de volumen estándar de gas está habilitada.
- (3) Disponible sólo si está instalada la aplicación para mediciones en la industria petrolera.
- (4) Disponible sólo si está instalada la aplicación de densidad mejorada.

Alarm seven status, bits 1–8 Alarm eight status, bits 1–8

Figura C-9 EDD – Menú de configuración continuación

>>>> Maximum curve fit order Maximum fit order for 5*5 curve

Diagramas de flujo de menús - Transmisores modelo 2400S DP

Figura C-12 Menú Specialist de EDD – Identificación

C.5 Diagramas de flujo de menús del indicador

Figura C-13 Menú del indicador – Menú Off-line, nivel superior

(1) Esta opción se muestra sólo si el software de verificación del medidor está instalado en el transmisor.

Figura C-14 Menú del indicador – mantenimiento off-line – información de versión

(1) Esta opción se muestra sólo si la correspondiente Ingeniería a Orden (ETO) o aplicación está instalada en el transmisor.

Figura C-15 Menú del indicador – mantenimiento off-line – configuración

(1) Se muestra Vol o GSV.

(2) Se muestra sólo si la aplicación de medición de petróleo está instalada.

(3) Se muestra sólo si la aplicación de densidad mejorada está instalada.

(4) Se muestra sólo si el desplazamiento automático está habilitado.

(5) Se muestra sólo si la contraseña off-line está habilitada.

Figura C-17 Menú del indicador – mantenimiento off-line – verificación del medidor

Códigos del indicado

Apéndice D Parámetros de bus PROFIBUS

D.1 Generalidades

Este apéndice documenta los parámetros de bus que se incluyen en el bloque PROFIBUS. Se documentan los siguientes bloques:

- Bloque Measurement (Slot 1) vea la Tabla D-2
- Bloque Calibration (Slot 2) vea la Tabla D-3
- Bloque Diagnostic (Slot 3) vea la Tabla D-4
- Bloque Device information (Slot 4) vea la Tabla D-5
- Bloque Local display (Slot 5) vea la Tabla D-6
- Bloque API (Slot 6) vea la Tabla D-7
- Bloque Enhanced density (Slot 7) vea la Tabla D-8
- Bloque I&M functions (Slot 0) vea la Tabla D-9

Se documentan los siguientes códigos:

- Códigos de unidades de medición de totalizador e inventario vea las Tablas D-10 a la D-12
- Códigos de variables de proceso vea la Tabla D-13
- Códigos de índice de alarmas vea la Tabla D-14

Nota: para conocer los códigos de unidades de medición usados para las variables de proceso, vea la Sección 6.3.

Para cada bloque, se muestran todos los parámetros contenidos en el bloque. Para cada parámetro, se documenta lo siguiente:

- Índice el índice del parámetro dentro del bloque
- Nombre el nombre usado para este parámetro en el código
- Tipo de dato el tipo de dato del parámetro (vea la Sección D.2)
- Clase de memoria la clase de memoria requerida por el parámetro, y la rapidez de actualización (en Hz) si aplica:
 - D = almacenamiento dinámico (datos cíclicos el parámetro se actualiza periódicamente)
 - S = almacenamiento estático (datos acíclicos el parámetro cambia con una escritura deliberada)
 - N = parámetro no volátil (se retiene cuando se apaga y se enciende el transmisor)
- Acceso
 - R = Sólo lectura
 - R/W = Lectura/escritura

D.2 Tipos de datos PROFIBUS-DP y códigos de los tipos de datos

La Tabla D-1 documenta los tipos de datos y los códigos de tipos de datos que se usan con los parámetros de bus PROFIBUS.

Tipo de dato	Tamaño (bytes)	Descripción	Rango	Código
Boolean	1	Verdadero/falso	• 0 = Falso • 1 = Verdadero	BOOL
Integer8	1	Valor entero de 8 bits con signo	-128 a +127	INT8
Unsigned8	1	Valor entero de 8 bits sin signo	0 a 255	USINT8
Integer16	2	Valor entero de 16 bits con signo	–32768 a +32767	INT16
Unsigned16	2	Valor entero de 16 bits sin signo	0 a 65535	USINT16
Integer32	4	Valor entero de 32 bits con signo	-2147483648 a +2147483647	INT32
Unsigned32	4	Entero de 32 bits sin signo	0 a 4294967296	USINT32
FLOAT	4	Un número de punto flotante de simple precisión IEEE	-3,8E38 a +3,8E38	FLOAT
OCTET STRING	Hasta 128 bytes	Un arreglo de caracteres ASCII	N/A	STRING
BIT_ENUMERATED	Hasta 128 bytes	Un valor enumerado donde cada bit representa una enumeración diferente	N/A	B_ENUM

Tabla D-1 Tipos de datos PROFIBUS-DP

D.3 Bloque Measurement (Slot 1)

Tabla D-2 Bloque Measurement (Slot 1)

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Comentarios
4	SNS_MassFlow	FLOAT	D (20 Hz)	R	Valor actual de la variable de proceso de caudal másico
5	SNS_MassFlowUnits	USINT16	S	R/W	Unidad de medición de caudal másico Vea la Tabla 6-2 para conocer los códigos
6	SNS_Temperature	FLOAT	D (20 Hz)	R	Valor actual de la variable de proceso de temperatura
7	SNS_TemperatureUnits	USINT16	S	R/W	Unidad de medición de temperatura Vea la Tabla 6-6 para conocer los códigos
8	SNS_Density	FLOAT	D (20 Hz)	R	Valor actual de la variable de proceso de densidad
9	SNS_DensityUnits	USINT16	S	R/W	Unidad de medición de densidad Vea la Tabla 6-5 para conocer los códigos
10	SNS_VolFlow	FLOAT	D (20 Hz)	R	Valor actual de la variable de proceso de caudal volumétrico de líquido
11	SNS_VolumeFlowUnits	USINT16	S	R/W	Unidad de medición de caudal volumétrico de líquido Vea la Tabla 6-3 para conocer los códigos
12	SNS_DampingFlowRate	FLOAT	S	R/W	Valor de atenuación de caudal 0,0 a 60,0 seg
13	SNS_DampingTemp	FLOAT	S	R/W	Valor de atenuación de temperatura 0,0 a 80,0 seg

Tabla D-2 Bloque Measurement (Slot 1) continuación

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Comentarios
14	SNS_DampingDensity	FLOAT	S	R/W	Valor de atenuación de densidad 0,0 a 60,0 seg
15	SNS_MassMeterFactor	FLOAT	S	R/W	Factor de medidor para caudal másico 0,8 a 1,2
16	SNS_DensMeterFactor	FLOAT	S	R/W	Factor de medidor para densidad 0,8 a 1,2
17	SNS_VolMeterFactor	FLOAT	S	R/W	Factor de medidor para caudal volumétrico 0,8 a 1,2
18	SNS_MassFlowCutoff	FLOAT	S	R/W	Cutoff de caudal másico 0 al límite del sensor
19	SNS_VolumeFlowCutoff	FLOAT	S	R/W	Cutoff de caudal volumétrico 0 al límite del sensor
20	SNS_LowDensityCutoff	FLOAT	S	R/W	Cutoff de densidad 0,0 a 0,5
21	SNS_FlowDirection	USINT16	S	R/W	 0 = Sólo directo 1 = Sólo inverso 2 = Bidireccional 3 = Valor absoluto 4 = Negado/Sólo directo 5 = Negado/Bidireccional
22	SNS_StartStopTotals	USINT16		R/W	 0x0000 = Detener totalizadores 0x0001 = Iniciar totalizadores
23	SNS_ResetAllTotal	USINT16		R/W	• 0x0000 = Sin acción • 0x0001 = Poner a cero
24	SNS_ResetAll Inventories	USINT16		R/W	• 0x0000 = Sin acción • 0x0001 = Poner a cero
25	SNS_ResetMassTotal	USINT16		R/W	• 0x0000 = Sin acción • 0x0001 = Poner a cero
26	SNS_ResetLineVolTotal	USINT16		R/W	Totalizador de volumen de líquido • 0x0000 = Sin acción • 0x0001 = Poner a cero
27	SNS_MassTotal	FLOAT	D (20 Hz)	R	Valor actual del total de masa
28	SNS_VolTotal	FLOAT	D (20 Hz)	R	Valor actual de total de volumen de líquido
29	SNS_MassInventory	FLOAT	D (20 Hz)	R	Valor actual del inventario de masa
30	SNS_VolInventory	FLOAT	D (20 Hz)	R	Valor actual de inventario de volumen de líquido
31	SNS_MassTotalUnits	USINT16	S	R	Unidad de medición de total/inventario de masa Vea la Tabla D-10 para conocer los códigos
32	SNS_VolTotalUnits	USINT16	S	R	Unidad de medición de total/inventario de volumen de líquido Vea la Tabla D-11 para conocer los códigos
33	SNS_EnableGSV ⁽¹⁾	USINT16	S	R/W	Habilite la medición de caudal volumétrico estándar de gas • 0x0000 = inhabilitada • 0x0001 = habilitada
34	SNS_GSV_GasDens	FLOAT	S	R/W	Densidad estándar del gas
35	SNS_GSV_VolFlow	FLOAT	D (20 Hz)	R	Valor actual de la variable de proceso de caudal volumétrico estándar de gas
36	SNS_GSV_VolTot	FLOAT	D (20 Hz)	R	Valor actual de total de volumen estándar de gas

Parámetros de bus PROFIBUS

Tabla D-2 Bloque Measurement (Slot 1) continuación

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Comentarios
37	SNS_GSV_VolInv	FLOAT	D (20 Hz)	R	Valor actual de inventario de volumen estándar de gas
38	SNS_GSV_FlowUnits	USINT16	S	R/W	Unidad de medición de caudal volumétrico estándar de gas Vea la Tabla 6-4 para conocer los códigos
39	SNS_GSV_TotalUnits	USINT16	S	R	Unidad de medición de total/inventario de volumen estándar de gas Vea la Tabla D-12 para conocer los códigos
40	SNS_GSV_FlowCutoff	FLOAT	S	R/W	Cutoff de caudal volumétrico estándar de gas => 0,0
41	SNS_ResetGSVolTotal	USINT16	S	R/W	• 0x0000 = Sin acción • 0x0001 = Poner a cero
42	SNS_ResetAPIGSVInv	USINT16	S	R/W	• 0x0000 = Sin acción • 0x0001 = Poner a cero
43	SNS_ResetMassInv	USINT16	S	R/W	• 0x0000 = Sin acción • 0x0001 = Poner a cero
44	SNS_ResetVolInv	USINT16	S	R/W	• 0x0000 = Sin acción • 0x0001 = Poner a cero

(1) Si la medición de volumen estándar de gas está habilitada, la medición de volumen de líquido está inhabilitada, y viceversa.

D.4 Bloque Calibration (Slot 2)

Tabla D-3 Bloque Calibration (Slot 2)

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
4	SNS_FlowCalGain	FLOAT	S	R/W	Factor de calibración de caudal (cadena de 6 caracteres)
5	SNS_FlowCalTemp Coeff	FLOAT	S	R/W	Coeficiente de temperatura para caudal (cadena de 4 caracteres)
6	SNS_FlowZeroCal	USINT16		R/W	 0x0000 = Cancelar calibración de ajuste del cero 0x0001 = Iniciar calibración del ajuste del cero
7	SNS_MaxZeroingTime	USINT16	S	R/W	Zero time Rango: 5–300 segundos
8	SNS_AutoZeroStdDev	FLOAT	S	R	Desviación estándar del autoajuste del cero
9	SNS_AutoZeroValue	FLOAT	S	R/W	Desviación a caudal cero de la señal de caudal presente, en µseg
10	SNS_FailedCal	FLOAT	S	R	Valor del cero si la calibración falla
11	SNS_K1Cal	USINT16		R/W	 0x0000 = Ninguno 0x0001 = Iniciar calibración D1
12	SNS_K2Cal	USINT16		R/W	• 0x0000 = Ninguno • 0x0001 = Iniciar calibración D2
13	SNS_FdCal	USINT16		R/W	• 0x0000 = Ninguno • 0x0001 = Iniciar calibración FD
14	SNS_TseriesD3Cal	USINT16		R/W	• 0x0000 = Ninguno • 0x0001 = Iniciar calibración D3
Tabla D-3 Bloque Calibration (Slot 2) continuación

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
15	SNS_TseriesD4Cal	USINT16		R/W	• 0x0000 = Ninguno • 0x0001 = Iniciar calibración D4
16	SNS_K1	FLOAT	S	R/W	Constante 1 para calibración de densidad (µseg)
17	SNS_K2	FLOAT	S	R/W	Constante 2 para calibración de densidad (µseg)
18	SNS_FD	FLOAT	S	R/W	Constante de calibración de densidad fluyente (µseg)
19	SNS_TseriesK3	FLOAT	S	R/W	Constante 3 para calibración de densidad (µseg)
20	SNS_TseriesK4	FLOAT	S	R/W	Constante 4 para calibración de densidad (µseg)
21	SNS_D1	FLOAT	S	R/W	Densidad del fluido de calibración D1
22	SNS_D2	FLOAT	S	R/W	Densidad del fluido de calibración D2
23	SNS_CalValForFD	FLOAT	S	R/W	Densidad del fluido de calibración de densidad fluyente
24	SNS_TseriesD3	FLOAT	S	R/W	Densidad del fluido de calibración D3
25	SNS_TseriesD4	FLOAT	S	R/W	Densidad del fluido de calibración D4
26	SNS_DensityTempCoeff	FLOAT	S	R/W	Coeficiente de temperatura para densidad
27	SNS_TSeriesFlow TGCO	FLOAT	S	R/W	Valor FTG de la serie T
28	SNS_TSeriesFlow FQCO	FLOAT	S	R/W	Valor FFQ de la Serie T
29	SNS_TSeriesDens TGCO	FLOAT	S	R/W	Valor DTG de la serie T
30	SNS_TSeriesDens FQCO1	FLOAT	S	R/W	Valor DFQ1 de la serie T
31	SNS_TSeriesDens FQCO2	FLOAT	S	R/W	Valor DFQ2 de la serie T
32	SNS_TempCalOffset	FLOAT	S	R/W	Desviación de calibración de temperatura
33	SNS_TempCalSlope	FLOAT	S	R/W	Pendiente de calibración de temperatura
34	SNS_EnableExtTemp	USINT16	S	R/W	Use temperatura externa para API y ED: • 0x0000 = Inhabilitada • 0x0001 = Habilitada
35	SNS_ExternalTempInput	FLOAT	S	R/W	Valor de temperatura externa
36	SNS_EnablePresComp	Method	S	R/W	Compensación de presión: • 0x0000 = Inhabilitada • 0x0001 = Habilitada
37	SNS_ExternalPresInput	FLOAT	D (20)	R/W	Valor de presión exerna
38	SNS_PressureUnits	USINT16	S	R/W	Unidad de medición de presión Vea la Tabla 6-7 para conocer los códigos
39	SNS_FlowPresComp	FLOAT	S	R/W	Factor de corrección de presión para caudal
40	SNS_DensPresComp	FLOAT	S	R/W	Factor de corrección de presión para densidad
41	SNS_FlowCalPres	FLOAT	S	R/W	Presión de calibración de caudal
42	SNS_FlowZeroRestore		S	R/W	Restauración del cero de fábrica: • 0x0000 = Sin acción • 0x0001 = Restaurar
43	DB_SNS_AutoZero Factory		S	R	Valor de fábrica para desviación a caudal cero de la señal de caudal, en µseg

D.5 Bloque Diagnostic (Slot 3)

Tabla D-4Bloque Diagnostic (Slot 3)

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
1	SNS_SlugDuration	FLOAT	S	R/W	Duración de slug Unidad: segundos Rango: 0 a 60 segundos
2	SNS_SlugLo	FLOAT	S	R/W	Límite inferior de slug flow Unidad: g/cm ³ Rango: 0–10 g/cm ³
3	SNS_SlugHi	FLOAT	S	R/W	Límite superior de slug flow Unidad: g/cm ³ Rango: 0–10 g/cm ³
4	UNI_PCIndex	USINT16	S	R/W	Índice de evento discreto 0, 1, 2, 3, 4
5	SNS_PC_Action	USINT16	S	R/W	Tipo de evento discreto • 0 = Mayor que Setpoint A • 1 = Menor que Setpoint A • 2 = Dentro del rango (A=< <i>x</i> <=B) • 3 = Fuera del rango (A>= <i>x</i> o B<= <i>x</i>)
6	SNS_PC_SetPointA	FLOAT	S	R/W	Valor de Setpoint A
7	SNS_PC_SetPointB	FLOAT	S	R/W	Valor de Setpoint B
8	SNS_PC_PVCode	USINT16	S	R/W	Variable de proceso de evento discreto Vea la Tabla D-13 para conocer los códigos
9	SNS_PC_Status	B_ENUM	D (20 Hz)	R	Estatus del evento discreto • $0x0001 = DE_0$ activo • $0x0002 = DE_1$ activo • $0x0004 = DE_2$ activo • $0x0008 = DE_3$ activo • $0x0010 = DE_4$ activo • Bits 5 a 15 no definidos
10	SNS_StatusWords1	B_ENUM	D (20 Hz)	R	 0x0001 = Error de checksum de la EEPROM del procesador 0x0002 = Error de prueba de la RAM del procesador 0x0004 = No se usa 0x0008 = Fallo de sensor 0x0010 = Temperatura fuera de rango 0x0020 = La calibración falló 0x0040 = Otro fallo 0x0080 = Transmisor inicializándose 0x0100 = No se usa 0x0200 = No se usa 0x0400 = Modo de simulación activo (A132) 0x0800 = Iror de watchdog 0x2000 = No se usa 0x1000 = Error de watchdog 0x2000 = No se usa 0x4000 = No se usa 0x8000 = Fallo

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
11	SNS_StatusWords2	B_ENUM	D (20 Hz)	R	 0x0001 = No se usa 0x0002 = No se usa 0x0004 = No se usa 0x0008 = No se usa 0x0010 = Densidad fuera de rango 0x0020 = Ganancia de la bobina fuera de rango 0x0040 = Fallo de comunicación de PIC\ Daughterboard 0x0080 = No se usa 0x0100 = Error de memoria no volátil (CP) 0x0200 = Error de RAM (CP) 0x0400 = Fallo del sensor 0x0800 = Temperatura fuera de rango 0x1000 = Señal de entrada fuera de rango 0x2000 = No se usa 0x4000 = Transmisor no caracterizado 0x8000 = No se usa
12	SNS_StatusWords3	B_ENUM	D (20 Hz)	R	 0x0001 = No se usa 0x0002 = Restablecimiento de alimentación 0x0004 = Transmisor inicializándose 0x0008 = No se usa 0x0010 = No se usa 0x0020 = No se usa 0x0040 = No se usa 0x0080 = No se usa 0x0100 = La calibración falló 0x0200 = La calibración falló: bajo 0x0400 = La calibración falló: alto 0x0800 = La calibración falló: ruidoso 0x1000 = Transmisor defectuoso 0x2000 = Pérdida de datos 0x4000 = Calibración en progreso 0x8000 = Slug flow
13	SNS_StatusWords4	B_ENUM	D (20 Hz)	R	 0x0001 = API: temperatura fuera de rango 0x0002 = API: densidad fuera de rango 0x0004 = RTD de la línea fuera de rango 0x0008 = RTD del medidor fuera de rango 0x0010= Caudal inverso 0x0020 = Error de datos de fábrica 0x0040 = ED: curva mala 0x0080 = Override (anulación) de LMV 0x0100 = ED: error de extrapolación 0x0200 = Se necesita factor de calibración 0x0400 = No se usa 0x0800 = No se usa 0x0800 = Error de memoria no volátil (CP) 0x4000 = Error de memoria no volátil (CP) 0x8000 = Error de memoria no volátil (CP)

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
14	SNS_StatusWords5	B_ENUM	D (20 Hz)	R	 0x0001 = Sector de arranque (CP) 0x0002 = No se usa 0x0004 = No se usa 0x0008 = No se usa 0x0010 = No se usa 0x0020 = No se usa 0x0040 = Calibración D3 en progreso 0x0080 = Calibración D4 en progreso 0x0100 = No se usa 0x0200 = No se usa 0x0200 = No se usa 0x0400 = Calibración de pendiente de temperatura en progreso 0x0800 = Calibración de offset de temperatura en progreso 0x1000 = Calibración D2 en progreso 0x2000 = Calibración D2 en progreso 0x4000 = Calibración del ajuste del cero en progreso
15	SNS_StatusWords6	B_ENUM	D (20 Hz)	R	• $0x0001 = No se usa$ • $0x0002 = No se usa$ • $0x0004 = No se usa$ • $0x0008 = No se usa$ • $0x0010 = No se usa$ • $0x0020 = No se usa$ • $0x0040 = No se usa$ • $0x0080 = No se usa$ • $0x0100 = DE_0 activo$ • $0x0200 = DE_1 activo$ • $0x0400 = DE_2 activo$ • $0x0400 = DE_3 activo$ • $0x1000 = DE_4 activo$ • $0x2000 = No se usa$ • $0x4000 = No se usa$ • $0x8000 = Tipo de tarjeta incorrecto (A030)$
16	SNS_StatusWords7	B_ENUM	D (20 Hz)	R	 0x0001 = Combinación K1/FCF no reconocida 0x0002 = En calentamiento 0x0004 = Alimentación baja (A031) 0x0008 = Tubo no lleno (A033) 0x0010 = Verificación del medidor / salidas en fallo (A032)⁽¹⁾ 0x0020 = Verificación del medidor / salidas en el último valor (A131)⁽¹⁾ 0x0040 = Error de EEPROM de PIC UI 0x0040 = No se usa 0x0100 = No se usa 0x0000 = No se usa 0x0000 = No se usa 0x1000 = No se usa 0x2000 = No se usa 0x4000 = La verificación del medidor falló (A034) 0x8000 = Se canceló la verificación del medidor (A035)

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
17	SNS_StatusWords8	B_ENUM	D (20 Hz)	R	 0x0001 = No se usa 0x0002 = No se usa 0x0004 = No se usa 0x0008 = No se usa 0x0010 = No se usa 0x0020 = No se usa 0x0040 = No se usa 0x0080 = No se usa 0x0100 = No se usa 0x0200 = No se usa 0x0400 = No se usa 0x0400 = No se usa 0x0400 = No se usa 0x0800 = No se usa 0x1000 = No se usa 0x2000 = No se usa 0x2000 = No se usa 0x4000 = No se usa 0x8000 = No se usa
18	SYS_DigCommFault ActionCode	USINT16	S	R/W	 0 = Upscale 1 = Downscale 2 = Cero 3 = NAN 4 = El caudal se va a cero 5 = Ninguno
19	DB_SYS_TimeoutValue LMV	USINT16	S	R/W	Valor de timeout de fallo Rango: 0–60 segundos
20	UNI_Alarm_Index	USINT16	S	R/W	El índice de alarma se usa para configurar o leer la prioridad de alarmas, o para reconocer alarmas Vea la Tabla D-13 para los códigos de índice de alarmas
21	SYS_AlarmSeverity	USINT16	S	R/W	• 0 = Ignorar • 1 = Informativa • 2 = Fallo
22	SYS_AlarmStatus	B_ENUM	D (20 Hz)	R/W	El estatus de la alarma es identificado por el índice de alarma. • 0x00 = Reconocida/eliminada • 0x01 = Reconocida/activa • 0x10 = No reconocida/eliminada • 0x11 = No reconocida/activa Escribir 0 para reconocer la alarma
23	SYS_AlarmCount	USINT16	S	R	El número de transiciones de inactiva a activa de la alarma es identificado por el índice de alarma.
24	SYS_AlarmPosted	USINT32	S	R	El número de segundos desde el último restable- cimiento de energía (Index 52) en que se emitió la alarma identificada por el índice de alarma
25	SYS_AlarmCleared	USINT32	S	R	El número de segundos desde el último restable- cimiento de energía (Index 52) en que se eliminó la alarma identificada por el índice de alarma
26	UNI_AlarmHistoryIndex	USINT16	S	R/W	La entrada en el registro del historial de alarmas Rango: 0–49
27	SYS_AlarmNumber	USINT16	S	R	El número de alarma que corresponde a la entrada del historial de alarmas identificado por el índice de alarma 1 = A001, 2 = A002, etc.

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
28	SYS_AlarmEvent	USINT16	S	R	El cambio del estatus de alarma que corresponde a la entrada del historial de alarmas identificado por el índice de alarma • 1 = Emitida • 2 = Eliminada
29	SYS_AlarmTime	USINT32	S	R	La fecha y hora del cambio del estatus de alarma que corresponde a la entrada del historial de alarmas identificado por el índice de alarma Segundos desde el último restablecimiento de energía (Index 52)
30	SYS_AckAllAlarms	USINT16	S	R/W	• 0x0000 = No se usa • 0x0001 = Reconocer
31	SYS_ClearAlarmHistory	USINT16	S	R/W	• 0x0000 = No se usa • 0x0001 = Poner a cero
32	SNS_DriveGain	FLOAT	D (20 Hz)	R	La ganancia de la bobina impulsora %
33	SNS_RawTubeFreq	FLOAT	D (20 Hz)	R	La frecuencia del tubo Unidad: Hz
34	SNS_LiveZeroFlow	FLOAT	D (20 Hz)	R	El valor no filtrado de caudal másico Unidad: unidad configurada para caudal másico
35	SNS_LPOamplitude	FLOAT	D (20 Hz)	R	El voltaje del pickoff izquierdo Unidad: voltios
36	SNS_RPOamplitude	FLOAT	D (20 Hz)	R	El voltaje del pickoff derecho Unidad: voltios
37	SNS_BoardTemp	FLOAT	D (20 Hz)	R	La temperatura de la tarjeta Unidad: °C
38	SNS_MaxBoardTemp	FLOAT	D (20 Hz)	R	La temperatura máxima de la electrónica Unidad: °C
39	SNS_MinBoardTemp	FLOAT	D (20 Hz)	R	La temperatura mínima de la electrónica Unidad: °C
40	SNS_AveBoardTemp	FLOAT	D (20 Hz)	R	La temperatura promedio de la electrónica Unidad: °C
41	SNS_MaxSensorTemp	FLOAT	D (20 Hz)	R	La temperatura máxima del sensor Unidad: °C
42	SNS_MinSensorTemp	FLOAT	D (20 Hz)	R	La temperatura mínima del sensor Unidad: °C
43	SNS_AveSensorTemp	FLOAT	D (20 Hz)	R	La temperatura promedio del sensor Unidad: °C
44	SNS_WireRTDRes	FLOAT	D (20 Hz)	R	La resistencia del cable de 9 hilos Unidad: ohmios
45	SNS_LineRTDRes	FLOAT	D (20 Hz)	R	La resistencia del RTD de la línea del proceso Unidad: ohmios
46	SYS_PowerCycleCount	USINT16	D	R	El número de veces que se apaga y se enciende el transmisor
47	SYS_PowerOnTimeSec	USINT32	S	R	La cantidad acumulativa de tiempo que el transmisor ha estado encendido desde el último restablecimiento Unidad: segundos desde el último restablecimiento

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
48	SNS_InputVoltage	FLOAT	S	R	Voltaje de la fuente Coriolis (medición interna), ~12 VCC Unidad: voltios
49	SNS_TargetAmplitude	FLOAT	S	R	La amplitud con la que el transmisor intenta impulsar al sensor Unidad: mV/HZ
50	SNS_CaseRTDRes	FLOAT	S	R	La resistencia del RTD de la caja (del medidor) Unidad: ohmios
51	SYS_RestoreFactory Config	USINT16	S	R/W	• 0x0000 = Sin acción • 0x0001 = Restaurar
52	SYS_ResetPowerOn Time	USINT16	S	R/W	• 0x0000 = Sin acción • 0x0001 = Poner a cero
53	FRF_EnableFCF Validation	USINT16	S	R/W	Tipo de verificación del medidor que se va a realizar • 0x0000 = Inhabilitar • 0x0001 = Normal • 0x0002 = Verificación de fábrica con aire • 0x0003 = Verificación de fábrica con agua • 0x0004 = Depurar • 0x0006 = Continuar con la medición ⁽²⁾
54	FRF_FaultAlarm	USINT16	D	R/W	El estado de las salidas cuando la rutina de verificación del medidor está en ejecución • 0 = Último valor • 1 = Fallo
55	DB_FRF_StiffnessLimit	FLOAT	S	R/W	El punto de referencia del límite de rigidez. Representa el porcentaje Sin unidad
56	FRF_AlgoState	USINT16	S	R	El estado actual de la rutina de verificación del medidor 1–18
57	FRF_AbortCode	USINT16	S	R	La razón por la que se canceló la rutina de verificación del medidor: • 0 = No hay error • 1 = Cancelación manual • 2 = Timeout de watchdog • 3 = Desplazamiento de frecuencia • 4 = Voltaje máximo de la bobina impulsora • 5 = Desviación estándar de corriente alta de la bobina impulsora • 6 = Valor medio de la corriente alta de la bobina impulsora • 7 = Error reportado por el lazo de la bobina impulsora • 8 = Desviación estándar de Delta T alta • 9 = Valor alto de Delta T • 10 = Estado en ejecución
58	FRF_StateAtAbort	USINT16	S	R	El estado de la rutina de verificación del medidor cuando fue cancelada 1–18
59	DB_FRF_ StiffOutLimLpo	USINT16	D	R	 ¿Está la rigidez de entrada fuera de los límites? 0 = No 1 = Sí
60	DB_FRF_ StiffOutLimRpo	USINT16	D	R	 ¿Está la rigidez de salida fuera de los límites? 0 = No 1 = Sí

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
61	FRF_Progress	USINT16	S	R	El progreso de la rutina de verificación del medidor %
62	DB_FRF_StiffnessLpo_ Mean	FLOAT	S	R	La rigidez de entrada actual calculada como una media
63	DB_FRF_StiffnessRpo_ Mean	FLOAT	S	R	La rigidez de salida actual calculada como una media
64	DB_FRF_Damping_ Mean	FLOAT	S	R	La atenuación actual calculada como una media
65	DB_FRF_MassLpo_ Mean	FLOAT	S	R	La masa de entrada actual calculada como una media
66	DB_FRF_MassRpo_ Mean	FLOAT	S	R	La masa de salida actual calculada como una media
67	DB_FRF_StiffnessLpo StdDev	FLOAT	S	R	La rigidez de entrada actual calculada como una desviación estándar
68	DB_FRF_StiffnessRpo_ StdDev	FLOAT	S	R	La rigidez de salida actual calculada como una desviación estándar
69	DB_FRF_Damping_ StdDev	FLOAT	S	R	La atenuación actual calculada como una desviación estándar
70	DB_FRF_MassLpo_ StdDev	FLOAT	S	R	La masa de entrada actual calculada como una desviación estándar
71	DB_FRF_MassRpo_ StdDev	FLOAT	S	R	La masa de salida actual calculada como una desviación estándar
72	DB_FRF_StiffnessLpo_ AirCal	FLOAT	S	R	La rigidez de entrada calculada como una media durante la calibración con aire en fábrica
73	DB_FRF_StiffnessRpo_ AirCal	FLOAT	S	R	La rigidez de salida calculada como una media durante la calibración con aire en fábrica
74	DB_FRF_Damping_ AirCal	FLOAT	S	R	La atenuación calculada como una media durante la calibración con aire en fábrica
75	DB_FRF_MassLpo_ AirCal	FLOAT	S	R	La masa de entrada calculada como una media durante la calibración con aire en fábrica
76	DB_FRF_MassRpo_ AirCal	FLOAT	S	R	La masa de salida calculada como una media durante la calibración con aire en fábrica
77	DB_FRF_StiffnessLpo_ WaterCal	FLOAT	S	R	La rigidez de entrada calculada como una media durante la calibración con agua en fábrica
78	DB_FRF_StiffnessRpo_ WaterCal	FLOAT	S	R	La rigidez de salida calculada como una media durante la calibración con agua en fábrica
79	DB_FRF_Damping_ WaterCal	FLOAT	S	R	La atenuación calculada como una media durante la calibración con agua en fábrica
80	DB_FRF_MassLpo_ WaterCal	FLOAT	S	R	La masa de entrada calculada como una media durante la calibración con agua en fábrica
81	DB_FRF_MassRpo_ WaterCal	FLOAT	S	R	La masa de salida calculada como una media durante la calibración con agua en fábrica

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
82	DB_UNI_DE_ ActionCode	USINT16	S	R/W	 La acción que realizará el evento identificado por el índice de asignación de evento discreto 1 = Iniciar ajuste del cero del sensor 2 = Poner a cero el total de masa 3 = Poner a cero el total de volumen 4 = Poner a cero el total de volumen API 5 = Poner a cero el volumen de densidad mejorada 6 = Poner a cero el total de volumen neto de densidad mejorada 7 = Poner a cero el total de volumen neto de densidad mejorada 8 = Poner a cero todos los totales 9 = Iniciar/parar todos los totales 18 = Incrementar la curva de densidad mejorada 21 = Poner a cero el total de volumen estándar de gas
83	DB_UNI_DE_ Assignment	USINT16	S	R/W	Índice de asignación de evento discreto • 57 = Evento discreto 1 • 58 = Evento discreto 2 • 59 = Evento discreto 3 • 60 = Evento discreto 4 • 61 = Evento discreto 5 • 251 = Ninguno
84	DB_SYS_MasterReset	USINT16	S	R/W	 0x0000 = Sin acción 0x0001 = Realizar un master reset
85	SYS_AckAlarm	USINT16	S	R/W	Escribir el índice de alarma para reconocer la alarma. Vea la Tabla D-13 para los códigos de índice de alarmas
86	SYS_DriveCurrent	FLOAT	D (20 Hz)	R	Corriente de la bobina impulsora del sensor Unidades: mA
87 ⁽²⁾	DB_FRF_MV_Index	USINT16	D (20 Hz)	R/W	Índice del registro de la prueba de verificación del medidor en el transmisor (0–19) • 0 = Más reciente • 19 = Más antiguo
88 ⁽²⁾	DB_FRF_MV_Counter	USINT16	D (20 Hz)	R	Contador asignado al registro de la prueba de verificación del medidor
89 ⁽²⁾	DB_FRF_MV_Status	USINT16	D (20 Hz)	R	Registro de la prueba de verificación del medidor: Estatus de la prueba • Bit 7 = Pasa/fallo • Bits 6–4 = Estado • Bits 3–0 = Código de cancelación
90 ⁽²⁾	DB_FRF_MV_Time	USINT32	D (20 Hz)	R	Registro de la prueba de verificación del medidor: Tiempo de inicio de la prueba
91 ⁽²⁾	DB_FRF_MV_LPO_Nor m	FLOAT	D (20 Hz)	R	Registro de la prueba de verificación del medidor: Rigidez del LPO
92 ⁽²⁾	DB_FRF_MV_RPO_Nor m	FLOAT	D (20 Hz)	R	Registro de la prueba de verificación del medidor: Rigidez del RPO

Tabla D-4 Bloque Diagnostic (Slot 3) continuación

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
93 ⁽²⁾	DB_FRF_MV_FirstRun_ Time	FLOAT	D (20 Hz)	R/W	Programador de verificación del medidor: Horas que faltan para la primera prueba • Rango: 1–1000 • 0 = No se ha programado una prueba
94 ⁽²⁾	DB_FRF_MV_Elapse_Ti me	FLOAT	D (20 Hz)	R/W	Programador de verificación del medidor: Horas entre las pruebas • Rango: 1–1000 • 0 = Sin ejecución recurrente
95 ⁽²⁾	DB_FRF_MV_Time_Left	FLOAT	D (20 Hz)	R	Programador de verificación del medidor: Horas que faltan para la siguiente prueba

(1) Aplica sólo a sistemas que tengan la versión original de la aplicación de verificación del medidor.

(2) Aplica sólo a sistemas que tengan la verificación inteligente del medidor (Smart Meter Verification).

D.6 Bloque Device Information (Slot 4)

Tabla D-5 Bloque Device Information (Slot 4)

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
4	SYS_FeatureKey	B_ENUM	S	R	Opciones del transmisor habilitadas • 0x0000 = Estándar • 0x0800 = Verificación del medidor • 0x0008 = Densidad mejorada • 0x0010 = Medición en industrias petroleras
5	SYS_CEQ_Number	USINT16	S	R	ETO (Ingeniería a Orden) en el transmisor
6	SNS_SensorSerialNum	USINT32	S	R/W	
7	SNS_SensorType	STRING	S	R/W	
8	SNS_SensorTypeCode	USINT16	S	R/W	0 = Tubo curvado1 = Tubo recto
9	SNS_SensorMaterial	USINT16	S	R/W	 0 = Ninguno 3 = Hastelloy C-22 4 = Monel 5 = Tántalo 6 = Titanio 19 = Acero inoxidable 316L 23 = Inconel 252 = Desconocido 253 = Especial
10	SNS_LinerMaterial	USINT16	S	R/W	• 0 = Ninguno • 10 = PTFE (Teflon) • 11 = Halar • 16 = Tefzel • 251 = Ninguno • 252 = Desconocido • 253 = Especial

Tabla D-5 Bloque Device Information (Slot 4) continuación

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
11	SNS_FlangeType	USINT16	S	R/W	 0 = ANSI 150 1 = ANSI 300 2 = ANSI 600 5 = PN 40 7 = JIS 10K 8 = JIS 20K 9 = ANSI 900 10 = Conexión de abrazadera sanitaria 11 = Unión 12 = PN 100 252 = Desconocido 253 = Especial
12	SNS_MassFlowHiLim	FLOAT	S	R	Límite superior de caudal másico del sensor
13	SNS_TempFlowHiLim	FLOAT	S	R	Límite superior de temperatura del sensor
14	SNS_DensityHiLim	FLOAT	S	R	Límite superior de densidad del sensor
15	SNS_VolumeFlowHiLim	FLOAT	S	R	Límite superior de caudal volumétrico del sensor
16	SNS_MassFlowLoLim	FLOAT	S	R	Límite inferior de caudal másico del sensor
17	SNS_TempFlowLoLim	FLOAT	S	R	Límite inferior de temperatura del sensor
18	SNS_DensityLoLim	FLOAT	S	R	Límite inferior de densidad del sensor
19	SNS_VolumeFlowLoLim	FLOAT	S	R	Límite inferior de caudal volumétrico del sensor
20	SNS_MassFlowLoSpan	FLOAT	S	R	Rango mínimo de caudal másico del sensor
21	SNS_TempFlowLoSpan	FLOAT	S	R	Rango mínimo de temperatura del sensor
22	SNS_DensityLoSpan	FLOAT	S	R	Rango mínimo de densidad del sensor
23	SNS_VolumeFlow LoSpan	FLOAT	S	R	Rango mínimo de caudal volumétrico del sensor
24	HART_HartDeviceID	USINT32	S	R/W	Número de serie del transmisor
25	SYS_SoftwareRev	USINT16	S	R	Revisión de software del transmisor (formato xxx.xx, v.g., 141 = rev1.41)
26	SYS_BoardRevision	USINT16	S	R	Revisión de la tarjeta

D.7 Bloque Local Display (Slot 5)

Tabla D-6Bloque Local Display (Slot 5)

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
4	UI_EnableLdoTotalizer Reset	USINT16	S	R/W	Poner a cero los totalizadores desde el indicador • 0x0000 = Inhabilitado • 0x0001 = Habilitado
5	UI_EnableLdoTotalizer StartStop	USINT16	S	R/W	Iniciar/detener los totalizadores desde el indicador • 0x0000 = Inhabilitado • 0x0001 = Habilitado
6	UI_EnableLdoAutoScroll	USINT16	S	R/W	Desplazamiento automático del indicador • 0x0000 = Inhabilitado • 0x0001 = Habilitado

Tabla D-6 Bloque Local Display (Slot 5) continuación

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
7	UI_EnableLdoOffline Menu	USINT16	S	R/W	Habilitar/inhabilitar el acceso al menú offline del indicador • 0x0000 = Inhabilitada • 0x0001 = Habilitada
8	UI_EnableSecurity	USINT16	S	R/W	Contraseña requerida para el acceso al menú offline del indicador • 0x0000 = No se requiere contraseña • 0x0001 = Se requiere contraseña
9	UI_EnableLdoAlarm Menu	USINT16	S	R/W	Habilitar/inhabilitar el acceso al menú de alarmas del indicador • 0x0000 = Inhabilitada • 0x0001 = Habilitada
10	UI_EnableLdoAckAll Alarms	USINT16	S	R/W	Función Ack All desde el indicador • 0x0000 = Inhabilitada • 0x0001 = Habilitada
11	UI_OfflinePassword	USINT16	S	R/W	Contraseña del indicador 0 a 9999
12	UI_AutoScrollRate	USINT16	S	R/W	El número de segundos para mostrar cada variable del indicador 1 a 30
13	UI_BacklightOn	USINT16	S	R/W	• 0x0000 = Apagada • 0x0001 = Encendida
14	UNI_UI_ProcVarIndex	USINT16	S	R/W	Índice de variable de proceso Vea la Tabla D-13 para conocer los códigos
15	UI_NumDecimals	USINT16	S	R/W	El número de dígitos mostrados a la derecha del punto decimal para la variable de proceso identificado por el índice de variable de proceso Rango: 0–5
16	UI_ProcessVariables (LDO_VAR_1_CODE)	USINT16	S	R/W	Vea la Tabla D-13 para conocer los códigos. Todos los códigos son válidos, excepto 251 (Ninguno).

Tabla D-6 Bloque Local Display (Slot 5) continuación

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
17	UI_ProcessVariables (LDO_VAR_2_CODE)	USINT16	S	R/W	Vea la Tabla D-13 para conocer los códigos. Todos los códigos son válidos.
18	UI_ProcessVariables (LDO_VAR_3_CODE)	USINT16	S	R/W	-
19	UI_ProcessVariables (LDO_VAR_4_CODE)	USINT16	S	R/W	-
20	UI_ProcessVariables (LDO_VAR_5_CODE)	USINT16	S	R/W	-
21	UI_ProcessVariables (LDO_VAR_6_CODE)	USINT16	S	R/W	-
22	UI_ProcessVariables (LDO_VAR_7_CODE)	USINT16	S	R/W	-
23	UI_ProcessVariables (LDO_VAR_8_CODE)	USINT16	S	R/W	-
24	UI_ProcessVariables (LDO_VAR_9_CODE)	USINT16	S	R/W	-
25	UI_ProcessVariables (LDO_VAR_10_CODE)	USINT16	S	R/W	-
26	UI_ProcessVariables (LDO_VAR_11_CODE)	USINT16	S	R/W	_
27	UI_ProcessVariables (LDO_VAR_12_CODE)	USINT16	S	R/W	_
28	UI_ProcessVariables (LDO_VAR_13_CODE)	USINT16	S	R/W	-
29	UI_ProcessVariables (LDO_VAR_14_CODE)	USINT16	S	R/W	-
30	UI_ProcessVariables (LDO_VAR_15_CODE)	USINT16	S	R/W	-
31	UI_UpdatePeriodmsec	USINT16	S	R/W	Actualizar rapidez del indicador Rango: 100–10.000 milisegundos
32	UI_BacklightOnIntensity	USINT16	S	R/W	El brillo de la luz de fondo Rango: 0 (apagado) a 63 (completamente brillante)
33	UI_Language	USINT16	S	R/W	 0 = Inglés 1 = Alemán 2 = Francés 3 = No se usa 4 = Español
34	SYS_Enable_IRDA_ Comm	USINT16	S	R/W	Disponibilidad del puerto infrarrojo: • 0x0000 = Inhabilitado • 0x0001 = Habilitado
35	SYS_Enable_IRDA_ WriteProtect	USINT16	S	R/W	Uso del puerto infrarrojo: • 0x0000 = Lectura/escritura • 0x0001 = Sólo lectura

D.8 Bloque API (Slot 6)

Tabla D-7 Bloque API (Slot 6)

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
4	SNS_API_CorrDensity	FLOAT	D (20 Hz)	R	Valor actual de la variable de proceso de densidad corregida por temperatura API
5	SNS_API_CorrVolFlow	FLOAT	D (20 Hz)	R	Valor actual de la variable de proceso de caudal volumétrico corregido por temperatura API
6	SNS_API_AveCorr Density	FLOAT	D (20 Hz)	R	Densidad promedio ponderada por lote
7	SNS_API_AveCorrTemp	FLOAT	D (20 Hz)	R	Temperatura promedio ponderada por lote
8	SNS_API_CTL	FLOAT	D (20 Hz)	R	Valor actual de la CTL
9	SNS_API_CorrVolTotal	FLOAT	D (20 Hz)	R	Valor actual del total de volumen corregido por temperatura API
10	SNS_API_CorrVolInv	FLOAT	D (20 Hz)	R	Valor actual del inventario de volumen corregido por temperatura API
11	SNS_ResetApiRefVol Total	USINT16		R/W	Poner a cero el total de volumen corregido por temperatura API • 0x0000 = Sin acción • 0x0001 = Poner a cero
12	SNS_ResetAPIGSVInv	USINT16	S	R/W	Poner a cero el inventario de volumen corregido por temperatura API • 0x0000 = Sin acción • 0x0001 = Poner a cero
13	SNS_APIRefTemp	FLOAT	S	R/W	La temperatura de referencia que se va a usar en los cálculos API
14	SNS_APITEC	FLOAT	S	R/W	El coeficiente de expansión térmica que se va a usar en los cálculos API
15	SNS_API2540TableTyp e	USINT16	S	R/W	El tipo de tabla que se va a usar en los cálculos API • 17 = Tabla 5A • 18 = Tabla 5B • 19 = Tabla 5D • 36 = Tabla 6C • 49 = Tabla 23A • 50 = Tabla 23B • 51 = Tabla 23D • 68 = Tabla 24C • 81 = Tabla 53A • 82 = Tabla 53B • 83 = Tabla 53D • 100 = Tabla 54C

D.9 Bloque Enhanced Density (Slot 7)

Tabla D-8 Bloque Enhanced Density (Slot 7)

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
4	SNS_ED_RefDens	FLOAT	D (20 Hz)	R	Valor actual de densidad ED a la referencia
5	SNS_ED_SpecGrav	FLOAT	D (20 Hz)	R	Valor actual de densidad ED (unidades SG fijas)
6	SNS_ED_StdVolFlow	FLOAT	D (20 Hz)	R	Valor actual de caudal volumétrico estándar de densidad mejorada
7	SNS_ED_NetMassFlow	FLOAT	D (20 Hz)	R	Valor actual de caudal másico neto de densidad mejorada
8	SNS_ED_NetVolFlow	FLOAT	D (20 Hz)	R	Valor actual de caudal volumétrico neto de densidad mejorada
9	SNS_ED_Conc	FLOAT	D (20 Hz)	R	Valor actual de concentración de densidad mejorada
11	SNS_ED_StdVolTotal	FLOAT	D (20 Hz)	R	Valor actual de total de volumen estándar de densidad mejorada
12	SNS_ED_StdVolInv	FLOAT	D (20 Hz)	R	Valor actual de inventario de volumen estándar de densidad mejorada
13	SNS_ED_NetMassTotal	FLOAT	D (20 Hz)	R	Valor actual de total de masa neto de densidad mejorada
14	SNS_ED_NetMassInv	FLOAT	D (20 Hz)	R	Valor actual de inventario de masa neto de densidad mejorada
15	SNS_ED_NetVolTotal	FLOAT	D (20 Hz)	R	Valor actual de total de volumen neto de densidad mejorada
16	SNS_ED_NetVolInv	FLOAT	D (20 Hz)	R	Valor actual de inventario de volumen neto de densidad mejorada
17	SNS_ResetEDRefVol Total	USINT16		R/W	Poner a cero el total de volumen estándar de densidad mejorada: • 0x0000 = Sin acción • 0x0001 = Poner a cero
18	SNS_ResetEDNetMass Total	USINT16		R/W	Poner a cero el total de masa neto de densidad mejorada: • 0x0000 = Sin acción • 0x0001 = Poner a cero
19	SNS_ResetEDNetVol Total	USINT16		R/W	Poner a cero el total de volumen neto de densidad mejorada: • 0x0000 = Sin acción • 0x0001 = Poner a cero
20	SNS_ResetEDVolInv	USINT16	S	R/W	Poner a cero el inventario de volumen estándar de densidad mejorada: • 0x0000 = Sin acción • 0x0001 = Poner a cero
21	SNS_ResetEDNetMass Inv	USINT16	S	R/W	Poner a cero el inventario de masa neta de densidad mejorada: • 0x0000 = Sin acción • 0x0001 = Poner a cero
22	SNS_ResetEDNetVollnv	USINT16	S	R/W	Poner a cero el inventario de volumen neto de densidad mejorada: • 0x0000 = Sin acción • 0x0001 = Poner a cero

Tabla D-8 Bloque Enhanced Density (Slot 7) continuación

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
23	SNS_ED_CurveLock	USINT16	S	R/W	Proteger contra escritura (bloquear) todas las curvas ED: • 0x0000 = No bloqueadas • 0x0001 = Bloqueadas
24	SNS_ED_Mode	USINT16	S	R/W	 Variable derivada: 0 = Ninguno 1 = Densidad a temperatura de referencia 2 = Gravedad específica 3 = Concentración de masa (densidad) 4 = Concentración de masa (gravedad específica) 5 = Concentración de volumen (densidad) 6 = Concentración de volumen (gravedad específica) 7 = Concentración (densidad) 8 = Concentración (gravedad específica)
25	SNS_ED_ActiveCurve	USINT16	S	R/W	Índice de curva activa (a) Rango: 0–5
26	UNI_ED_CurveIndex	USINT16	S	R/W	Índice de configuración de curva (n) Rango: 0–5
27	UNI_ED_TempIndex	USINT16	S	R/W	Índice de isoterma de termperatura de la curva _n (x) Rango: 0–5
28	UNI_ED_ConcIndex	USINT16	S	R/W	Índice de concentración de la curva _n (y) Rango: 0–5
29	SNS_ED_TempISO	FLOAT	S	R/W	Valor de temperatura: isoterma _x de la curva _n
30	SNS_ED_DensAtTemp ISO	FLOAT	S	R/W	Valor de densidad: concentración _y de la isoterma _x de la curva _n
31	SNS_ED_DensAtTemp Coeff	FLOAT	S	R/W	Coeficiente: concentración $_{\rm y}$ de la isoterma $_{\rm x}$ de la curva $_{\rm n}$
32	SNS_ED_ConcLabel55	FLOAT	S	R/W	Código de la etiqueta de las unidades de concentración de la curva _n : • 100 = Grados Twaddell • 101 = Grados Brix • 102 = Grados Baume (pesado) • 103 = Grados Baume (ligero) • 105 Porcentaje de sólidos por peso • 106 = Porcentaje de sólidos por volumen • 107 = Grados Balling • 108 = Graduación alcohólica por volumen • 109 = Graduación alcohólica por masa • 160 = Grados Plato • 253 = Especial
33	SNS_ED_DensAtConc	FLOAT	S	R/W	Densidad de la curva _n (1x6) a concentración _y a temperatura de referencia
34	SNS_ED_DensAtConc Coeff	FLOAT	S	R/W	Coeficiente de la curva _n (1x6) a concentración _y a temperatura de referencia
35	SNS_ED_ConcLabel51	FLOAT	S	R/W	Valor de concentración _y (eje y) de la curva _n (1x6)
36	SNS_ED_RefTemp	FLOAT	S	R/W	Temperatura de referencia de la curva _n
37	SNS_ED_SGWaterRef Temp	FLOAT	S	R/W	Temperatura de referencia de agua a gravedad específica de la curva _n
38	SNS_ED_SGWaterRef	FLOAT	S	R/W	Densidad de referencia de agua a gravedad específica de la curva _n

Tabla D-8 Bloque Enhanced Density (Slot 7) continuación

Índice	Nombre	Tipo de dato	Clase de memoria	Acceso	Definición/código/comentarios
39	SNS_ED_SlopeTrim	FLOAT	S	R/W	Ajuste de la curvan: pendiente
40	SNS_ED_OffsetTrim	FLOAT	S	R/W	Ajuste de la curvan: desviación (offset)
41	SNS_ED_ExtrapAlarm Limit	FLOAT	S	R/W	Límite (%) de alarma de extrapolación de la curva _n
42	SNS_ED_CurveName	STRING	S	R/W	Nombre de la curva _n
43	SNS_ED_MaxFitOrder	USINT16	S	R/W	Orden de ajuste máximo de la curva _n Rango: 2–5
44	SNS_ED_FitResults	USINT16	S	R	Resultados de ajuste de la curva _n : • 0 = Bueno • 1 = Deficiente • 2 = Fallido • 3 = Vacío
45	SNS_ED_ConcUnit Code	USINT16	S	R/W	Código de unidades de concentración de la curva _n : • 1110 = Grados Twaddell • 1426 = Grados Brix • 1111 = Grados Baume (pesado) • 1112 = Grados Baume (ligero) • 1343 = % sol/wt • 1344 = % sol/vol • 1427 = Grados Balling • 1428 = Graduación alcohólica (volumen) • 1429 = Graduación alcohólica (masa) • 1346 = Porcentaje Plato • 1342 = Porcentaje (unidades especiales)
46	SNS_ED_ExpectedAcc	FLOAT	S	R	Precisión esperada de ajuste de la curvan
47	SNS_ED_ResetFlag	USINT16	S	W	Restablecer todos los datos de curva de densidad: • 0x0000 = Sin acción • 0x0001 = Poner a cero
48	SNS_ED_EnableDens LowExtrap	USINT16	S	R/W	Alarma de extrapolación de baja densidad: • 0x0000 = Inhabilitar • 0x0001 = Habilitar
49	SNS_ED_EnableDens HighExtrap	USINT16	S	R/W	Alarma de extrapolación de alta densidad: • 0x0000 = Inhabilitar • 0x0001 = Habilitar
50	SNS_ED_EnableTemp LowExtrap	USINT16	S	R/W	Alarma de extrapolación de baja temperatura: • 0x0000 = Inhabilitar • 0x0001 = Habilitar
51	SNS_ED_EnableTemp HighExtrap	USINT16	S	R/W	Alarma de extrapolación de alta temperatura: • 0x0000 = Inhabilitar • 0x0001 = Habilitar
52	SNS_ED_LongCurve Name	OCTET STRING	S	R/W	Nombre extendido de la curva

D.10 Funciones I&M (Slot 0)

Tabla D-9 Funciones I&M

Índice	Sub- índice	Nombre	Descripción	Tipo de dato	Tamaño	Clase de memoria	Acceso
255	65000	HEADER	Específico al fabricante	STRING	10	S	R
		MANUFACTURER _ID	ID de fabricante asignado por PTO	USINT16	2	S	R
		ORDER_ID	Número de pedido del dispositivo	STRING	20	S	R
		SERIAL_NO	Número de serie del dispositivo	STRING	16	S	R
		HARDWARE_ REVISION	Número de revisión del hardware	USINT16	2	S	R
		SOFTWARE_ REVISION	Revisión de software o firmware del dispositivo o módulo	1×CHAR 3×USINT8	4	S	R
		REV_COUNTER	Marca el cambio de revisión de hardware o de cualquiera de sus parámetros	USINT16	2	S	R
		PROFILE_ID	Tipo del perfil de soporte	USINT16	2	S	R
		PROFILE_ SPECIFIC_TYPE	Tipo específico de perfil	USINT16	2	S	R
		IM_VERSION	Versión implementada de las funciones I&M	2×USINT8	2	S	R
		IM_SUPPORTED	Disponibilidad indicada de las funciones I&M	USINT16	2	S	R
	65001	HEADER	Específico al fabricante	STRING	10	S	R
		TAG_FUNCTION	Etiqueta de identificación del dispositivo	STRING	32	S	R/W
		TAG_LOCATION	Etiqueta de identificación de la ubicación del dispositivo	STRING	22	S	R/W

(1) Implementada como arreglo de bits.

D.11 Códigos de unidades de medición de totalizador e inventario

Tabla D-10 Códigos de unidades de medición de totalizador de masa e inventario de masa

Código	Etiqueta	Descripción
1089	g	Gramo
1088	Kg	Kilogramo
1092	metric tons	Toneladas métricas
1094	lbs	Libras
1095	short tons	Toneladas cortas (2000 libras)
1096	long tons	Toneladas largas (2240 libras)

Código	Etiqueta	Descripción
1048	gal	Galón
1038	I	Litro
1049	ImpGal	Galón imperial
1034	m3	Metro cúbico
1036	cm3	Centímetro cúbico
1051	bbl	Barril ⁽¹⁾
1641	Beer bbl	Barril de cerveza ⁽²⁾
1043	ft3	Pie cúbico

Tabla D-11 Códigos de unidades de medición de totalizador de volumen de líquido e inventario de volumen de líquido

(1) Unidad basada en barriles de petróleo (42 galones americanos).

(2) Unidad basada en barriles de cerveza americanos (31 galones americanos).

Tabla D-12 Códigos de unidades de medición de totalizador de volumen estándar de gas e inventario de volumen estándar de gas

Código	Etiqueta	Descripción
1053	SCF	Pies cúbicos estándar
1521	Nm3	Metros cúbicos normales
1526	Sm3	Metros cúbicos estándar
1531	NL	Litro normal
1536	SL	Litro estándar

D.12 Códigos de variables de proceso

Tabla D-13 Códigos de variables de proceso

Código	Descripción
0	Caudal másico
1	Temperatura
2	Total de masa
3	Densidad
4	Inventario de masa
5	Caudal volumétrico
6	Total de volumen
7	Inventario de volumen
15	API: densidad corregida por temperatura
16	API: caudal volumétrico (estándar) corregido por temperatura
17	API: total de volumen (estándar) corregido por temperatura
18	API: inventario de volumen (estándar) corregido por temperatura
19	API: densidad promedio ponderada por lote
20	API: temperatura promedio ponderada por lote
21	Densidad mejorada: densidad a temperatura de referencia

Código	Descripción
22	Densidad mejorada: densidad (unidades SG fijas)
23	Densidad mejorada: caudal volumétrico estándar
24	Densidad mejorada: total de volumen estándar
25	Densidad mejorada: inventario de volumen estándar
26	Densidad mejorada: caudal másico neto
27	Densidad mejorada: total de masa neto
28	Densidad mejorada: inventario de masa neta
29	Densidad mejorada: caudal volumétrico neto
30	Densidad mejorada: total de volumen neto
31	Densidad mejorada: inventario de volumen neto
32	Densidad mejorada: concentración
33	API: CTL
46	Frecuencia de los tubos
47	Ganancia de la bobina impulsora
48	Temperatura de la caja
49	Amplitud de pickoff izquierdo
50	Amplitud del pickoff derecho
51	Temperatura de la tarjeta
53	Presión externa
55	Temperatura externa
63	Caudal volumétrico estándar de gas
64	Total de volumen estándar de gas
65	Inventario de volumen estándar de gas
69	Cero vivo
251	None (ninguna)

Tabla D-13 Códigos de variables de proceso continuación

D.13 Códigos de índice de alarma

Tabla D-14 Códigos de índice de alarma

Código	Descripción
1	Fallo de memoria no volátil
2	Error de RAM/ROM
3	Fallo del sensor
4	Sobrerrango de temperatura
5	Sobrerrango de entrada
6	Transmisor no caracterizado
7	Reservado
8	Sobrerrango de densidad
9	Transmisor inicializándose/en calentamiento
10	Fallo de calibración

Código	Descripción
11	Cero demasiado bajo
12	Cero demasiado alto
13	Cero demasiado ruidoso
14	El transmisor falló
16	Temperatura de RTD de línea fuera de rango
17	Temperatura de RTD del medidor fuera de rango
18	Reservado
19	Reservado
20	Tipo de sensor incorrecto (K1)
21	Tipo de sensor no válido
22	Error NV (procesador central)
23	Error NV (procesador central)
24	Error NV (procesador central)
25	Fallo de arranque (procesador central)
26	Reservado
27	Violación de seguridad
28	Reservado
29	Fallo interno de comunicación
30	Hardware/software no compatible
31	Alimentación baja
32	Alarma de fallo de verificación del medidor
33	Tubos no llenos
42	Sobrerrango de la ganancia de la bobina impulsora
43	Posible pérdida de datos
44	Calibración en progreso
45	Slug flow
47	Restablecimiento de alimentación
56	API: temperatura fuera de límites
57	API: densidad fuera de límites
60	Densidad mejorada: no se pueden ajustar los datos de la curva
61	Densidad mejorada: alarma de extrapolación
71	Alarma informativa de verificación del medidor
72	Modo de simulación activo
73–139	No definidos

Tabla D-14 Códigos de índice de alarma continuación

Apéndice E Códigos y abreviaciones del indicador

E.1 Generalidades

Este apéndice proporciona información sobre los códigos y abreviaciones utilizados en el indicador del transmisor.

Nota: la información de este apéndice aplica sólo a los transmisores que tienen un indicador.

E.2 Códigos y abreviaciones

La Tabla E-1 muestra y define los códigos y las abreviaciones que se utilizan para las variables del indicador (vea la Sección 8.9.3 para obtener información sobre la configuración de las variables del indicador).

La Tabla E-2 muestra y define los códigos y las abreviaciones que se utilizan en el menú off-line.

Nota: estas tablas no muestran términos que se escriben completamente sin abreviar, o códigos que se usan para identificar unidades de medición. Para conocer los códigos que se usan para identificar unidades de medición, vea la Sección 6.3.

Código o abreviación	Definición	Comentario o referencia
AVE_D	Densidad promedio	
AVE_T	Temperatura promedio	
BRD T	Temperatura de la tarjeta	
CONC	Concentración	
DGAIN	Ganancia de la bobina impulsora	
EXT P	Presión externa	
EXT T	Temperatura externa	
GSV F	Caudal volumétrico estándar de gas	
GSV I	Inventario de caudal volumétrico estándar de gas	
LPO_A	Amplitud de pickoff izquierdo	
LVOLI	Inventario de volumen	
LZERO	Caudal de cero vivo	
MASSI	Inventario de masa	
MTR T	Temperatura de la caja	
NET M	Caudal másico neto	Sólo aplicación de densidad mejorada
NET V	Caudal volumétrico neto	Sólo aplicación de densidad mejorada

Tabla E-1 Códigos del indicador utilizados para variables del indicador

Código o abreviación	Definición	Comentario o referencia
NETMI	Inventario de masa neta	Sólo aplicación de densidad mejorada
NETVI	Inventario de volumen neto	Sólo aplicación de densidad mejorada
PWRIN	Voltaje de entrada	Se refiere a la entrada de alimentación al procesador central
RDENS	Densidad a temperatura de referencia	Sólo aplicación de densidad mejorada
RPO A	Amplitud del pickoff derecho	
SGU	Unidades de gravedad específica	
STD V	Caudal volumétrico estándar	Sólo aplicación de densidad mejorada
STDVI	Inventario de volumen estándar	Sólo aplicación de densidad mejorada
TCDEN	Densidad corregida por temperatura	Sólo aplicación para mediciones en la industria petrolera
TCORI	Inventario corregido por temperatura	Sólo aplicación para mediciones en la industria petrolera
TCORR	Total corregido por temperatura	Sólo aplicación para mediciones en la industria petrolera
TCVOL	Volumen corregido por temperatura	Sólo aplicación para mediciones en la industria petrolera
TUBEF	Frecuencia de tubos vacíos	
WTAVE	Promedio ponderado	

Tabla E-1 Códigos del indicador utilizados para variables del indicador continued

Tabla E-2 Códigos del indicador utilizados en el menú off-line

Código o abreviación	Definición	Comentario o referencia
ACK	Menú Ack All (reconocer todas) del indicador	
ACK ALARM	Reconocer alarma	
ACK ALL	Reconocer todas	
ACT	Acción	Acción asignada a un evento discreto
ADDR	Dirección	
BKLT, B LIGHT	Luz de fondo del indicador	
CAL	Calibrar	
CHANGE PASSW	Cambiar contraseña	Cambiar la contraseña requerida para tener acceso a las funciones del indicador
CONFG	Configuración	
CORE	Procesador central	
CUR Z	Cero actual	
CUSTODY XFER	Transferencia de custodia	
DENS	Densidad	
DRIVE%, DGAIN	Ganancia de la bobina impulsora	
DISBL	Inhabilitar	Presionar Select para inhabilitar

Código o abreviación	Definición	Comentario o referencia
DSPLY	Indicador	
Ex	Evento x	Se refiere a evento 1 ó evento 2 cuando se ajusta el punto de referencia.
ENABL	Habilitar	Presionar Select para habilitar
EXTRN	Externa	
EVNTx	Evento x	
FAC Z	Ajuste de cero de fábrica	
FCF	Factor de calibración de caudal	
FLDIR	Dirección de caudal	
FLSWT, FL SW	Conmutación de caudal	
GSV	Volumen estándar de gas	
GSV T	Total de volumen estándar de gas	
IRDA	Infrarrojo	
LANG	Idioma del indicador	
M_ASC	Modbus ASCII	
M_RTU	Modbus RTU	
MASS	Caudal másico	
MBUS	Modbus	
MFLOW	Caudal másico	
MSMT	Medición	
MTR F	Factor del medidor	
OFF-LINE MAINT	Menú de mantenimiento off-line:	
OFFLN	Menú off-line del indicador	
PRESS	Presión	
r.	Revisión	
SENSR	Sensor	
SPECL	Especial	
SrC	Fuente	Asignación de variables para salidas
TEMPR	Temperatura	
VER	Versión	
VERFY	Verificar	
VFLOW	Caudal volumétrico	
VOL	Volumen o caudal volumétrico	
WRPRO	Protección contra escritura	
XMTR	Transmisor	

Tabla E-2 Códigos del indicador utilizados en el menú off-line continued

A

Acción de fallo 74 Ajustes del dispositivo 76 Alarmas Vea Alarmas de estatus Alarmas de estatus lista 132 manipulación 40 Vea también Prioridad de alarmas de estatus Aplicación de densidad mejorada configuración 80 tipo requerido de medición de caudal volumétrico 80 Aplicación para mediciones en la industria petrolera configuración 77 tipo requerido de medición de caudal volumétrico 77 Archivos de configuración almacenamiento 18 carga y descarga 18 Atenuación 57 Autoajuste del cero Vea Calibración de ajuste del cero

B

Bajo voltaje de pickoff 142 Bloque API 186 Bloque Calibration 172 Bloque Device Information 182 Bloque Diagnostic 174 Bloque Enhanced Density 187 Bloque Local Display 183 Bloque Measurement 170 Botón *Vea* Interruptor óptico

C

Cableado PROFIBUS, solución de problemas 130 Calibración 91, 93 fallo de calibración 131 procedimiento de calibración de ajuste del cero 118 procedimiento de calibración de densidad 121 procedimiento de calibración de temperatura 126 solución de problemas 140 *Vea también* Calibración de ajuste del cero,

calibración de densidad, calibración de temperatura Calibración de ajuste del cero 117 fallo 131 procedimiento 118 restauración del cero anterior 117 restauración del cero de la fábrica 117 Caracterización solución de problemas 140 Caudal másico cutoff 57 unidad de medición configuración 30 lista 30 Caudal volumétrico caudal volumétrico estándar de gas 55 cutoff 57 líquido 55 tipo de medición 30, 55 se requiere para aplicación de densidad mejorada 55 se requiere para aplicación de medición en la industria petrolera 55 unidad de medición configuración 30 gas 32 líquido 31 Caudal volumétrico estándar de gas Vea GSV Circuitos del sensor, solución de problemas 142 Compensación de presión configuración 86 definición 85 efecto de la presión 86 factores de corrección de presión 86 módulo de salida 90 Compensación de temperatura Vea Compensación de temperatura externa Compensación de temperatura externa configuración 88 definición 88 módulo de salida 90 Comunicación digital acción de fallo 74 dirección de nodo 71

dirección Modbus 73

orden de bytes de punto flotante 73 retardo adicional de la respuesta de comunicación 74 soporte de Modbus ASCII 73 timeout de fallo 75 uso del puerto infrarrojo (IrDA) 72 Comunicaciones acíclicas 2 Condiciones de fallo 131 Conexión al transmisor desde ProLink II o Pocket ProLink 18 desde un host PROFIBUS 21 Configuración acción de fallo de comunicación digital 74 ajustes del dispositivo 76 aplicación de densidad mejorada 80 aplicación para mediciones en la industria petrolera 77 atenuación 57 compensación de presión 86 compensación de temperatura externa 88 cutoffs 57 dirección de nodo 71 dirección Modbus 73 eventos 60 factores del medidor 115 funciones I&M 76 generalidades 3 **GSV 55** guardar a un archivo 18 hoja de trabajo de preconfiguración 5 indicador 67 idioma 68 introducción de valores de punto flotante 14 precisión 68 variables 68 medición de caudal volumétrico para gas 55 opcional 53 orden de bytes de punto flotante 73 parámetro de dirección de caudal 58 parámetros API 77 parámetros de comunicación digital 71 parámetros de slug flow 63 parámetros del sensor 76 período de actualización 67 planificación 3 prioridad de alarma de estatus 64 puerto IrDA 72 requerida 25 restauración de una configuración funcional 140 retardo adicional de la respuesta de comunicación 74 soporte de Modbus ASCII 73

timeout de fallo 75 unidad de medición de caudal másico 30 unidad de medición de caudal volumétrico 30 unidad de medición de densidad 32 unidad de medición de presión 33 unidad de medición de temperatura 33 Contraseña 13 Cutoffs 57

D

Densidad cutoff 57 factor 86 unidad de medición configuración 32 lista 32 Descripción de dispositivo Vea EDD Desplazamiento automático 69 Diagramas de flujo de menús EDD 157 Indicador 164 ProLink II 154 Dirección de nodo ajuste 7, 21, 22, 71 direccionamiento por software 71 interruptores de dirección 71 predeterminada 7, 22, 71 Dirección Modbus 73 Direccionamiento por software 71 Documentación 6

E EDD 2, 21

alarmas de estatus 43 diagramas de flujo de menús 157 iniciar y detener inventarios 50 totalizadores 50 obtención 3, 21 puesta a cero inventarios 50 totalizadores 50 uso con un host PROFIBUS 23 para configuración 25, 53 versión 2 visualización estatus 39 valores de totalizador e inventario 47 variables de proceso 37 Efecto de la presión 86

Estatus, visualización 39 Evento discreto *Vea* Eventos Eventos cambio de los puntos de referencia desde el indicador 63 configuración 60 informe del estatus 62

F

Factor de caudal 86
Factores de corrección de presión 86
Factores del medidor 93

configuración 115

Fuente de alimentación

solución de problemas 129

Funciones de identificación y mantenimiento

Vea Funciones I&M

Funciones I&M 2

configuración 76
parámetros de bus PROFIBUS 190

uso 35

G

Ganancia de la bobina impulsora, solución de problemas 141 GSD 2, 21 iniciar y detener inventarios 50 totalizadores 50 módulos de entrada 22 módulos de salida 22 obtención 3, 21 puesta a cero inventarios 50 totalizadores 50 uso con un host PROFIBUS 22 versión 2 visualización valores de totalizador e inventario 47 variables de proceso 37 GSV

configuración 55 unidades de medición 32

Η

Herramientas de comunicación 3 solución de problemas 129
Herramientas de configuración 3
Host PROFIBUS conexión a un transmisor modelo 2400S DP 21 requisitos 129 uso 21 EDD 23 GSD 22 parámetros de bus PROFIBUS 23

l Idioma

usado en el indicador 12, 68 usado por ProLink II 20 Indicador alarmas de estatus 41 cambio de los puntos de referencia 63 característica opcional del transmisor 9 códigos y abreviaciones 195 configuración 67 contraseña 13 contraseña off-line 69 diagramas de flujo de menús 164 habilitar/inhabilitar desplazamiento automático 69 inicio/paro del totalizador 69 menú de alarmas 69 menú off-line 69 puesta a cero del totalizador 69 reconocer todas las alarmas 69 idioma 12,68 iniciar y detener inventarios 47 totalizadores 47 luz de fondo del panel LCD 69 período de actualización 67 precisión 68 puesta a cero inventarios 47 totalizadores 47 uso 12 interruptor óptico 11 introducción de valores de punto flotante 14 menús 13 notación decimal 14 notación exponencial 14 para configuración 25, 53 variables 68 Vea también Interfaz de usuario visualización valores de totalizador e inventario 45 variables de proceso 36 visualización de las variables de proceso 12 Intercambio de datos 2 Interfaz de usuario características y funciones 9 indicador opcional 9

quitar la cubierta 11 *Vea también* Indicador Interruptor óptico 11 Interruptor óptico **Scroll** 11 Interruptor óptico **Select** 11 Interruptores de dirección 7 utilizados para establecer la dirección de nodo 71 Inventarios códigos de unidad de medición 190 definición 45 iniciar y detener 47 puesta a cero 47 unidades de medición 28 visualización de los valores 45

L

LED de dirección de software 38 LED de la red 38 LED indicador del estatus 39 LEDs solución de problemas 132 tipos 38 uso 38 Luz de fondo del panel LCD 69

Μ

Mensajes 2 Modo de simulación 131 Módulos de entrada lista 22 Módulos de salida compensación de presión y de temperatura externa 90 lista 22

Ν

Número de modelo 1

0

Orden de bytes *Vea* Orden de bytes de punto flotante Orden de bytes de punto flotante 73

Ρ

Parámetros de bus *Vea* Parámetros de bus PROFIBUS Parámetros de bus PROFIBUS 169 alarmas de estatus 44 bloque API 186 bloque Calibration 172 bloque Device Information 182 bloque Diagnostic 174

bloque Enhanced Density 187 bloque Local Display 183 bloque Measurement 170 códigos de índice de alarma 192 códigos de unidad de medición caudal volumétrico 30 densidad 32 presión 33 temperatura 33 totalizadores e inventarios 190 códigos de variables de proceso 191 funciones I&M 190 iniciar y detener inventarios 50 totalizadores 50 puesta a cero inventarios 50 totalizadores 50 tipos de datos 170 uso con un host PROFIBUS 23 visualización estatus 40 valores de totalizador e inventario 47 variables de proceso 38 parámetros de bus PROFIBUS 2 códigos de unidad de medición caudal másico 30 Parámetros de comunicación digital 71 Parámetros de dirección de caudal 58 Parámetros del sensor 76 Período de actualización configuración 67 Pocket ProLink carga y descarga de la configuración 18 conexión a un transmisor modelo 2400S DP 18 guardar archivos de configuración 18 requisitos 17, 129 Presión unidad de medición configuración 33 lista 33 Presión de calibración de caudal 86 Prioridad de alarmas de estatus configuración 64 implicaciones para informes de fallo 64 Problemas de cableado 129 Procedimiento de calibración de densidad 121 Procedimiento de calibración de temperatura 126 **PROFIBUS** funciones I&M 2 mensajes 2 métodos de configuración 2

métodos de operación 2 velocidades de transmisión 2 ProLink II alarmas de estatus 42 carga y descarga de la configuración 18 conexión a un transmisor modelo 2400S DP 18 diagramas de flujo de menús 154 guardar archivos de configuración 18 idioma 20 iniciar y detener inventarios 49 totalizadores 49 puesta a cero inventarios 49 totalizadores 49 requisitos 17, 129 uso para configuración 25, 53 versión 2 visualización estatus 39 valores de totalizador e inventario 46 variables de proceso 37 Puerto de servicio clips 18 parámetros de conexión 18 Puerto IrDA 18 Puerto IrDA habilitado o inhabilitado 72 protección contra escritura 72 Puesta a tierra, solución de problemas 130 Puntos de prueba 140

R

Restauración del cero anterior 117 Restauración del cero de fábrica 117 Restaurar la configuración de fábrica 140 Retardo adicional de la respuesta de comunicación 74

S

Seguridad 1 Servicio al cliente 6, 128 Servicio al cliente de Micro Motion 6, 128 Servicios cíclicos DP-V0 2 uso con un host PROFIBUS 22 Servicios de lectura y escritura DP-V1 2 uso con un host PROFIBUS 23 Siemens Simatic PDM 21 Slug flow definición 63 parámetros 63 solución de problemas 139 Solución de problemas alarmas de estatus 132 bajo voltaje de pickoff 142 cableado de la fuente de alimentación 129 cableado PROFIBUS 130 calibración 131, 140 caracterización 140 circuitos del sensor 142 condiciones de fallo 131 configuración de medición de caudal 139 dispositivo de comunicación 129 el transmisor no funciona 128 el transmisor no se comunica 128 fallo de ajuste del cero 131 LED de dirección de software 132 LED de red 132 LED indicador del estatus 132 problemas de cableado 129 problemas de ganancia de la bobina impulsora 141 puesta a tierra 130 puntos de prueba 140 slug flow 139 tubos del sensor 139 variables de proceso 136 Soporte de Modbus ASCII 73

Т

Telegrama Set Slave Address 22 Temperatura unidad de medición configuración 33 lista 33 Terminales 152 Timeout de fallo 75 Totalizadores códigos de unidad de medición 190 definición 45 iniciar y detener 47 puesta a cero 47 unidades de medición 28 visualización de los valores 45 Transmisor componentes 151 conexión desde Pocket ProLink 18 desde ProLinkII 18 desde un host PROFIBUS 21 configuración generalidades 3 opcional 53 requerida 25

valores predeterminados y rangos de valores 147 número de modelo 1 procesador central 152 puesta en línea 7 tipo 1 versión de software 2 Tubos del sensor 139

V

Validación del medidor 91, 93 Vea también Factores del medidor Valores predeterminados 147 Variable de proceso registro 36 solución de problemas 136 visualización 36 Variables del indicador 68 Velocidades de transmisión detección automática 2, 7, 21 soportadas 2 Verificación del medidor 91,92 ejecución 95 preparación para la prueba 95 procedimiento 95 resultados 106 Verificación inteligente del medidor ejecución 100 preparación para la prueba 95 programación 113 Verificación inteligente del medidor (Smart Meter Verification) resultados 106 Visualización estatus 39 valores de inventario 45 valores de totalizador 45 variables de proceso 36 con el indicador 12 Voltaje de pickoff 142

©2009, Micro Motion, Inc. Todos los derechos reservados. P/N MMI-20008813, Rev. AA

Para las últimas especificaciones de los productos Micro Motion, vea la sección PRODUCTS de nuestra página electrónica en www.micromotion.com

Emerson Process Management Micro Motion España

Emerson Process Management, S.L. C/ Francisco Gervás, 1 C/V Ctra. Fuencarral Alcobendas 28108 Alcobendas - Madrid +34 (0) 913 586 000 т F +34 (0) 629 373 289 www.emersonprocess.es

Emerson Process Management Micro Motion Europa

Neonstraat 1 6718 WX Ede Países Bajos T +31 (0) 318 495 555 F +31 (0) 318 495 556

Micro Motion Inc. EE.UU.

Oficinas centrales 7070 Winchester Circle Boulder, Colorado 80301 +1 303-527-5200 т +1 800-522-6277 F

+1 303-530-8459

Emerson Process Management

Micro Motion España Edificio EMERSON Pol. Ind. Gran Via Sur C/ Can Pi, 15, 3ª 08908 Barcelona T +34 (0) 932 981 600 F +34 (0) 932 232 142

Emerson Process Management

Micro Motion Asia 1 Pandan Crescent Singapur 128461 República de Singapur T +65 6777-8211 F +65 6770-8003

Emerson Process Management Micro Motion Japón

1-2-5, Higashi Shinagawa Shinagawa-ku Tokio 140-0002 Japón T +81 3 5769-6803 F +81 3 5769-6844

