
Form A6126
Part Number D301174X012
March 2009

DS800 Development Suite
Software

User Manual

Revision Tracking Sheet
March 2009

This manual is periodically altered to incorporate new or updated information. The date revision level of each page is
indicated at the bottom of the page opposite the page number. A major change in the content of the manual also
changes the date of the manual, which appears on the front cover. Listed below is the date revision level of each page.

Page Revision

All Pages 05/02

55, 112-117, 119-120,242, 419-425, 431-454, 538-540,

542, 546-549, 552-553, 556, 559-563, 566-570, 588,

594-5950 08/02

All Pages 07/06

All Pages 03/09

© 2002 - 2009 Remote Automation Solutions, division of Emerson Process Management. All rights reserved.

NOTICE
Remote Automation Solutions (“RAS”), division of Emerson Process Management shall not be liable for technical or
editorial errors in this manual or omissions from this manual. RAS MAKES NO WARRANTIES, EXPRESSED OR
IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THIS MANUAL AND, IN NO EVENT SHALL RAS BE LIABLE FOR ANY
INCIDENTAL, PUNITIVE, SPECIAL OR CONSEQUENTIAL DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS
OF PRODUCTION, LOSS OF PROFITS, LOSS OF REVENUE OR USE AND COSTS INCURRED INCLUDING
WITHOUT LIMITATION FOR CAPITAL, FUEL AND POWER, AND CLAIMS OF THIRD PARTIES.

Bristol, Inc., Bristol Canada, BBI SA de CV and Emerson Process Management Ltd., Remote Automation Solutions
division (UK) are wholly owned subsidiaries of Emerson Electric Co. doing business as Remote Automation Solutions
(“RAS”), a division of Emerson Process Management. ROC, FloBoss, ROCLINK, Bristol, Bristol Babcock,
ControlWave, TeleFlow and Helicoid are trademarks of RAS. AMS, PlantWeb and the PlantWeb logo are marks of
Emerson Electric Co. The Emerson logo is a trademark and service mark of the Emerson Electric Co. All other
trademarks are property of their respective owners.

The contents of this publication are presented for informational purposes only. While every effort has been made to
ensure informational accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding
the products or services described herein or their use or applicability. RAS reserves the right to modify or improve the
designs or specifications of such products at any time without notice. All sales are governed by RAS’ terms and
conditions which are available upon request.

RAS does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper
selection, use and maintenance of any RAS product remains solely with the purchaser and end-user.

DS800 Development Suite 2.10 - User Manual

Table of Contents
Workbench _______________________________________ 1

Appearance .. 3
Title Bar .. 4
Menu Bar .. 5
Toolbars .. 14

Standard Toolbar..15
Debug Toolbar ...17
Window Buttons Toolbar...19
Layers Toolbar ...19
Version Source Control Toolbar..20
Options Toolbar ...20
I/O Wiring Toolbar ..20

Workspace .. 22
Zoom..23

Output Window .. 24
Contextual Menus... 25
Status Bar.. 25

Customization .. 26
Directory Structure .. 29
Working with Projects ... 32

Creating Projects... 34
Opening and Closing Projects .. 36
Saving Projects ... 39
Renaming Projects .. 39
Adding a Project Description.. 40
Printing Projects ... 40

Project Access Control... 41
Importing and Exporting Workbench Elements .. 43
Uploading Workbench Elements from Targets ... 46
Link Architecture View ... 48

Resources.. 48
Resource Window Workspace...49
Creating Resources ..50
DS800 Development Suite 2.1 - Table of Contents i

Renaming Resources ...51
Copying Resources ..51
Pasting Resources ..52
Deleting Resources ..53

Editing Resource Properties ... 54
Resource Identification..55
Compilation Options..55
Run-time Settings ...59
Resource Network Parameters...62
Custom Resource Parameters ..63
Resource Access Control...64
Resource Description...66

Variable Bindings .. 67
Internal Bindings ...71

Linking Resources ...74
Deleting Resource Links..76
Viewing the Internal Bindings Defined for Resources77
Hiding and Showing Resource Links ..77
Defining Internal Variable Bindings..78
Editing Internal Variable Bindings ..80
Deleting Internal Variable Bindings ..80

External Bindings ...81
Defining Producer Variable Groups ...83
Editing Producer Variable Groups...85
Deleting Producer Variable Groups...85
Linking Resources for External Bindings ...86
Editing External Resource Links ...87
Defining External Variable Bindings...88
Editing External Variable Bindings ...89
Deleting External Variable Bindings ...89

Parameters .. 90
Variable Groups ... 91

Creating Variable Groups ..91
Opening Variable Groups ..91

Importing or Exporting Variables .. 93
POUs (Program Organization Units) ... 96

Programs..96
Functions ...98
Function Blocks ...99
ii DS800 Development Suite 2.1 - User Manual

Creating POUs ...99
Manipulating POUs ...100
Creating FC Sub-programs ..102
Creating SFC Child POUs ...102
Changing Hierarchy Level...103
Controlling Access to POUs ..104
Generating Debug and Monitoring Information107
Editing a POU Description ..108

Hardware Architecture View ... 109
Configurations .. 110

Creating Configurations...110
Deleting Configurations...111
Moving Configurations..112
Inserting Resources..112
Moving Resources Between Configurations ...113

Configuration Properties... 114
Configuration Link to ROCLINK Configuration File115
Configuration Target Definitions...117
Target Access Control..118
Configuration Description ...119

Networks... 120
Creating Networks ...120
Moving Networks ..121

Connections .. 123
Creating Connections...123
Deleting Connections...124

Dictionary View... 125
Appearance ... 126
Variables Tree... 127
Parameters Tree .. 128
Types Tree .. 129

Creating Structures...129
Renaming Structures..130
Deleting Structures...130

Defined Words Tree ... 130
Working with the Grids .. 131

Resizing Columns ..132
Selecting Rows and Elements..132
DS800 Development Suite 2.1 - Table of Contents iii

Editing the Contents of the Grid..133
Adding or Inserting Rows..134
Moving Rows ..135
Expanding or Collapsing Grid Components..135
Cutting, Copying, and Deleting Elements ...136
Finding and Replacing Elements ...137
Pasting Elements..138
Sorting the Grid ...138
Duplicating Rows ..139
Renumbering Addresses ..140
Printing a Grid ...141

Variables Grid .. 142
Parameters Grid .. 143
Types Grid .. 144
Defined Words Grid ... 145
Defining TLP Variables ... 146
Initial Values .. 150
Validation ... 153

Cell-level Validation..153
Row-level Validation...153
Database-level Validation..154

I/O Wiring View.. 155
Appearance ... 156
I/O Wiring Tree View .. 157
I/O Wiring Grid View .. 159
Working with the I/O Wiring Tool... 160

TLP Devices (Automatic Wiring) ...162
Analog Input - 4 Point ...163
Analog Output - 4 Point...163
Discrete Input - 8 Point..164
Discrete Output - 5 Point ...164
Multi-Variable Sensor Input - 6 Point ...165
Pulse Input - 2 Point ..166
RTD Input - 2 Point ...167
System Analog Input - 5 Point ..167
Thermocouple Input - 5 Point..168
Adding I/O Devices ...169
Opening Devices..170
Deleting Devices and Conversions..171
iv DS800 Development Suite 2.1 - User Manual

Setting the Real or Virtual Attribute..171
Wiring Channels ..172
Mapping Channels ...172
Freeing Channels ...174

Run-time System Events.. 175
Logging Events... 175
Viewing Events... 176

Language Editors ... 181
Common Editor Features.. 181

Appearance ..182
Menu Bar..183
Toolbars..184

Standard Toolbar ..185
Options Toolbar..186
Debug Toolbar..187
SFC Breakpoints Toolbar...189
SFC Tools...189
Flow Chart Tools..191
ST Tools ...192
IL Tools ..193
LD Tools...194
FBD Tools ..195

Workspace..197
Contextual Menus ..199
Output Window..199
Status Bar ...200

Inserting Identifiers..201
Inserting Blocks ...203
Printing POUs ..205
Opening the Dictionary..205
Opening Another POU...206
Finding and Replacing in POUs ..207

SFC Editor .. 209
Appearance ..210
Menu Bar ...211
DS800 Development Suite 2.1 - Table of Contents v

Working with the Editor ..214
SFC Elements...215

Initial Step ..215
Step...216
Transition ...216
Divergence/Convergence ...217

Creating New Branches..219
Deleting Branches ..220

Link ..221
Jump ...222

Managing Elements ...223
Select ..223
Rename...224
Move ..225
Cut ..225
Copy ...225
Paste ...226
Delete ...227
Goto..227

Level 2 ...228
Coding Action Blocks for Steps...229
Coding Conditions for Transitions...231
Moving Action Blocks Up or Down ..232
Deleting an Action Block...233

Renumbering Charts ..233
FC Editor .. 235

Appearance ..235
Menu Bar ...236
Working with Flow Charts ..239

Flow Chart Elements..240
Action...240
Test ...240
IF-THEN-ELSE ...241
DO-WHILE..242
WHILE-DO..242
Flow..243
Connector ...244
I/O Specific ..244
vi DS800 Development Suite 2.1 - User Manual

Comment ..245
Sub-Program...245

Managing Elements..246
Select ..246
Cut ..247
Copy ...247
Paste..248
Delete..248
Move...248
GoTo...249
Renumber ...249

Level 2..250
Level 2 Window ...251
Edit the Level 2 ..252

Multi-language Editor... 253
Appearance ..254
Menu Bar ...256
Multi-Language Elements..260

ST/IL Elements ..260
LD Elements...261

Contact on the Left ..261
Contact on the Right ..261
Parallel Contact ...262
Coil ..262
Block on the Left ...262
Block on the Right ...262
Parallel Block ..262
Jump ..262
Label ...263
Return ..263
Change Coil/Contact Type ..263
Insert New Rung ..264
Other Operations ...264

FBD Elements ..265
Variable ..266
Function Block ...267
Link ...267
Corner ..267
Jump ..268
DS800 Development Suite 2.1 - Table of Contents vii

Label ..268
Return...269
LD Elements...270

 Left Power Bar ...270
 Contacts ..270
 LD Vertical "OR" Connection ..270
 Coils...271
 Right Power Bar ...271

Comment ..272
Managing Elements ...273

Select..273
Resize...274
Undo/Redo ...274
Move ..275
Cut..275
Copy...276
Paste ...276
Paste Special ..277
Delete ...277
Select All..278
Find Matching Name ...278
Find Matching Coil ..278
Go to Line ..279
Display/Hide Comments..279

Libraries... 281
Creating Libraries... 281
Using Libraries in a Project.. 282

Debug... 289
Status Information .. 290
Download ... 293
Debug/Simulate .. 295

Start / Stop a Resource...297
Resource Execution Mode...298

Real-time Mode ...298
Cycle-to-cycle Mode..299
viii DS800 Development Suite 2.1 - User Manual

Step-by-step Mode ...299
Setting Breakpoints ..301
Removing Breakpoints ...301
Stepping in POUs ...302

Set Cycle Time...303
Write / Lock / Unlock ..304
Diagnosis..307
SFC Breakpoints ..311

Breakpoint on Step Activation ...312
Breakpoint on Step Deactivation ...313
Breakpoint on Transition..314
Transition Clearing Forcing ...315

Spying Variables..316
Adding Variables to the Spy List ...316
Selecting Variables in the Spy List ..317
Removing Variables from the Spy List..318
Rearranging the Spy List..318
Saving a Spy List ...318
Opening an Existing Spy List ..319
Forcing the Value of a Spy List Variable...319

Simulate a Panel of I/Os ... 320
Appearance ..322

Menu Bar..323
Toolbar ...324
Contextual Menu..325
Displaying I/O Device Window Headers...325
Moving or Hiding the Browser ..326

Online Changes... 327
Code Sequences ...327
Variables ..329

Declared Variables ...329
Function Block Instances ...330
Compiler Allocated Hidden Variables ...330

I/O Devices ..331
Memory Requirements...331
Miscellaneous Limitations ...331
Operations ..332

Debug Function Block Instances .. 334
Clean Stored Code .. 336
DS800 Development Suite 2.1 - Table of Contents ix

Document Generator.. 337
Table of Items... 338
Printing Options ... 340
Preview... 342

Code Generator.. 345
Build ... 345

Build a POU...346
Building Resources / Projects..347
Stopping Builds ...348
Cleaning Projects ...348

Compiler Options ... 349
C Source Code.. 351

Project Tree View.. 353
Cross References Browser... 355

Calculating Cross References... 357
Browsing the POUs of a Project... 357
Defining Search Options .. 358

Version Source Control ... 359
Performing a Check in of a Workbench Element....................................... 363
Viewing the History of Workbench Elements ... 364

Getting a Previous Version..365
Comparing Current and Previous Versions ...365
Ac cessing Details for a Previous Version ..366
Creating a History Report ..366

Language Reference ______________________________ 367
Project Architecture ... 368

Programs... 368
Cyclic and Sequential Operations .. 369
Child SFC POUs .. 370
FC Sub-Programs ... 371
Functions .. 371
Function Blocks.. 373
Description Language... 375
Execution Rules.. 376
x DS800 Development Suite 2.1 - User Manual

Common Objects ... 377
Data Types .. 377

Standard IEC 61131 Types ..377
User Types: Arrays ..379
User Types: Structures...380

Constant Expressions.. 381
Boolean Constant Expressions...381
Short Integer Constant Expressions ...381
Double Integer Constant Expressions..382
Real Constant Expressions...382
Timer Constant Expressions ..383
String Constant Expressions ..383

Variables ... 385
Reserved Keywords ...385
Directly Represented Variables ...387
Information on Variables ...389
Boolean Variables (BOOL) ...390
Short Integer Variables (SINT)..390
Double Integer Variables (DINT)..390
Real Variables (REAL)..390
Timer Variables (TIME) ..391
String Variables (STRING) ...391

Comments ... 392
Defined Words.. 392

SFC Language.. 395
SFC Main Format ... 395
SFC Basic Components .. 396

Steps and Initial Steps..396
Transitions..397
Oriented Links ...398
Jump to a Step..398

Divergences and Convergences.. 400
Single Divergences (OR) ...400
Double Divergences (AND) ..402

Actions Within Steps .. 404
Boolean Actions...404
Pulse Actions ...405
Non-stored Actions ..406
SFC Actions ...407
DS800 Development Suite 2.1 - Table of Contents xi

List of Instructions...408
Calling Functions and Function Blocks...409

Conditions Attached to Transitions .. 410
Condition Programmed in ST..410
Condition Programmed in LD ...411
Condition Programmed in IL...411
Calling Functions from a Transition..412
Calling Function Blocks from a Transition ...413

SFC Dynamic Behavior.. 414
SFC Program Hierarchy ... 415

FC Language.. 417
FC Basic Components .. 417

FC BEGIN ...418
FC END ...418
FC Flow Links ...419
FC Actions ...420
FC Conditions..420

Other FC Components.. 422
FC Sub-Program ..422
FC I/O Specific Actions...423
FC Connectors ...424
FC Comments ..424
FC Complex Structure Examples ..425

FC Dynamic Behavior.. 426
FC Checking... 426
FC Examples .. 427

FBD Language... 429
FBD Diagram Main Format ... 429
RETURN Statement ... 431
Jumps and Labels ... 431
Boolean Negation ... 433
Calling Functions and Function Blocks ... 433

LD Language ... 435
Power Rails and Connection Lines .. 436
Multiple Connections ... 437
Basic LD Contacts and Coils.. 439

Direct Contact..440
Inverted Contact...440
xii DS800 Development Suite 2.1 - User Manual

Contact with Rising Edge Detection..441
Contact with Falling Edge Detection...442
Direct Coil..443
Inverted Coil ..444
SET Coil...445
RESET Coil ...446
Coil with Rising Edge Detection ...447
Coil with Falling Edge Detection ..448

RETURN Statement ... 449
Jumps and Labels.. 450
BLOCKS in LD .. 451

ST Language .. 453
ST Main Syntax .. 453
Expressions and Parentheses .. 455
Functions or Function Block Calls ... 456

Calling Functions ...456
Calling Function Blocks ..457

ST Operators... 459
ST Basic Statements ... 459

Assignment...459
RETURN Statement...460
IF-THEN-ELSIF-ELSE Statement ..461
CASE Statement ..462
WHILE Statement..463
REPEAT Statement ...464
FOR Statement...465
EXIT Statement ...466

ST Extensions ... 467
GSTART Statement in SFC Action...468
GKILL Statement in SFC Action ..469
GFREEZE Statement in SFC Action...470
GRST Statement in SFC Action ..471
GSTATUS Statement in SFC Action ..472

IL Language ... 473
IL Main Syntax ... 473

Labels...474
Operator Modifiers...474
Delayed Operations..475
DS800 Development Suite 2.1 - Table of Contents xiii

IL Operators ... 476
LD Operator...477
ST Operator ...478
S Operator..478
R Operator ...479
JMP Operator...480
RET Operator...481
) Operator...482
Calling Functions...483
Calling Function Blocks: CAL Operator...485

Standard Operators .. 487
* ... 488
+ ... 489
- .. 491
/ .. 492
1 GAIN ... 494
AND ... 495
ANY_TO_BOOL ... 496
ANY_TO_SINT ... 498
ANY_TO_DINT .. 499
ANY_TO_REAL.. 501
ANY_TO_TIME .. 502
ANY_TO_STRING.. 504
Equal... 505
Greater Than or Equal .. 507
Greater Than... 508
Less Than or Equal... 510
Less Than ... 511
NEG.. 512
NOT.. 514
Not Equal.. 515
OR .. 516
TMR ... 517
XOR.. 518

Standard Functions .. 521
ABS .. 522
ACOS ... 523
AND_MASK.. 524
xiv DS800 Development Suite 2.1 - User Manual

ASCII.. 525
ASIN... 526
ATAN ... 527
CHAR ... 528
COS .. 530
CURRENT_ISA_DATE... 531
DELETE ... 532
EXPT .. 533
FIND... 534
INSERT .. 536
LEFT... 537
LIMIT ... 539
LOG .. 540
MAX... 541
MID... 542
MIN... 543
MLEN... 544
MOD... 546
MUX4... 547
MUX8... 549
NOT_MASK... 550
ODD.. 551
OR_MASK ... 553
POW ... 554
RAND... 555
REPLACE .. 556
RIGHT .. 558
ROL .. 559
ROR .. 560
SEL ... 562
SHL... 563
SHR .. 564
SIN.. 565
SQRT .. 566
SUB_DATE_DATE ... 567
TAN .. 569
TRUNC... 570
XOR_MASK .. 571
DS800 Development Suite 2.1 - Table of Contents xv

Standard Function Blocks.. 573
ALARM.. 575
AVERAGE... 575
BLINK.. 577
CMP.. 578
CONNECT ... 579
CTD .. 581
CTU .. 582
CTUD ... 583
DBG_CLR_GET_ERR .. 585
DBG_CLR_SET_ERR... 585
DBG_GET_ERR .. 586
DBG_SET_ERR... 586
DERIVATE .. 587
EVENT... 588
F_TRIG .. 588
HYSTER .. 589
INTEGRAL .. 590
R_TRIG .. 591
REQUEST_LICENSE.. 592
RS ... 593
SET_PRIORITY .. 594
SIG_GEN ... 595
SOFT_POINT_READ.. 596
SOFT_POINT_WRITE.. 597
SR ... 598
STACKINT .. 600
TLP_GET_DINT.. 601
TLP_GET_REAL... 602
TLP_GET_SINT .. 603
TLP_GET_STRING... 604
TLP_GET_TLP .. 605
TLP_SET_DINT .. 606
TLP_SET_REAL ... 607
TLP_SET_SINT... 608
TLP_SET_STRING ... 609
TOF .. 609
TON.. 610
TP ... 611
xvi DS800 Development Suite 2.1 - User Manual

URCV_S... 612
USEND_S... 613

Glossary ... 615
Copyright ... 661
DS800 Development Suite 2.1 - Table of Contents xvii

Workbench

The DS800 software suite supports both the ROC800-Series and the FloBoss 107 flow
computers from Remote Automation Solutions (RAS). To simplify usage, this
documentation refers to both devices as the “RAS device.” If there is a situation where we
restrict functionality to either the ROC800-Series or the FB107, we note it.

The Workbench is the environment in which you develop multi-process control projects made
up of virtual machines running on hardware components, called target nodes. The development
process consists of creating projects made up of configurations, representing, individual target
nodes, on which one or more instances of resources, i.e., virtual machines, are downloaded. At
runtime, the virtual machines run on these target nodes.

Projects can be developed using any of the five languages of the IEC 61131 standard: SFC:
Sequential Function Chart (or Grafcet), FBD: Function Block Diagram, LD: Ladder Diagram,
ST: Structured Text, and IL: Instruction List. You can also use the Flow Chart language. When
building, resources are compiled to produce very fast "target independent code" (TIC) or
"C" code.

Within resources, you can declare variables using standard IEC 61131 data types (i.e., Boolean,
integer, real, etc.) or user-defined types such as arrays or structures. For defined variables, you
can set up alarms, events, and trending. Furthermore, field communications allow you to
connect variables to field equipment. Resources can share variables using internal bindings or
external bindings. Internal bindings are between resources within the same project. External
bindings are between resources belonging to different projects.
DS800 Development Suite 2.1 - Workbench 1

You develop projects on a Windows development platform, in the Workbench and language
editors. The Workbench graphically represents and organizes configurations, resources, POUs,
and networks within a project from multiple views:

link architecture

hardware architecture

dictionary

I/O wiring

bindings

Libraries made up of configurations and resources enable you to define functions and function
blocks for reuse throughout projects.

Individual resources, from the configurations making up a project, are downloaded, using the
ETCP or ISARSI (serial link) network, onto target RAS device nodes running real-time
operating systems. Communication between configurations can be implemented using the
TCP\IP network. You can choose to implement any other network.

You can choose to simulate the running of a project, after building a project, using high-level
debugging tools, before actually downloading the resources making up configurations to the
target nodes.

You can set four levels of access control in a Workbench application:

password protection and read-only mode for a complete project

password protection and read-only mode for individual resources

password protection for individual POUs

password protection for a target
2 DS800 Development Suite 2.1 - User Manual

Appearance
Title bar

Menu bar

Tool bars

Workspace

Output window

Status bar
DS800 Development Suite 2.1 - Workbench 3

Title Bar
For help locating the Title Bar, see the Appearance diagram. The Title Bar displays the
application name and the filename of the active project, if any are open, along with the current
view (Hardware Architecture, Link Architecture, Dictionary or I/O Wiring).

Control Icon

At the left end of the Title Bar is the Control Icon, which is used to access the Control Menu
(see following section). Double-clicking on the Control Icon closes the Workbench.

Control Menu

Clicking on the Control icon opens the Control Menu. The Control Menu is used to position
the Main Window or to exit.

Window Buttons

The standard window buttons appear at the right end of the Title Bar. Use these to resize or
close the Window.
4 DS800 Development Suite 2.1 - User Manual

Menu Bar
The options available from the menu bar differ slightly for the hardware architecture and link
architecture views of a project. Some options are available as keyboard commands.

File New Project/Library Ctrl+N creates a new project or library

Open Project/Library Ctrl+O opens an existing project or library
Save Project/Library Ctrl+S saves the current project or library
Rename Project/Library renames the current project or

library
Project Properties sets project access control
Import imports three types of information:

- PLC definitions using text files
generated with the Target Definition
Builder
- Workbench elements (projects,
configurations, resources, and
POUs)
- Variables data

Export exports Workbench elements
(projects, configurations, resources,
and POUs) or variables data

Print Ctrl+P accesses the Document Generator
Exit Ctrl+Q leaves the Workbench
DS800 Development Suite 2.1 - Workbench 5

Edit Open Alt+N opens the item selected from a
resource. This option is only
available in the link architecture
view.

Undo Ctrl+Z cancels the last action
Redo Ctrl+Y restores the last cancelled action
Cut Ctrl+X removes the selected item and places

it on clipboard
Copy Ctrl+C takes a copy of the selected item and

places it on the clipboard. For the
link architecture view, this option
appears as Copy Program where it
copies an entire selected program.

Paste Ctrl+V inserts the contents of the clipboard
into the selected item

Delete DEL removes the selected item from the
selected item

Find / Replace in POUs Ctrl+F finds and replaces text in a project, a
configuration, a resource, or a POU

Select All Ctrl+A selects all items in the active view
Properties accesses the properties for the

selected item
Move to lower level sets the selected FC or SFC program

as a sub-program of the next
program in the resource. This option
is only available in the link
architecture view.

Move to upper level sets the selected FC or SFC program
as a parent program of the previous
program in the resource. This option
is only available in the link
architecture view.
6 DS800 Development Suite 2.1 - User Manual

Insert Configuration inserts a configuration in the
workspace. This option is only
available in the hardware
architecture view.

Resource inserts a resource. For the hardware
architecture view of a project, you
insert resources in selected
configurations. For the link
architecture view, you insert
resources in the workspace.

Network inserts a network in the workspace.
This option is only available in the
hardware architecture view.

Add Variable Group adds a variable group to the selected
resource. This option is only
available in the link architecture
view.

Add Program adds a program to the selected
resource. This option is only
available in the link architecture
view.

Add SFC Sub-program adds an SFC sub-program to the
selected program. When an FC
program is selected, adds an FC
sub-program. This option is only
available in the link architecture
view.
DS800 Development Suite 2.1 - Workbench 7

Project Types Ctrl+3 accesses the Types Tree of the
Dictionary view

Variables Ctrl+G accesses the Variables Tree of the
Dictionary view

Function /Function Block
Parameters

accesses the Parameters Tree of the
Dictionary view. This option is only
available in the link architecture
view.

External Binding List Ctrl+0 accesses the External Binding list
window where you can define
external variable bindings between
producer variables of a source
resource in a given project with
consumer variables of a destination
resource in a different project

Internal Binding List Ctrl+1 accesses the Binding List window
for the selected binding. This option
is only available in the link
architecture view.

Defined Words Ctrl+2 accesses the Defined Words Tree of
the Dictionary view

I/O Wiring
Build Project/Library compiles the current project or

library
Rebuild Project/Library recompiles the complete current

project
Clean Project/Library removes files created during the last

build of the current project or library
Build Resource compiles the selected resource
Clean Resource removes files created during the last

build of the selected resource
Build Program compiles the selected program. This

option is only available in the link
architecture view.

Stop Build stops a build in progress
8 DS800 Development Suite 2.1 - User Manual

Tools Compact Database optimizes the current project’s
database

Edit Project Description Ctrl+K accesses the description editor for
the current project or library

Edit Description accesses the description editor for
the selected item

Unlock Resource unlocks a resource currently locked
by another user. This option is only
available when editing a project in
normal mode and one or more
resources of the project are opened
in single-resource editing mode by
other users.

Add/Remove Dependencies accesses the Add/Remove
Dependencies window where you
define the libraries used by a project

Browser Ctrl+B accesses the cross references
browser listing and localizing all
instances of global variables (cross
references) and I/Os declared in a
project

Check-in Checks in a project, configuration,
resource, or POU definition not
having the read-only attribute into a
version source control database

View History Views the history of a project,
configuration, resource, or POU that
has been checked in repeatedly to a
version source control database

Events Viewer accesses the Events Viewer
DS800 Development Suite 2.1 - Workbench 9

Debug Download Ctrl+M accesses the Download editor from
where you download resources onto
target nodes

Debug Target Alt+F6 starts the project in debug mode
Simulation Alt+F7 starts the project in simulation mode
On-line Change: Download downloads only the changes made

since the last download for the
selected running resource. The
download includes the symbol table
(complete or reduced as selected in
the resource’s compilation options).

On-line Change: Update updates a resource running on a
target to use the latest on-line change
download code. For use when you
chose to update the resource code
later.

Start starts the selected resource, while in
run mode

Stop stops the selected resource, while in
run mode

Start from code saved on
Target

restarts the selected resource using
the code saved on the target node

Save Code on target saves the code of the running
resource (including changes)

Clean Stored Code removes code previously saved on a
target

Diagnosis accesses the Diagnosis window
displaying general and status
information for the selected resource

Refresh Status updates the resource status
information, appearing in the title
bar, for all resources
10 DS800 Development Suite 2.1 - User Manual

Debug
(cont)

Real Time / Cycle to Cycle switches between real time and cycle
to cycle mode for the selected
resource

Execute one cycle Alt+F10 executes one cycle at a time, while
in cycle to cycle mode

Change Cycle timing accesses the Cycle Time editor
where you set the cycle time for the
selected resource

Step Alt+F8 executes the current line then steps
to the next line

Step Into Alt+F9 executes the current line then steps
into the next line

Show Current Step shows the current step
Options Layout accesses the Layout editor where

you specify which toolbars to
display and the magnification of the
workspace area

Customize Ctrl+U accesses the customization
properties for Workbench views and
editors

Hide Links enables hiding or showing of the
different types of binding links
between resources. This option is
only available in the link
architecture view.
DS800 Development Suite 2.1 - Workbench 11

Note: When no projects are open, only the File and Help menus are visible.

Using the Menus:

1. Open a menu by clicking on it, or by pressing (Alt) plus the letter that is underlined in
the menu's title. For example, to open the File Menu, you press (Alt) + (F) (shown in
this User's Guide as (ALT+F)).

2. Choose a menu selection by clicking on it, by pressing its underlined letter, or by using
the cursor keys to highlight it and then pressing (Enter). Menu selections that appear in
grey are not currently available.

Window Cascade sets the different views of the project
to appear in a cascading manner

Tile sets the different views of the project
to appear in a tiled manner

Show Spy List accesses the Spy List window where
you specify variables whose values
are displayed while in test mode

Show Project Contents displays the project structure and
enables accessing aspects of the
currently opened project

Show Output Window Ctrl+4 displays the output window below
the workspace

Clear Output Window clears the contents of the output
window

Help Contents F1 accesses the online help
Search Help On... not currently supported
About displays product and version

information
Support Info not currently supported
12 DS800 Development Suite 2.1 - User Manual

Control Icon

When a project is open and not displayed in Cascade or Tile mode, the menu bar has a Control
Icon on the left. This icon indicates the current view.

Control Menu

Clicking on the Control Icon opens the Control Menu. The Control Menu is used to position
the Window or to alternate between views (see Window Buttons Toolbar).

Window Buttons

The standard window buttons appear at the right end of the menu bar.
DS800 Development Suite 2.1 - Workbench 13

Toolbars
Many toolbars performing different tasks are available for use in the hardware and link
architecture views:

Standard Toolbar

Debug Toolbar

Window Buttons Toolbar

Layers Toolbar

Version Source Control Toolbar

Options Toolbar

I/O Wiring Toolbar

While performing I/O wiring tasks in the I/O Wiring view, the I/O Wiring toolbar becomes
available.

To show or hide toolbars

You can choose to show as many toolbars as required.

1. From the Options menu, choose Layout.

The Layout editor appears.

2. To show toolbars, check the required toolbars then click OK.

3. To hide toolbars, uncheck the toolbars then click OK.

To move a toolbar

Toolbars can be placed anywhere on the screen, their position is retained until the next change.

1. Point the cursor at the toolbar's title bar or main panel. Do not point at the control icon or
one of the window's buttons.
14 DS800 Development Suite 2.1 - User Manual

2. Press and hold the left mouse-button.

3. Drag the toolbar by moving the mouse.

4. Release the mouse-button.

Docking toolbars

Dock a toolbar to a side of the Workspace by positioning it at the Workspace's edge.
Switch back and forth between a toolbar's floating and docked states.

Standard Toolbar

Creates a project

Opens a project

Saves the current project

Cuts the selection and places it on the clipboard

Copies the selection and places it on the clipboard

Pastes the contents of the clipboard

Undoes the last operation

Redoes the previously undone operation
DS800 Development Suite 2.1 - Workbench 15

Moves to upper level on currently selected SFC or FC program

Moves to lower level on currently selected SFC or FC program

 Accesses the document generator where you can print different parts of a
project

Builds the current project/library

Rebuilds the current project/library

Builds the current resource

Builds a program

Stops a build

Downloads resource code to targets

Switches an application to debug mode

Switches an application to simulation mode

Performs an Online Change: Download
16 DS800 Development Suite 2.1 - User Manual

Debug Toolbar

The Debug toolbar is accessible when you run a project in either Debug or simulation mode.

Adds/removes dependencies

Accesses the web site

Starts all stopped resources

Starts a stopped resource

Stops all running resources

Stops a running resource

Switches an application to real-time mode

Switches an application to cycle-to-cycle mode

Executes one cycle

Steps to the next line of code or rung

Steps into the next line of code or rung
DS800 Development Suite 2.1 - Workbench 17

Locates the current step

Sets the cycle timing

Sets or removes a breakpoint. For LD programs only.

Removes breakpoints. For LD programs only.

Shows/Hides output values. For FBD programs only.

Debugs a function block

Displays the spy variable list

Stops the debug/simulation mode

Refreshes the status of resources

Clears the output window
18 DS800 Development Suite 2.1 - User Manual

Window Buttons Toolbar

Layers Toolbar

Switches the Workbench to the Hardware Architecture view

Switches the Workbench to the Link Architecture view

Switches the Workbench to the Dictionary view

Accesses the I/O Wiring view

Accesses the Binding window where you can create data links between
resources and define the variable bindings using these links

Accesses the External Binding list window where you can define external
variable bindings between producer variables of a source resource in a given
project with consumer variables of a destination resource in a different project
Accesses the cross references browser

Toggles between the link architecture view and the distribution
view.

Sets the project layer to display. The available layers are Base
Layer (link architecture view or hardware architecture) and 1499
Layer (distribution view).
DS800 Development Suite 2.1 - Workbench 19

Version Source Control Toolbar

Options Toolbar

I/O Wiring Toolbar

Checks in a project, configuration, resource, or POU definition not having the
read-only attribute into a version source control database

Views the history of a project, configuration, resource, or POU that has been
checked in repeatedly to a version source control database

Shows or hides the data links between resources

Sets the magnification factor for the workspace

Opens a device

Saves the I/O Wiring

Accesses the document generator

Adds a device

Deletes a device
20 DS800 Development Suite 2.1 - User Manual

Undoes the last operation

Redoes the last operation

Frees all I/O device channels

Frees an I/O device channel

Real/Virtual I/O device

Maps logical and physical channels

Accesses help on selected I/O device in Tree view
DS800 Development Suite 2.1 - Workbench 21

Workspace
The Workspace can be split into a maximum of four simultaneous views:

Note: Sub-windows are zoomed independently.

To split the workspace

Drag and drop the handles to the required positions:
22 DS800 Development Suite 2.1 - User Manual

Zoom

You can adjust the magnification factor, i.e., zoom, for the workspace. Elements appear with
more detail as the zoom level increases. You can set the zoom from the Options toolbar or in
the Layout editor. You access the Layout editor by choosing Layout from the Options menu.

When editing SFC, FC, LD, and FBD POUs, you can also adjust the magnification factor for
the language editor’s workspace.

To adjust the zoom level

1. On the Options toolbar, click the arrow of the magnification window .

2. Choose a magnification factor from the list.

The workspace is displayed using the new magnification factor.
DS800 Development Suite 2.1 - Workbench 23

Output Window
The output window displays information resulting from builds of projects, resources, and
programs. It also displays Workbench run-time errors. When building a program, the output
window is automatically displayed. The Output window is also available from the language
editors.

You can copy to the clipboard the information displayed in the output window.

To view the Output Window

From the Window menu, choose Show Output Window.

To clear the contents of the output window

From the Window menu, choose Clear Output Window.
24 DS800 Development Suite 2.1 - User Manual

Contextual Menus
Contextual menus are displayed by right-clicking in the workspace of the various tools and
applications. From the Hardware Architecture view, you can access a contextual menu for
configurations or resources. For configurations, you access it by right-clicking a
configuration's title bars. For resources, you access it by clicking a resource’s name in the
configuration window. From the Link Architecture view, you can access a contextual menu for
resources by right-clicking a resource’s title bar.

Example

Status Bar
A status bar appears at the bottom of the main window displaying information about
commands, operations, and projects.

To show or hide the status bar

1. From the Options menu, choose Layout.

The Layout editor appears.

2. To show the status bar, check Status Bar then click OK.

3. To hide the status bar, uncheck Status Bar then click OK.
DS800 Development Suite 2.1 - Workbench 25

Customization
You can choose to customize the colors and fonts for many aspects of the Workbench as well
as set working preferences. You can customize the colors and fonts for the following items:

For the dictionary, you can set the font and the colors used for text, scope, and instances

For the ST and IL editors, you can set the font and the colors used for background and
text (basic syntax)

For the FBD editor, you can set the font and the colors used for background, text,
connection and element outline lines, line shadows, and selected elements as well as the
fill for main elements

For the LD, FC, and SFC editors, you can set the font and the colors used for background
and text as well as the fill for main elements

For the FBD and LD editors, you can set the color for comments and for Boolean values
(TRUE and FALSE) displayed while in debug mode.

You can also set the colors for resource data links used with bindings.

You can set the following working preferences:

The number of recent project files to display in the File menu

Reload the last project at startup

Always prompt before saving changes to the project

To customize colors and fonts

Resetting the default for an item restores the colors and fonts to those when the Workbench
was installed.

1. From the Options menu, choose Customize.
26 DS800 Development Suite 2.1 - User Manual

2. On the Customize editor, select the Colors and Fonts tab, then select the item to modify.

3. To change the font used, select a font and size. You can choose to bold the font.

4. To change the foreground or background colors, click the respective button, then from the
color editor, choose a pre-defined color or specify a custom color.

To set working preferences

1. From the Options menu, choose Customize.

2. On the Customize editor, select the Preferences tab.
DS800 Development Suite 2.1 - Workbench 27

3. Make the desired changes.
28 DS800 Development Suite 2.1 - User Manual

Directory Structure
The installation process creates the following directory structure:

Emerson Root directory for all
Emerson products

DS800 2.1 DS800 Workbench files

Bin Executable files

Simul Simulator target files

Tmp Temporary files

User User profile files

Projects Emerson projects

DS800 2.1 DS800 Workbench projects

Prj Projects

<project> Individual Project
Directories

<configuration> A directory per hardware
configuration

<resource A directory per resource

Tpl DS800 templates

EmptyLibmonoresource EmptyLibmonoresource
templates

<configuration> A directory per hardware
configuration

<resource> A directory per resource
DS800 Development Suite 2.1 - Workbench 29

EmptyLibmultiresource EmptyLibmultiresource
templates

<configuration> A directory per hardware
configuration

<resource> A directory per resource

EmptyPrjmonoresource EmptyPrjmonoresource
templates

<configuration> A directory per hardware
configuration

<resource> A directory per resource

EmptyPrjmultiresource EmptyPrjmultiresource
templates

<configuration> A directory per hardware
configuration

<resource> A directory per resource

Libmonoresource Libmonoresource templates

<configuration> A directory per hardware
configuration

<resource> A directory per resource

Libmultiresource Libmultiresource templates

<configuration> A directory per hardware
configuration

<resource> A directory per resource

Prjmonoresource Prjmonoresource templates

<configuration> A directory per hardware
configuration

<resource> A directory per resource
30 DS800 Development Suite 2.1 - User Manual

Projects are stored in the Projects directory, as MS-Access database (.MDB) files:

<drive>:Emerson/Projects/DS800 2.1/Prj/<project name>/PRJLIBRARY.MDB

For details on the project architecture, see page 368.

Note: Existing projects can be manually moved or copied to the "tpl" directory to create new
project templates.

Example

The panel resource in the main configuration within the proj1 project is stored in the directory:

<drive>:Emerson/Projects/DS800 2.1/Prj/proj1/main/panel/

Prjmultiresource Prjmultiresource templates

<configuration> A directory per hardware
configuration

<resource> A directory per resource

Shared Common files shared by
Emerson products

Error Reporting Solobug files for use when
reporting errors on Emerson
products

Help 2.1 Online help files for
Emerson products

Sentinel Sentinel driver files for use
with hardware keys
DS800 Development Suite 2.1 - Workbench 31

Working with Projects
You can work with DS800 Development Suite projects in one of two project editing modes:

Normal

Single-resource

The normal mode provides access for a single user to all resources and POUs making up a
project. While in the normal mode, no other users can access the project or its resources. Before
opening a project in normal mode, multiple users can access the individual resources of the
project for editing purposes, i.e., single-resource editing mode. The single-resource mode
limits access for an individual user to one resource and its POUs. Other users can access other
resources of the same project.

Note: Make sure to build the complete project in normal mode before editing single resources.
Otherwise, a build while in single-resource mode may generate errors.

Only one user can access a resource at any given time; while in use, a resource remains locked
to all other users. For instance, when editing a project in normal mode, all resources making up
the project are automatically locked for your use except for those resources currently open in
single-resource mode. The currently open resources are displayed in the workspace but remain
locked. Locked resources appear gray with a lock symbol in their title bar.
32 DS800 Development Suite 2.1 - User Manual

You can unlock resources currently open in single-resource mode by another user by selecting
the resource, then choosing Unlock Resource from the Tools menu.

Warning: The Unlock Resource option should only be used when necessary. When unlocking
resources currently opened by another user, make sure the remote Workbench is no longer
running.

The Workbench automatically assigns a user name to a project, when running on a network.
The user name is displayed in the status bar and in the access control properties of the
resources. The assigned user name depends on the editing mode:

In normal mode, the user name is always UserName.Administrator

In single-resource mode, the user name is the Windows login user name of the user
editing the resource

Resources currently opened by another user hold the name of that user in their properties.

In single-resource mode, a project is displayed in the link architecture view with the project
and resource identification in the title bar of the single resource. The hardware architecture
view and binding list are not available. In the dictionary view and the I/O wiring view, only the
variables and wiring defined for the resource are displayed. Variables bound to other resources
as well as types and defined words are in read-only mode. While in single-resource mode, you
can switch a project to debug or simulation mode.
DS800 Development Suite 2.1 - Workbench 33

While in normal mode, you can perform the following tasks:

Creating Projects

Renaming Projects

Adding a Project Description

While in the normal or single-resource project editing mode, you can perform the following
tasks with limitations depending on the mode:

Opening and Closing Projects

Saving Projects

Printing Projects

You can also control access to projects.

Creating Projects
When you create projects, you use one of four templates:

SingleROC800, SingleROC800E, and SingleFB107, containing one resource in one
configuration

MultipleROC800E, containing two resources in two different configurations linked by an
Ethernet network. This template is not available for use with non-networked versions of
the Workbench.

The SingleROC800, SingleROC800E, and MultipleROC800E templates are all RAS device
target specific. The LibSingleROC800, LibMultipleROC800, and LibSingleFB107 templates
are available for use with librairies.

To create a new project

1. From the File menu, choose New Project <Ctrl+N>.

2. Enter the project name (max 128 characters).
34 DS800 Development Suite 2.1 - User Manual

3. Enter comments (optional).

4. Choose a template.

5. Click OK.

The project is created using the chosen template and the link architecture view is displayed.

You can only open one project at any given time. When changes have been made to an open
project, you will automatically be prompted to save the changes before creating a new one.
DS800 Development Suite 2.1 - Workbench 35

Opening and Closing Projects
In the Workbench, you can only open one project at any given time. If changes have been made
to an open project, the system automatically prompts you to save changes before closing a
project or opening another. You can open projects in one of two project editing modes: normal
and single-resource.

Project filenames are always PRJLIBRARY.MDB, the project directory name represents the
given project name. When you open a project or create a new project, the hardware architecture
view and the link architecture view are cleared. When a project has been relocated, you need
to redefine its links within the Workbench before opening it.

When opening a project in single-resource editing mode, you need to select the project, then
choose a resource from the list of resources defined for the project. In the list of resources,
resources appear with icons indicating their security state or non-availability:

When the advanced options are installed on your computer, you can choose to open a project
without the advanced options features such as alarms and events, trends, field communications.

To open an existing project

1. From the File menu, choose Open.

The Open Project dialog box is displayed:

Resource unavailable, currently open by another user
36 DS800 Development Suite 2.1 - User Manual

2. Locate the required project file name.

3. Do one of the following:

To open the project in normal editing mode, click Open.

The project is open in the normal editing mode having access to all resources and POUs.

To open the project in single-resource editing mode, check Open in
single-resource mode, then click Open.

The Resource Selection window is displayed with all project resources showing their
security states or non-availability.
DS800 Development Suite 2.1 - Workbench 37

4. From the list of available resources, select the resource to open, then click OK.

The project is open in the single-resource editing mode where only the selected resource
is editable.

To open a project using a command line

You can open projects in single-resource editing mode or in read-only mode using a
command line.

To open the project in single-resource editing mode from a command line, use the
following syntax:

DPM.exe project_path -res resource_name

Note: For command lines, resource names are case sensitive. You can also use the resource
number to identify the resource.

When manually starting the Workbench, you may need to provide the location of the
Workbench project. The Workbench needs to be started in it's location directory. For
example:

"C:\Program Files\Emerson\DS800\Bin\DPM.exe" "C:\Emerson/Projects/
DS800/Prj/Project1" -res Lead

To open the project in read-only mode from a command line, use the following syntax:

DPM.exe project_path -readonly

When manually starting the Workbench, you may need to provide the location of the
Workbench project. The Workbench needs to be started in it's location directory. For
example:

"C:\Program Files\Emerson\DS800\Bin\DPM.exe" "C:\Emerson/Projects/
DS800/Prj/Project1" -readonly
38 DS800 Development Suite 2.1 - User Manual

Saving Projects
The project name is used to create a unique directory structure. Saving the project saves it in
the MS-Access database of the project root directory. Other files related to the project are also
updated in this directory structure. When editing a project in single-resource mode, changes are
only saved for the edited resource.

To save a project

From the File menu, choose Save Project.

Note: When a project is saved, the undo/redo history is cleared.

Renaming Projects
You can rename projects and edit their comments. You cannot rename projects while in
single-resource editing mode. Before renaming projects, make sure to close all Workbench
windows such as language editors and browsing tools.

To rename a project

1. From the File menu, choose Rename Project.

The Rename Project dialog box appears:

2. Change the name and comment as required.

3. Click OK.

The directory structure containing the project is renamed when you save changes to the project.
DS800 Development Suite 2.1 - Workbench 39

Adding a Project Description
You can include a text description for a project.

To edit the project description

From the Tools menu, choose Edit Project Description.

Printing Projects
You can print projects using the Document Generator. For details on the Document Generator,
see page 337.

To print the current Project

From the File menu, choose Print.

The document generator appears with a standard list of elements to be printed for a complete
project.
40 DS800 Development Suite 2.1 - User Manual

Project Access Control
For project security, you can control access using a password. You can also apply the read-only
mode to the entire project. In read-only mode, users not having the password will have
read-only access to the project. When opening a project in read-only mode, all resources and
POUs making up the project are set to read-only mode. However, individual resources and
POUs making up projects can have their own access control. For instance, a resource having
its own password without the read-only option remains locked and cannot be viewed without
its password. While in read-only mode, you cannot build a project. When importing and
exporting projects having access control, password definitions are retained.

The DS800 Workbench enables monitoring a project, i.e., debugging as well as viewing
TLP variables and parameters when a project is opened with access control or in read-only
mode. You can open projects in read-only mode when opening the Workbench or open projects
in read-only mode using a command line. While in monitoring mode, a banner indicating this
mode is displayed above the status bar.

To set access control for a project

When a password is set for a project, you can choose to enable users not having the password
to open the project in read-only mode. The read-only mode for a project is applied to all
resources and POUs making up the project. However, individual resources and POUs may
have their own access control.

1. From the File menu, choose Project Properties.

The Project Properties Security editor is displayed.
DS800 Development Suite 2.1 - Workbench 41

2. In the New field, enter the password for the project.

3. In the Confirm New field, reenter the password.

4. To enable users not having the password to open the project in read-only mode, check
Read Only.
42 DS800 Development Suite 2.1 - User Manual

Importing and Exporting Workbench
Elements
You can import and export Workbench elements, i.e., projects, configurations, resources, and
POUs, from one project to another. When exporting an element, you copy the element from the
project and create a compressed exchange file (.PXF) holding all data except for spy lists and
step-by-step debug information. Therefore, enabling you to copy and paste elements from one
project to another. When importing and exporting elements having access control, password
definitions are retained.

To export a Workbench element

1. Depending on the element type, do one of the following steps:

For projects, from the File menu, choose Export, then Project.

For configurations, resources, and POUs, select the element (either from the link
architecture or hardware architecture view), from the File menu, choose Export,
then the element type.

2. In the Export window, select a directory in which to store the compressed exchange file,
then click Start.

3. To close the window when the export is complete, click Close.

To import a Workbench element

You can only import Workbench elements that have previously been exported and stored as
compressed exchange files. You cannot import elements having the same name as those in a
project. Before importing an element, you can choose to create an automatic backup of your
project.

1. From the File menu, choose Import, then Exchange File.

2. In the Import Exchange File window, select the Import from file option, then click Next.

3. Click Browse to locate the compressed exchange file (.PXF file), then click Next.

4. In the list at the top of the window, select the file name, then click Next.
DS800 Development Suite 2.1 - Workbench 43

5. From the contents of the exchange file, select the element to import. For resources and
POUs, you also need to select the import destination.

6. Click Next.

7. Assign a name to the new element that will be created.

Note: Before importing elements, you should make a back-up copy of your project so that you
could restore it if the resulting import is unsatisfactory.

8. To create a backup copy of the project, check Create a backup copy of the project
before importing element.

The <prjlibrary.BAK> file is created in the project folder. If the results of the import are
unsatisfactory, you can choose to restore the project.

9. Click Next.

The element import begins.

10. When the import is complete, do one of the following:

To import another element from the exchange file, click Next.

To exit the dialog, click Close.
44 DS800 Development Suite 2.1 - User Manual

To restore a project from a backup

1. Close the workbench.

2. Replace PrjLibrary.mdb with PrjLibrary.bak.

3. Remove (or rename) the <element_name> directory.

4. Rename <element_name.BAK> directory into <element_name> directory.
DS800 Development Suite 2.1 - Workbench 45

Uploading Workbench Elements from
Targets
You can upload Workbench elements from any project into another when the resources’ code
has been stored on the target (if non-volatile storage exists for the platform). The element
source file is compressed and contains all data for the element. The file is in the same format,
compressed exchange file (.PXF), used when importing and exporting Workbench elements
from one project to another. For details on importing and exporting elements, see page 43.

Before uploading an element’s source file, you need to download its source code onto the
target. Furthermore, when setting up the resource’s Compilation Options properties, you need
to check the Embed Zip Source option and select the element type.

To upload an element from sources on a target

The element upload process consists of uploading the source file containing the element from
the target onto the local computer for access, then importing the element into the project from
the source file. Before importing an element from an uploaded source file, you can choose to
create an automatic backup for your project.

1. In the project, make sure that the configuration (in which to upload the element) is
connected to the correct network with the correct connection parameters (IP Address
for ETCP).

2. From the File menu, choose Import, then Exchange File.

3. In the Import Exchange File window, select the Upload from target option, then
click Next.

4. From the list of available configurations, select the configuration where the required
sources are located, then click Next.

5. From the list of available sources, select the one to upload, then click Next.

6. When the upload is complete, click Next.
46 DS800 Development Suite 2.1 - User Manual

7. From the contents of the exchange file, select the element to import (for resources and
POUs, you also need to select the import destination), then click Next.

8. Assign a name to the new element that will be created.

Note: Before importing elements, you should make a back-up copy of your project so that you
could restore it if the resulting import is unsatisfactory.

9. To create a backup copy of the project, check Create a backup copy of the project
before importing element.

The <prjlibrary.BAK> file is created in the project folder. If the results of the import are
unsatisfactory, you can choose to restore the project.

10. Click Next.

The element import begins.

11. When the import is complete, do one of the following:

To import another element from the exchange file, click Next.

To exit the dialog, click Close.
DS800 Development Suite 2.1 - Workbench 47

Link Architecture View
 The link architecture view graphically displays the resources of a Project and the

resource data links between them. This is the default view of the Workbench providing a main
entry point to all editors. In the link architecture view, you manage many aspects of a project:

creating resources

linking resources (data links for bindings between resources)

defining variable groups

creating and manipulating POUs (Program Organization Units)

setting up I/O wiring

To access the link architecture view

From the Window menu, choose project_name-Link Architecture.

Resources
Each resource is displayed as a separate window within the link architecture view. The
resource window title bar includes:

An icon indicating the operative state and security state of the resource

The resource name and comment
48 DS800 Development Suite 2.1 - User Manual

A Windows control button to maximize or restore the resource window

A Data Link button enabling you to graphically create data links between resources

The operative state of a resource is indicated by the color of the upper triangle in the resource
icon:

You can access the contextual menu from a resource by right-clicking in its title bar.
Double-clicking the title bar minimizes/restores a resource window.

You can also resize resource windows by placing the cursor over an edge or corner until it
shows double arrows and dragging:

Resource Window Workspace

The Workspace displays a graphical representation of the various components of each
resource.

Blue. The resource is in editing mode.

Green. The resource is in real-time mode (running), debug mode, or simulation
mode.

+ Parameters

Variable Groups

Programs
DS800 Development Suite 2.1 - Workbench 49

To expand / collapse any branch of the hierarchy

Click '+' ('-' to collapse).

Note: Selecting one of the components changes the menu items available on the menus of the
Workbench. For example, if a function is selected, the Insert menu includes the Add Function
option. The contextual menus are also affected by selections within the resource window.

Creating Resources

When you create resources in the link architecture view, these resources are automatically
assigned to the first configuration. You can also choose to create, i.e., insert resources directly
in configurations while in the hardware architecture view. After having created resources, you
can move them. For details on moving resources, see page 113.

To create a new resource

You can create resources using the main menu or a contextual menu, accessed by right-clicking
the empty area of the link architecture view’s workspace.

From the Insert menu, choose Resource.

Functions

Function Blocks
50 DS800 Development Suite 2.1 - User Manual

Renaming Resources

You can rename an existing resource by editing its properties. When a resource is selected, the
Properties option is available from the main menu or a contextual menu. From the resource’s
Properties window, you can also edit the comments for the resource.

To rename a resource

1. Select the resource.

2. From the Edit menu, choose Properties.

The Resource Properties dialog box appears - on the General Tab.

3. Edit the resource name as required.

4. Edit the comment as required.

5. Click OK.

Copying Resources

You can copy a resource and place it on the clipboard. When copying resources, password
definitions are copied, whereas, step-by-step debug information is not copied. When copying
resources having The copy command is available from the main menu, the Ctrl+C keyboard
command, the main toolbar, or a contextual menu.

Note: Before copying, click in a blank area inside the resource window to deselect individual
programs or groups.

To copy a resource from the link architecture view

You can access the contextual menu by right-clicking the title bar of the resource.

1. Click on the title bar of the resource.

2. From the Edit menu, choose Copy.
DS800 Development Suite 2.1 - Workbench 51

To copy a resource from the hardware architecture view

You can access the contextual menu by right-clicking the resource in the configuration
window.

1. Select the resource.

2. From the Edit menu, choose Copy.

Pasting Resources

You can paste a resource into the workspace of the link architecture view or into a
configuration, in the hardware architecture view. When pasting resources, password
definitions are also pasted, whereas, step-by-step debug information is not pasted. The paste
resources using the main menu, the Ctrl+V keyboard command, the main toolbar, or a
contextual menu.

To paste a resource in the link architecture view

You can access the contextual menu by right-clicking the title bar of the resource.

1. Click on an empty area of the link architecture view.

2. From the Edit menu, choose Paste Resource.

To paste a resource in the hardware architecture view

You can access the contextual menu by right-clicking the resource in the configuration
window.

1. Select a configuration to paste the resource into.

2. From the Edit menu, choose Paste Resource.

Note: Links coming from or arriving to a resource are not copied and pasted.
52 DS800 Development Suite 2.1 - User Manual

Deleting Resources

You can delete a resource from the workspace of the link architecture view or from a
configuration, in the hardware architecture view. The delete command is available from the
main menu, the Delete keyboard command, the main toolbar, or a contextual menu.

Note: Before deleting, click in a blank area inside the resource window to deselect individual
programs or Groups.

To delete a resource

You can access the contextual menu by right-clicking the resource title bar.

1. Select the resource.

2. From the Edit menu, choose Delete.
DS800 Development Suite 2.1 - Workbench 53

Editing Resource Properties

You need to define several properties at the resource level, intimately linked to targets (and
their implementation). These properties determine the behavior of the programs and hardware
such as the type of code generated, the timing, and Hardware specific properties.To access the
Resource Properties window

1. From the Window menu, choose project_name-Link Architecture.

2. Select a resource.

3. From the Edit menu, choose Properties.

The Resource Properties window is displayed.
54 DS800 Development Suite 2.1 - User Manual

Resource Identification

The resource identification properties of a resource include its name, comments, and a resource
identification number. The resource number is automatically assigned. You can choose to
change this number. However, when changing this number, you need to assign a number that
is unique within the project. The resource number identifies the Virtual Machine that will run
the resource code. Comments appear in the resource’s title bar, next to its name.

You define resource identification properties on the General tab of the Resource Properties
window:

Compilation Options

The compilation options of a resource define many aspects of a resource’s run-time and
simulation options:

The target operating system on which the resource will run

The generation of debug information

The type of code to generate and compiler options

The symbol table
DS800 Development Suite 2.1 - Workbench 55

Embedded zip of the source files

You can also choose the target type at the configuration level. However, changing the target
for a configuration affects all resources attached to it. For details on configuration properties,
see page 114.

You specify a resource’s compilation options on the Target/Code tab of the Resources
Properties window:

Generate Debug Information

When using the step-by-step mode, for debugging purposes, you need to generate debug
information for a resource and its ST, IL, and LD POUs. For details on step-by-step mode, see
page 299. When setting up debug information, you also need to specify the individual POUs
for which to generate debug information. Debug information includes call stack information
which tracks stepping between POUs and called functions. You can only generate debug
information for resources producing TIC code.

Note: The first time you choose to generate debug information for a resource, the complete
resource is compiled when you build the resource. Subsequently, when you add or remove
individual POUs, only those POUs are compiled when you build the project.
56 DS800 Development Suite 2.1 - User Manual

To generate debug information for ST, IL, and LD programs

1. To generate call stack information for use while stepping in POUs, check Generate
debug information.

2. To generate debug information, click .

3. In the Debug Information window, check individual POUs, select all POUs, or unselect
all POUs, then click OK.

Target Code and Compiler Options

You can specify the generation of three types of code for use in simulation or run time:

Code for simulation, code required when running the application in simulation. To run
the Simulator, you must check Code for Simulation to produce the application code.

TIC Code, the indication of whether Target Independent Code is produced by the
compiler. TIC code can be executed on DS800 Development Suite virtual machines.

Structured C source code, the indication of whether structured C source code is produced
by the compiler. Structured C source code can then be compiled and linked with DS800
Development Suite libraries to produce embedded executable code.

You can also define compiler options for individual resources. For details on compiler options,
see page 349.
DS800 Development Suite 2.1 - Workbench 57

Symbol Table

You can specify whether to download the symbol table to the Virtual Machine with the
resource code. The symbol table groups the variable names of the resource. You can also
choose to download the complete symbol table or the reduced symbol table.

Note: The Complete Table must be selected. The reduced symbol table contains only names
of variables for which the 'Address' cell had been completed. For details on the variables grid,
see page 142.

To change the Build Symbol Table

1. Click Options.

The Build Symbol Table dialog box appears.

2. Choose the type of symbol table to download.

Embed Zip Source

You can embed, on the target, an exchange file (.PXF) holding all data from Workbench
elements. This exchange file is the same as the file created when exporting an element.
58 DS800 Development Suite 2.1 - User Manual

Run-time Settings

The run-time settings include the cyclic and behavior definitions of a resource when the
resource is executed. For information about execution rules, see page 376.

You specify a resource’s run-time settings on the Settings tab of the Resources Properties
window:

Trigger cycles, enables you to specify the cycle timing, i.e., the amount of time given to
each cycle. If a cycle is completed within the cycle time, the system waits until the cycle
time has elapsed before starting a new cycle. The cycle consists of scanning the physical
inputs of the process to drive, executing the POUs of the Workbench resource, then
updating physical outputs. The virtual machine executes the resource code according to
the execution rules. For details about the execution rules, see page 376.

Detect errors, enables the storing of errors. You need to define the number of entries, i.e.,
the size of the queue (FIFO) in which detected errors are stored.

Cycle to Cycle / Real Time, indicates whether programs are executed during the cycle or
not. For Cycle to Cycle, inputs are read but the code is not executed during the cycle
time. This option is useful for testing I/Os.

Memory for Retain, indicates the location where retained values are stored (the required
syntax depends on the implementation)
DS800 Development Suite 2.1 - Workbench 59

You can also specify advanced settings for resources:

SFC dynamic behavior limits

Memory size for online changes

To access advanced settings

Click Advanced.

SFC Dynamic Behavior Limits

The SFC dynamic behavior limits determine the amount of memory, allocated by the target at
initialization time, to manage SFC dynamic behavior (i.e. token moving). The amount of
allocated memory is calculated as a linear relation with the number of SFC POUs:

Alloc Mem (bytes) = N * NbElmt * sizeof(typVa)

NbElmt = GainFactor * NbOfSFC + OffsetFactor

Where:

N = 5 (constant linked to SFC engine design)
typVa = 16 bits in the medium memory model (32 bits in the large memory model)
NbElmt represents for each executed cycle:

The maximum number of transitions that can be valid. That is to say transitions with at
least one of their previous steps being active.
60 DS800 Development Suite 2.1 - User Manual

A simpler, but more approximate definition is:

The maximum number of steps that can be active.

The maximum number of actions that can be executed.

Here, an action refers to an N, P1 or P0 action linked to a step.

If the available memory is not enough at a specific moment:

If the target is generated with check mode (ITGTDEF_SFCEVOCHECK defined in
dsys0def.h), The target kernel generates a warning to signal an SFC token moving error
or an action execution error and the resource is set in ERROR mode (i.e. cycles are no
longer executed). Otherwise, kernel behavior may be unpredictable.

Memory Size for Online Changes

The memory size for online changes defines the amount of memory that is reserved on the PLC
for managing online changes:

Code Size, the amount of memory reserved for code sequence changes

User Variable Size, the amount of memory reserved for adding variables data. When
generating symbol monitoring information for a POU, the same amount of memory is
also reserved for the POU.

When performing downloads and online changes, parts of the User Variable Size memory
space is used to store project data such as variables values. This memory space becomes
free when you clean the project.
DS800 Development Suite 2.1 - Workbench 61

Resource Network Parameters

You need to define network parameters attached to the resource for each available network.

You specify a resource’s network parameters on the Network tab of the Resources Properties
window:

Note: The parameters appearing in the list reflect those attached to the resource. Some
parameters are read-only. However, when a resource is attached to a network not requiring
parameters, the list appears empty.

You can also access the online help by clicking Help.

For the HSD network, the current definition is the following:

The consumer computes the time elapsed between production and consumption and tests if it
less than the 'ValidityTime' parameter specified for the producer resource in the workbench.
The user must be careful when specifying this value to take into account the cycle time of the
producer resource. This resource cannot emit values at a period shorter that its cycle time.

If this time-out is detected, the consumer sets the error variable to
ISA_HSD_KVB_ER_TIMEOUT value.
62 DS800 Development Suite 2.1 - User Manual

For the ETCP network, the current definition is the following:

On the consumer side, if no data is received during the time specified in the Timeout parameter
value, then the error variable is set to ETCP_KVB_ERR_TIMEOUT value.

Custom Resource Parameters

You can define specific OEM options for a resource that may be implemented in your target.

Note: DS800 Development Suite standard targets do not have extended parameters. Contact
your target supplier for specific details.
DS800 Development Suite 2.1 - Workbench 63

Resource Access Control

For resource security, you can control access using a password and you can choose to apply the
read-only mode to an entire resource. When resources are password-protected, users not
having the password can change resource properties, wire and bind variables, modify the
memory for retain, and add devices to wired variables. POUs in a resource can have their own
level of access control. For instance, a POU having its own password remains locked and
cannot be viewed without entering its password. However, a POU using its resource’s
password also inherits the resource’s security properties such as the read-only attribute.

The security state of a resource is indicated by the color of the lower triangle in the resource
title bar icon. The resource can also be currently opened by another user.

Note: While in debug mode or performing builds, unlocked resources as well as resources
having no access control switch to read-only mode. Locked resources remain locked.

For projects having read-only access control, the resources and POUs making up the project
are also set to the read-only mode except for those having individual access control.

Resource
Icon

Security
State

Gray. The resource has no access control. All users have read and write access
in the resource. POUs in the resource may have individual access control.
Red. The resource is locked. Users not having the resource password cannot
access the resource or its POUs; these users do not have read or write
capabilities. These users can change resource properties, wire and bind
variables, modify the memory for retain, and add devices to wired variables.
Cyan. The resource is in read-only mode. Users not having the resource
password can view the resource and its POUs; these users only have read
capabilities. These users can change resource properties, wire and bind
variables, modify the memory for retain, and add devices to wired variables.
POUs in the resource may have individual access control.
Green. The resource is unlocked. User can access the resource and its POUs;
this user has read and write capabilities. However, POUs in the resource may
have individual access control.
The resource is currently opened by another user in single-resource project
editing mode. User can only access the resource properties in read-only mode.
64 DS800 Development Suite 2.1 - User Manual

When copying, pasting, importing, and exporting resources having access control, password
definitions are retained.

When editing a project, resources making up the project are automatically locked by you
except for those resources where another user set password protection or that are currently in
use by another user in the single resource editing mode.

To set access control for a resource

You set access control for a resource in its properties’ Security tab.

1. Specify a password:

To use an unique password, in the New field, enter a password then reenter it in the
Confirm New field.

To use the same password as set for the project, check Use Project Password.

2. To enable all users to access the resource in read-only mode, check Read Only.
DS800 Development Suite 2.1 - Workbench 65

To unlock a resource

When entering a password while in debug mode or performing a build, the resource is only
unlocked after stopping the debug mode or when the build is completed.

1. Right-click the resource’s title bar, then from the contextual menu, choose
Enter Password.

2. In the Security dialog box, enter the password for the resource.

The resource is unlocked.

Resource Description

You can include a free-format text description for a resource.

To edit the resource description

1. Select the resource.

2. From the Tools menu, choose Edit Description.

3. Edit the description as required.
66 DS800 Development Suite 2.1 - User Manual

Variable Bindings
Bindings are directional links, i.e., access paths, between variables located in different
resources. One variable is referred to as the producing variable and the other as the consuming
variable. The value stored in the producing variable is transferred to the consuming variable.
The Workbench enables two types of bindings: internal bindings and external bindings.
Internal bindings are between resources within the same project. External bindings are between
resources belonging to different projects.

Note: Online changes are possible as long as internal and external binding definitions remain
the same.

Binding the variable V1 from resource R1 to the variable V2 of resource R2 means that V1 is
periodically copied to V2 using memory sharing or network exchanges.

Variables coming from bindings (consumed variables) are refreshed in the resource at the
beginning of the cycle, each time the producing resource sends them, i.e. on each end of the
producing resource cycle.

The variable is not updated in the consuming resource until the producing resource sends them
through the binding media. For example:

DS800 Development Suite does not impose the read-only accessibility for consumed
variables. However, it is highly recommended to declare consumed variables with
read-only attribute in order to avoid conflicts between Binding and execution of POUs.

Producer

Binding
Consumer

No update of the variable on that cycle
DS800 Development Suite 2.1 - Workbench 67

This behavior is applied in both HSD and ETCP Binding drivers. This behavior may change
when using other network drivers implemented according to different conventions.

Binding error variables

Binding error variables enable the management of binding errors at the consumer resource
level; one error variable for one consumer resource for each resource that produces to this
resource. The virtual machine gives specific values to these error variables.

Note: DS800 does not support producer error variables.

Example

Depending on the driver used the error variables can take different values with different
meanings.

Production errors

The variable 'A' of the R1 resource represents the
producer error variable for all binding links
starting from R1 and using the HSD driver

(in the example only link from R1 to R3).

The variable 'B' of the R1 resource represents the
producer error variable for all all binding links
starting from R1 and using the ETCP network

(links from R1 to R4 and from R1 to R5).

Consumption errors

The variable 'F' of the R5 resource represents the
consumer error variable for the unique binding link
that comes from R1 and using ETCP.

The variable 'G' of the R5 resource represents the
consumer error variable for the unique binding link
that comes from R2 and using ETCP.
68 DS800 Development Suite 2.1 - User Manual

Warning: Once the error variable is set to a non-zero value, it has to be reset to 0 by user or
by Programs.

To test globally that there is a binding error, you can test the value of the following system
variables:

__SYSVA_KVBPERR: for a production error. It is a Boolean variable. If it is true it
means there is a production error. DS800 does not support the __SYSVA_KVBPERR
system variable.

__SYSVA_KVBCERR: for a consumption error. It is a Boolean variable. If it is true it
means there is a consumption error.

For HSD:

To test values of one binding error variable, you should create the following defined words in
the dictionary of your project:

The 0 value in the error variable indicates there is no error.

ISA_HSD_KVB_ER_MUTEX 1 An error occurred with semaphore management
ISA_HSD_KVB_ER_SPACE 2 An error occurred with memory space access
ISA_HSD_KVB_ER_NOKERNEL 3 The bound producer is stopped (not running).

This error happens only for consumer resources.
ISA_HSD_KVB_ER_TIMEOUT 4 Variable was not refreshed within the maximum

time allowed (ValidityTime). This error happens
only for consumer resources.

ISA_HSD_KVB_ER_BAD_CRC 5 Producer and consumer have different CRC.
ISA_HSD_KVB_ER_INTERNAL 6 Internal error
DS800 Development Suite 2.1 - Workbench 69

For ETCP:

To test values of binding error variables, you should create the following defined words in the
dictionary of your Project:

A value of 0 in the error variable indicates no error.

ETCP_KVB_ERR_BINDING_IN_PROCESS 1 The binding initialization process is
on its way.

ETCP_KVB_ERR_NO_PRODUCER 2 The remote producer is not currently
runnin g. This error happens only for
consumer resources.

ETCP_KVB_ERR_BAD_CRC 3 Producer and consumer have different
CRC.

Obsolete error value 4 The producer has been stopped. This
error happens only for consumer
resources.

ETCP_KVB_ERR_DATA_DIFFUSSION 5 Error during diffusion process.
ETCP_KVB_ERR_TIMEOUT 6 ETCP server does not answer quickly

enough (TimeOut). This error happens
only for consumer resources.

ETCP_KVB_ERR_IMPOSSIBLE_TO_BIND 7 Impossible to bind.
70 DS800 Development Suite 2.1 - User Manual

Internal Bindings

Internal variable bindings are bindings between variables of resources belonging to the same
project. Before creating internal bindings for variables, you need to link the resources holding
them using data links.

You manage resource data links and internal variable bindings in the Bindings List window.
You can also manage resource links directly from the link architecture view.

The Bindings window displays the resource links and internal variable bindings defined for a
project. The window is divided into three parts:

The Resource-binding grid

The Variable-binding grid

The Binding List window toolbar

To access the Binding List window

1. From the Window menu, choose project_name-Link Architecture.

The link architecture view appears displaying existing resources and their data links.

2. Do one of the following:

Click .

Double-click a data link joining two resources.
DS800 Development Suite 2.1 - Workbench 71

Resource-binding Grid

The Resource-binding grid, on the left side of the Binding List window, displays the data links
between resources. The first column and the top row display the available resource’s numbers.
The resource display order depends on their configuration numbers.

When working in the Resource-binding grid, you can perform various tasks using the mouse
or keyboard commands:

Variable-binding grid

The Variable-binding grid, on the right side of the window, enables you to manage variable
bindings. The variable-binding grid manages the bindings between variables. The grid shows
where a binding comes from and where it goes to, the type of the variable, and the network used
for communicating.

The column between the variable information indicates the status of the binding:

Description Mouse Keyboard

Move into the grid Select cells Arrows keys
Select an entire row Select a row header Shift+space bar
Select an entire column Select a column header Ctrl+space bar
Select the entire grid Select an arrow on the top left of the grid Shift+Ctrl+space bar
Switch to the
Variable-binding grid

Click on the Variable-binding grid Tab

The binding does not have parameters and the status is OK

The binding does not have parameters but the status is bad
72 DS800 Development Suite 2.1 - User Manual

A bad status occurs when the types, string sizes, or dimensions of variables don't correspond
or if the network, used for the binding, doesn't exist.

When working in the Variable-binding grid, you can perform various tasks using the mouse or
keyboard commands:

Binding List Toolbar

The Binding List window toolbar enables you to perform many resource link and variable
binding operations:

Note: If the two resources are distant, they must be located in configurations that are attached
to the same target. Heterogeneous bindings are not yet supported.

The binding has parameters and the status is OK

The binding has parameters but the status is bad

Description Mouse Keyboard

Move into the grid Select cells Arrows keys
Switch to the
Resource-binding grid

Click in the Resource-binding grid Tab

Hides the resource-binding grid

Accesses the online help

Creates a new binding variable

Edits an existing binding variable. This operation is only
available for use in the variable-binding grid.
Deletes selected cells, rows, or columns
DS800 Development Suite 2.1 - Workbench 73

Linking Resources

You need to link resources before binding variables belonging to them. Data links between
resources are directional. All bindings using a data link must use the same network. You can
link resources from the Binding List window. You can also link resources from the link
architecture view.

In the Resource-binding grid, you create links between resources by locating the resource
holding the producing variable in the first column and the resource holding the consuming
variable in the top row, then selecting the grid cell where both meet.

In the grid, resource links appear as one of two types:

In the link architecture view, you create links by physically joining the resource holding the
producing variable with the resource holding the consuming variable. In this view, data links
appear as directional arrows linking the resources. The color of data links depend on the type
of bindings using it:

When bindings have an error, the symbol is displayed on the data link used by the binding.

The linked resources belong to the same configuration

The linked resources belong to different configurations

Black The data link is only used for internal bindings
Blue The data link is used for internal bindings
74 DS800 Development Suite 2.1 - User Manual

You can customize the colors of resource data links.

To link resources from the Binding List window

You can access the Binding list window from the main menu or the Windows toolbar.

1. From the Project menu, choose Binding List.

The Binding List window appears.

2. In the first column of the Resource-binding grid, locate the resource number of the
resource holding the producing variable.

3. In the top row of the Resource-binding grid, locate the resource number of the resource
holding the consuming variable.

4. Double-click the grid cell where both resource numbers meet.

An icon appears in the grid cell indicating whether the link is between resources from the same
or different configurations.

To link resources from the link architecture view

1. On the resource holding the producing variable, click and hold the Data Link

button , located on its title bar.

2. Drag the link to the resource holding the consuming variable.

3. Release the mouse button.

The data link is displayed graphically.
DS800 Development Suite 2.1 - Workbench 75

Deleting Resource Links

You can delete links between resources, i.e., data links, from within the Binding list window.
You can also delete links from the link architecture view.

Note: Deleting a resource link also deletes the variable bindings using it.

To delete a resource link from the Binding List window

1. In the Resource-binding grid, select the grid cell holding the resource link to delete.

2. Do one of the following:

From the Binding List window’s toolbar, click .

Press Delete.

The grid cell appears blank.

To delete a resource link from the link architecture view

1. In the link architecture view, click on the resource link.

The selected data link appears hightlighted:

2. Do one of the following:

From the Edit menu, choose Delete.

Press Delete.
76 DS800 Development Suite 2.1 - User Manual

Viewing the Internal Bindings Defined for Resources

You can view all producing variable bindings or all consuming variables defined for a resource
at the same time. You can also choose to view all bindings defined for all resources, i.e., the
entire project. However, when viewing bindings, you cannot edit their definitions.

To view the producing variable bindings for a resource

In the first column of the Resource-binding grid, click the corresponding resource
number.

To view the consuming variable bindings for a resource

In the top row of the Resource-binding grid, click the corresponding resource number.

To view the bindings defined for a project

In the Resource-binding grid, click .

Hiding and Showing Resource Links

In the link architecture view, you can choose to show or hide the data links between resources.
In hidden mode, links cannot be activated or selected. Links appear as short arrows, indicating
their direction, sticking out from the top right corner of resources:

To hide or show data links

You can hide or show data links using the main menu or the Options toolbar.

From the Options menu, choose Hide/Show Links.
DS800 Development Suite 2.1 - Workbench 77

Defining Internal Variable Bindings

Before defining bindings between variables, you must first link the resources to which they
belong. For bindings, one variable is known as the producing variable and the other as the
consuming variable.

You can only define bindings between variables of a same type. Producing variables can have
any direction attribute, i.e., input, output, and internal. Whereas, consuming variables can only
have the output or internal attribute and must also have the Free attribute.

You instantiate variable bindings in the Variable-binding grid of the Binding List window.

You define variable bindings in the Binding editor. When defining a binding, you need to
indicate a producing variable and a consuming variable, and the network used for
communicating. The producing variable serves as input for the binding. Whereas, the
consuming variable serves as output. You can choose to specify a default value to use in the
event of a communication error. You can also choose to specify a binding error variable
(producer error variables are not supported in DS800).
78 DS800 Development Suite 2.1 - User Manual

The Producing Variable selection list contains all variables of the producer resource. The
Consuming Variable selection list contains all variables which do not have the INPUT
direction and are not already used as a consumed variable in an existing binding.

The network selection list contains the networks that are supported by the target of the
configuration of the first resource and the target of the configuration of the second resource.

The Binding Parameters list displays the parameters to be defined for the variables bound on
the selected network. This list may be empty depending on the network used by the binding.
For example: ETCP does not need any parameters at this level. You define parameters by
double-clicking on a parameter line to display the Binding Parameter dialog box (available
only when the parameter is editable). Some parameters are read-only.

The Binding Error Variables section contains two selection lists for selecting a variable (Global
/ Memory of the DINT type) in each resource to receive binding error values (producer error
variables are not supported in DS800). Producer error variables and consumer error variables
can be used in the resource's POUs to trap and act upon errors. The default value is None.

To create a binding between variables

1. In the Variable-binding grid, select the next available field.

2. From the Binding List window’s toolbar, click .

The Binding editor appears.

3. In the Producing Variable field, select the producing variable.

4. In the Consuming Variable field, select the consuming variable.

5. In the Network field, select the network used for communicating.

6. To set a default value for use in the event of a communication error, select
Use Default Value, then enter a value in the field.

7. To use a binding error variable, indicate it in the Binding Error Variables section
(producer error variables are not supported in DS800).

8. Click OK.
DS800 Development Suite 2.1 - Workbench 79

Editing Internal Variable Bindings

You can change the contents of existing variable bindings. You edit bindings from the
Variables-binding grid of the Binding List window.

To edit the contents of an existing binding

1. In the Variable-binding grid, select the variable binding.

2. From the Bindings List window’s toolbar, click .

The Binding editor appears.

3. Make the necessary changes, then click OK.

Deleting Internal Variable Bindings

You delete variable bindings from the variable-binding grid of the Bindings List window.

To delete a variable binding

1. In the Variable-binding grid, select the variable binding.

2. Do one of the following:

From the Binding List window’s toolbar, click .

Press Delete.
80 DS800 Development Suite 2.1 - User Manual

External Bindings

External variable bindings are bindings between variables of resources belonging to different
projects. When defining external variable bindings, you need to define groups of producer
variables in the producer project, then in the consumer project, link the consumer resource with
the producer resource, then define the external bindings between the producer variables and the
consumer variables.

You define external bindings from the External Bindings List. This list is made up of the
Consumer groups and Producer groups sections. The Consumer groups section lists the groups
holding external producer variables having bindings with consumer variables defined in the
project. The Producer groups section lists the groups holding outgoing producer variables for
consumption in external bindings defined in another project.

When defining producer groups of variables, you group variables of a resource to be consumed
by consumer variables of one or more resources located in other projects. Individual variables
of a resource can belong to a one or more producer groups.

For producer groups and external bindings, indicates errors that can occur for different
situations such as the following:

Producer groups - The project of a producer group cannot be found
- The producer group cannot be found within the specified project
- A confict exists between the consumer and producer resources
- One of the bound producer variables no longer exists

External bindings - The producer variable used in the binding no longer exists
- The project holding the producer variable cannot be accessed
DS800 Development Suite 2.1 - Workbench 81

External Binding List Toolbar

The External Binding List window toolbar enables you to perform many external binding
operations. The operations performed by the toolbar items differ depending on whether these
are in the Consumer or Producer groups sections.

To access the External Binding list

1. From the link architecture view, select the resource for which to create producer groups.

2. From the Project menu, choose External Binding List or click , from the Window
Buttons toolbar.

Accesses the online help

In the Consumer groups section, accesses the Consumer Binding list where you
define links between resources and define external bindings from the Bindings
editor.

In the Producer groups section, accesses the Producer Binding list where you
define groups of producer variables for use in bindings with consumer variables
of other projects.
In the Consumer groups section, edits an existing external variable binding.

In the Producer groups section, edits an existing group of producer variables.
In the Consumer groups section, deletes an external variable binding.

In the Producer groups section, deletes a group of producer variables.
82 DS800 Development Suite 2.1 - User Manual

Defining Producer Variable Groups

You define producer groups of variables for resources of a project to enable accessing them
when defining external variable bindings in consumer resources of other projects. Producer
groups hold producer variables of a resource to be consumed by consumer variables of one or
more resources located in other projects.

To define a producer variable group

You define producer variable groups from the External Binding List.

1. In the Producer Groups list, double-click ...

The Producer Binding List editor is displayed:

2. Enter a unique Group ID and optional comment.

3. Specify the network used for the bindings.
DS800 Development Suite 2.1 - Workbench 83

4. Specify each variable making up the producer variable group:

a) In the variable list, click ...

The External Binding editor is displayed.

b) In the Producing variable field, select the variable to include in the group.

The selected variable’s information is displayed as well as the default network
binding parameters. You can edit the values for the network binding parameters.

c) Click OK.
84 DS800 Development Suite 2.1 - User Manual

Editing Producer Variable Groups

You edit the contents of an existing producer variable groups from their originating resource.

To edit the contents of an existing producer variable group

1. In the Producer Groups list, select a producer group.

2. From the Producer’s Group binding list toolbar, click .

3. In the Producer Binding List editor, make the necessary changes, then click OK.

Deleting Producer Variable Groups

When deleting producer groups having producer variables used in external bindings, in the
consumer project, the link between the consumer and producer resource shows an error ().

To delete a producer group

In the Producer Groups list, select the producer group to remove, then from the

Producer’s Group binding list toolbar, click .
DS800 Development Suite 2.1 - Workbench 85

Linking Resources for External Bindings

Before defining external variable bindings between resources, you need to link the consumer
and producer resources. You link these resources from the consumer resource by identifying
the project, resource, and producer group of variables, holding the producer variables whose
values are conveyed to the consumer variables. A link between resources flows in
one direction. You can choose to use binding error variables.

To link resources for external variable bindings

1. From the External Binding List window, double-click ... in the Consumer Groups section.

The Consumer Binding List is displayed.

2. Define the source of the producer group of variables used for the external bindings.

a) Browse for the project holding the producer group to include in the bindings.
86 DS800 Development Suite 2.1 - User Manual

b) Specify the resource and producer group ID of the producer group.

The resource number, producer group ID, and network used for linking the resources
are displayed in the Binding error variables section.

3. To indicate a binding error variable, select one from the available variables.

Editing External Resource Links

You can edit resource links for existing external bindings from the consumer resource.

Warning: Editing the linking information for a specified producer group, resource, or project
sets all defined external variable bindings in the list in error ().

To edit a link between resources of different projects

You edit links between resources from the Consumer Binding List editor.

In the Consumer Binding List, make the necessary changes to the project, resource, or
producer group information, then click OK.
DS800 Development Suite 2.1 - Workbench 87

Defining External Variable Bindings

Before defining external variable bindings, for the producer resources, you need to define
producer groups, holding the producer variables for consumption by the consumer resources,
and link the consumer and producer resources.

To define an external variable binding

You define external variable bindings from the consumer resource.

1. In the Consumer Binding List, double-click ...

The External Binding editor is displayed.

2. Specify the producing variable and consuming variable from their respective lists of
available variables.

3. Indicate whether to use the last value issued from the binding or a default value. When
using a default value, specify the value to use.

4. Click OK.
88 DS800 Development Suite 2.1 - User Manual

Editing External Variable Bindings

You edit the contents of existing external variable bindings from the consumer resource.

To edit an existing external binding

1. In the External Binding List window, select the binding link to edit in the Consumer
groups section.

2. From the Consumer Group’s binding list toolbar, click .

3. In the Consumer Binding List editor, select an external binding from the list, then

click .

4. In the Binding editor, make the necessary changes.

Deleting External Variable Bindings

You delete external bindings from the consumer resource.

To delete an existing external binding

1. In the External Binding List window, select the binding link to edit in the Consumer
groups section.

2. From the Consumer Group’s binding list toolbar, click .

3. In the Consumer Binding List editor, select an external binding from the list, then

click .
DS800 Development Suite 2.1 - Workbench 89

Parameters
The 'Parameters' component contains the IO Wiring and 'Defined words' sub-components. For
details on I/O Wiring, see page 155. For details on the Defined Words Tree, see page 130.

- Parameters

I/O Wiring

Defined Words

I/O Wiring Double-clicking on this item opens the I/O Wiring Tool to select I/O
devices and connect variables to them.

Defined Words Double-clicking on this item opens the Dictionary on the Defined Words
Tree.
90 DS800 Development Suite 2.1 - User Manual

Variable Groups
Variables Groups provide a method of managing variables and logically sorting them within a
resource. The variable groups are shown in the Variables Tree, their contents are defined within
the Dictionary Variables grid. For information on the variables tree, see page 127.

Creating Variable Groups

You create variable groups from within the link architecture view. You can rearrange the order
of defined variable groups by dragging and dropping within the variable groups section of a
resource window. The group order affects the printing order.

To create a new variable group

1. From the Window menu, choose project_name-Link Architecture.

The link architecture view appears displaying all resources and data links defined for a
project.

2. Select a resource.

3. From the Insert menu, choose Add Variable Group.

Opening Variable Groups

Opening a variable group opens the Dictionary with the grid showing variables of that group.
You open variable groups from within the link architecture view. For information on the
Dictionary, see page 125.

To open a variable group from the link architecture view

1. Select a group.
DS800 Development Suite 2.1 - Workbench 91

2. Do one of the following steps:

From the Edit menu, choose Open.

Within a resource window, double-click on the required variable group name.

Select a group name then press Enter.

To open a variable group from the Dictionary view

1. Select the Variables Tree.

2. Double-click the resource name to which the group belongs.

3. Click on the variable group name.

The grid displays the variables for that particular group.
92 DS800 Development Suite 2.1 - User Manual

Importing or Exporting Variables
You can choose to import or export variables data such as hundreds of trends, alarms, or events
using either a comma-separated (CSV) file in a text editor or a Microsoft Excel spreadsheet.
To include comments in your data, surround them with quotation marks (").

When using a text editor, you must separate each piece of information from the others with a
comma; each line must end with a carriage return; the resulting file can have either the .csv or
.xls extension. When using a spreadsheet, enter each piece of information in a separate cell;
leave empty cells if an item is to be omitted; save the file under the CSV or XLS format. These
requirements are automatically followed by the export facility; you must respect them if you
build a file to be imported. For variables data, i.e., alarms or events, and trends, imported data
must include the configuration, resource, and variable names to which it belongs; default
values will appear for all other values that remain empty. You need to define variables before
proceeding to defining alarms, events, and trends.

Note: The XLS file format is only available when Microsoft Excel is installed on your
computer.

An example of an Excel file holding variables data is:
DS800 Development Suite 2.1 - Workbench 93

An example of a CSV file holding variables data:

The first line holding the title of each column (headings) in the same order as they are defined
for each variable:

Config,Resource,Name,Data Type,Alias,StringSize,InitValue,Dimension,
Group,Attribute,Scope,Direction,Retain,Address,Comment,
IODriverIDNum,IOFieldEquipIDNum,IODeviceIDNum,IOChannel,DriverWiring
AlarmEnable,AlarmTransFilter,AlarmDeadBand,AlarmHHEnable,
AlarmHHValue,AlarmHEnable,AlarmHValue,AlarmLEnable,AlarmLValue,
AlarmLLEnable,AlarmLLValue,AlarmHysteresis,AlarmROCEnable,
AlarmROCValue,AlarmROCPeriod,AlarmHHDevEnable,AlarmHHDevValue,
AlarmHDevEnable,AlarmHDevValue,AlarmTransient0-1,EventEnable,
EventAutoDetection,EventDeadBand,EventTransient0-1,
EventTransient1-0,TrendEnable,TrendCABSize,TrendFileSize,
TrendHistorical

The next line holds the data for the first variable, in the same order as the columns in the first
line. Empty spaces between commas indicate that no information is present for the specific
field. The data for each variable starts at the configuration level:

Config1,Resource1,VarDint,DINT,vdinx,0,,[1..5],,Free,Global,Internal,
No,,dint
var,,,,,No,No,0,0,No,0,No,0,No,0,No,0,0,No,0,00:00:01:000,No,0,
No,0,No,No,No,0,No,No,No,100,10000,Yes

The data for the second variable:

Config1,Resource1,VarDint[4],,,,,,,,,,,,,,,,,No,No,,,No,,No,,No,,No,,
,No,,00:00:01:000,No,,No,,No,No,No,,No,No,yes,100,10000,Yes

The data for the third variable:

Config1,Resource1,VarDint[1],,,,,,,,,,,,,,,,,No,Yes,0,0,Yes,90,Yes,80
,Yes,70,Yes,60,0,No,1,00:00:01:000,No,2,No,1,Yes,No,Yes,0,Yes,No,yes,
100,10000,Yes

To import variables data

1. From the Tools menu, choose Import Variables.

The Import Type window appears.
94 DS800 Development Suite 2.1 - User Manual

2. Do one of the following steps:

To add the imported data to the Workbench project’s database, click Append.

To replace the contents of the Workbench project’s database with the imported data,
click Replace.

Warning: When replacing, the Workbench deletes all existing variables for the given resource
before importing the data. When appending, the Workbench adds all new variables and
inquires about replacing existing variables for the given resource.

The Import window appears.

3. Click Set File to locate the file to import, then click Open.

The contents of the selected file are displayed in the browser.

To export variables data

1. From the Tools menu, choose Export Variables.

The Export window appears.

2. Do one of the following:

If you are using a template, load the template.

In the browser, check the data fields to export. To create a template using the selected
fields, in the Export Templates section, click Save.

3. Click Set File to locate the file (.xls or .cvs format) to which to export the data, then click
Open.

4. Select the resource from which to export the fields. You can also select all resources.

5. Click Export.

The defined field data is stored in the specified file.
DS800 Development Suite 2.1 - Workbench 95

POUs (Program Organization Units)
A POU (Program Organization Unit) is a set of instructions written in one of the following
languages: SFC, FC, IL, ST, FBD, and LD. POUs can be programs, functions, or function
blocks.

You can perform many tasks when managing POUs:

Creating POUs

Manipulating POUs

Creating FC Sub-programs

Creating SFC Child POUs

Changing Hierarchy Level

Controlling Access to POUs

Programs

Programs constitute the target Cycle. Programs are also known as POUs. POUs defined as
Programs are executed on the Target system respecting the order shown in the Program section.
You need to respect the hierarchy of programs within resources.

Available graphical programming languages are Sequential Function Chart, Flow Chart,
Functional Block Diagram, and Ladder Diagram. Available literal programming languages are
Structured Text and Instruction List. The language of each program is shown as an icon beside
the program name:

Sequential Function Chart (SFC) SFC Editor

Flow Chart (FC) FC Editor
96 DS800 Development Suite 2.1 - User Manual

Within a resource there are certain restrictions on the relative positions of programs within the
hierarchy:

All SFC and FC programs must be adjacent within the hierarchy.

SFC Child or FC Sub-programs must use the same language as their parent.

When using SFC programs in a resource, you may need to change the SFC dynamic behavior
factors defined for the resource. For details on the SFC dynamic behavior factors, see page 60.

You can move or copy programs written in ST, LD, and FBD to the Functions section and
programs written in SFC, ST, LD, and FBD to the Function Blocks section. You can also move
or copy functions and function blocks to the Programs section. When moving or copying a
program to the Function or Function Blocks sections, all local variables defined in the program
are converted to function or function block parameters respectively.

Note: To call a POU written with a different language from SFC or FC program, call a function
or function block (written in ST, LD, FBD or IL).

Structured Text (ST) Multi-language Editor

Ladder Diagram (LD) Multi-language Editor

Function Block Diagram (FBD) Multi-language Editor

Instruction List (IL) Multi-language Editor
DS800 Development Suite 2.1 - Workbench 97

Functions

Any program can call a Function. Functions are also known as POUs. Functions can only be
programmed in ST, LD, or FBD. In all cases, the return parameter of a function must be
assigned. You can only declare local variables in functions. However, these local variables
cannot be function block instances. Also, you cannot retain the values of variables declared in
functions.

Each time a function is executed, its local variables are reset to their initial values (zero when
none is provided in the dictionary). When a large structure or array is declared as local variable
for a function, the compiler generates code to reset the initial values of each simple variable
contained in the structure or array.

The order in which functions appear within their section is not important; functions are called
from a POU.

You can move or copy functions to the Function Blocks and Programs sections. You can also
move or copy function blocks and programs written with languages supported by functions to
the Functions section. When moving or copying a program to the Functions section, all local
variables defined in the program are converted to function parameters.

Example

if F1 is programmed as:

if (in1) then
F1 := 10;
end_if;

in the case in1 is FALSE, F1 will not be assigned, and it can take any value.

in the calling program:

MyVar := F1(TRUE); leads to MyVar := 10; this is OK
MyVar2 := F1(FALSE); you can not predict what will be the value of MyVar2
98 DS800 Development Suite 2.1 - User Manual

Function Blocks

Any program or function block can call a function block. A function cannot call a function
block. Function blocks are also known as POUs. Function blocks are written in SFC, ST, LD,
or FBD. SFC function blocks can have SFC child function blocks. The order in which function
blocks appear within their section is not important; function blocks are called from a POU.

When using SFC function blocks and SFC child blocks, you need to specify the maximum
number of tokens for each one in their individual properties.

You can move or copy all function blocks to the Programs section and all but the SFC function
block to the Functions section. You can also move or copy functions and programs, written
with languages supported by function blocks, to the Functions section. When moving or
copying a program to the Function Blocks section, all local variables defined in the program
are converted to function block parameters.

Creating POUs

You create, i.e., add, POUs (programs, functions, and function blocks) in resources while in
the link architecture view. You add POUs using the main menu or a contextual menu accessed
by right-clicking the respective component (Program, Function, or Function Block) within a
resource. After having created a POU, you can drag and drop it to a new position in its section,
to another section, or to another resource. POUs belonging to a same section must have
different names. POU names must begin with a letter.

For SFC programs and SFC child programs, you may need to change the SFC dynamic
behavior factors for the resource. For details on the SFC dynamic behavior factors, see page 60.
For each SFC function block and SFC child block, you may need to adjust the maximum
number of tokens.

To create a POU

1. In the resource window, select the POU component to create.
DS800 Development Suite 2.1 - Workbench 99

2. From the Insert menu, choose Add Program, then the desired language.

The new component appears at the end of its respective section with its name ready to
edit.

3. Type a name for the component.

4. For SFC POUs, do one of the following:

For an SFC program or SFC child program, make sure the dynamic behavior factors
defined for the resource are sufficient by selecting the resource, then from the Edit
menu, choosing Properties, then the Settings tab, then clicking Advanced Settings.

For an SFC function block or SFC child function block, specify the maximum
number of tokens by selecting the block, then from the Edit menu, choosing
Properties, then the Settings tab.

Manipulating POUs

You can move, cut, copy, paste, and delete POUs, with certain exceptions, within their
sections, to other sections, and from one resource to another. You can only move or copy POUs
between sections supporting the same language. For instance, you cannot move or copy an SFC
program or function block to the Functions section.

You can move programs to change their order of execution or to change them to functions or
function blocks. You can move functions to change them to programs or function blocks and
move function blocks to change them to programs or functions. Changing a function or
function block’s order within its section has no effect on its execution since it is called.

Note: Before manipulating POUs, you should save the changes made to your project.

To move a POU

1. Select the POU in the resource window.

2. Drag and drop the POU to its new location.
100 DS800 Development Suite 2.1 - User Manual

Note: You can only move POUs between sections supporting the same language. You cannot
move a program (Child SFC or FC) to change its hierarchy level; you can only move it to
change its position as a child within the same level. To change the hierarchical level of an SFC
or FC program to become a child, see “Changing Hierarchy Level” on page 103.

To cut, copy, or paste a POU

The cut, copy, and paste commands use the clipboard as temporary storage. Once copied (or
cut), a POU can be pasted more than once. You can only paste POUs between sections
supporting the same language. SFC programs are pasted at the same hierarchical level as the
selected program. When copying and pasting POUs having access control, password
definitions are retained.

1. In the resource window, select the POU.

2. From the Edit menu, choose Cut <Ctrl+X> or Copy <Ctrl+C> (or use the contextual
menu).

3. Select the new location, i.e. the Program, Function, or Function Block section within the
same or different resource.

4. From the Edit menu, choose Paste <Ctrl+V> (or use the contextual menu).

To delete POUs

1. Select the POU.

2. From the Edit menu, choose Delete .

To copy POUs from a project to another

1. In the destination project, create a program having the same name and language as the
program in the original project.

2. From the original project directory of the program's resource, copy the POU_name.stf
file, then paste the file in the destination project's resource directory.

3. In the destination project, redeclare local and global variables needed for the POU.
DS800 Development Suite 2.1 - Workbench 101

Creating FC Sub-programs

To create an FC sub-program

You can create FC sub-programs using the main menu options or a contextual menu accessed
by right-clicking the FC program component within a resource.

1. In the resource window hierarchy, select an existing FC program .

2. From the Insert menu, choose Add FC Sub-Program.

Creating SFC Child POUs

To create a child SFC POU

You can create child SFC POUs using the main menu options or a contextual menu accessed
by right-clicking an SFC POU within a resource.

1. Select the existing SFC POU in the resource window hierarchy.

2. From the Insert menu, choose Add Child SFC.

Flow Chart (FC)

Flow Chart (FC) Sub-program

Sequential Function Chart (SFC)

Child Sequential Function Chart (SFC)
102 DS800 Development Suite 2.1 - User Manual

Changing Hierarchy Level

You can promote or demote child SFC (FC) POUs, depending on their relative position in the
hierarchy.

To change the level of an SFC (FC) POU

1. Select the SFC (FC) POU.

2. Do one of the following:

From the Edit menu, choose Move to lower Level or Move to upper Level.

From the Main toolbar, click to move the program to a lower level or to
move it to the upper level.

Example

Consider the following two SFC POUs:

Selecting the second SFC POU and moving it down a level would produce:

Sequential Function Chart (SFC)

Sequential Function Chart (SFC)

Sequential Function Chart (SFC)

Child Sequential Function Chart (SFC)
DS800 Development Suite 2.1 - Workbench 103

Selecting the Child SFC POU and moving it up a level would result in:

Controlling Access to POUs

You can control access to user-defined POUs using a password. When you set a project with
the read-only access control, the resources and POUs making up the project are also set to the
read-only mode except for those having individual access control. For instance, a POU having
its own password remains locked and cannot be viewed without entering its password. When
moving or copying a POU using its resources password, the POU retains this password.

The security state of a POU is indicated by its icon color in the resource:

Note: While in debug mode or performing builds, unlocked POUs as well as POUs having no
access control switch to read-only mode. Locked POUs remain locked.

Sequential Function Chart (SFC)

Sequential Function Chart (SFC)

POU
Icon Color

Security
State

Yellow. The POU has no access control. All users have read and write access
in the POU. In the dictionary view, local variables and parameters are visible
and editable.
Red. The POU is locked. Users not having the POU password cannot access
the POU; these users do not have read or write capabilities. In the dictionary
view, local variables and parameters are visible but not editable.
Blue. The POU is in read-only mode. Users not having the resource password
can view the POU; these users do not have write capabilities. The read-only
mode for the POU is inherited from the resource to which it belongs. In the
dictionary view, local variables and parameters are visible but not editable.
Green. The POU is unlocked. User can access the POU; this user has read
and write capabilities. In the dictionary view, local variables and parameters
are visible and editable.
104 DS800 Development Suite 2.1 - User Manual

You can build POUs of all security states.

When copying, pasting, importing, and exporting POUs having access control, password
definitions are retained.

To set access control for a POU

You set access control for a POU by setting a password.

1. In the resource window, select the POU for which to set access control.

2. From the Edit menu, choose Properties.

The Program Properties window is displayed showing the Security tab.

3. Specify a password:

To use a unique password, in the New field, enter a password then reenter it in the
Confirm New field.

To use the same password as set for the resource to which the POU belongs,
check Use Resource Password.
DS800 Development Suite 2.1 - Workbench 105

To unlock a POU

When entering a password while in debug mode or performing builds, the POU is only
unlocked after stopping the debug mode or when the build is completed.

1. In the resource window, right-click the POU, then from the contextual menu, choose
Enter Password.

2. In the Security dialog box, enter the password for the POU.

The POU is unlocked.
106 DS800 Development Suite 2.1 - User Manual

Generating Debug and Monitoring Information

You can choose to generate debug and symbols monitoring information for POUs. Debug
information is available for ST, IL, and LD POUs (programs, functions, and function blocks)
for use when debugging using the step-by-step mode. Symbols monitoring information is
available for ST, IL, FBD and LD programs and function blocks for use when debugging or
simulating to graphically display the output values of functions and function blocks. For details
on the graphical display of output values, see page 295.

You set the generation of debug and symbols monitoring information for a POU on the Code
Generation tab of the Program Properties window:

When generating symbols monitoring information for function blocks, you also need to specify
the instance symbols extra bytes. This indicates the size of memory reserved for each function
block instance for adding symbols monitoring information during online changes. Note that a
string-type output takes up 260 bytes.

You can change the default value for the Generate symbols monitoring information option as
well as the Instance Symbols Extra Bytes size. Their values are specified in the
FunctionMonitoringSupportDefault and MonitoringSpaceDefault parameters of the Settings
section of the Diamond.ini file, located in the Bin folder. For details on the location of the bin
folder, see page 29.

The symbols information generated for graphically monitoring output values requires a
significant amount of memory space. Therefore, when compiling, an error message stating that
the memory limit has been reached may be displayed in the output window. In such a case, to
enable compiling, you need to either disable monitoring for the POU, remove elements from
the POU, or clean the project.
DS800 Development Suite 2.1 - Workbench 107

To generate debug information for a POU

You can also generate debug information for POUs at the resource level.

1. In the resource window, select the POU for which to generate debug information.

2. From the Edit menu, choose Properties.

The Program Properties window is displayed showing the Code Generation tab.

3. Check Generate debug information.

To generate monitoring information for a POU

1. In the resource window, select the POU for which to generate monitoring information.

2. From the Edit menu, choose Properties.

The Program Properties window is displayed showing the Code Generation tab.

3. Check Generate symbols monitoring information.

4. For function blocks, specify the size of Instance symbols extra bytes.

Editing a POU Description

You can add a free-format text description for a POU.

To edit the POU Description

1. Select a POU.

2. From the Tools menu, choose Edit Description.

3. Edit the description as required.
108 DS800 Development Suite 2.1 - User Manual

Hardware Architecture View
 The hardware architecture view graphically displays the configurations of a Project and

the network links between them. From the hardware architecture view, you manage many
aspects of a project:

creating configurations

attaching targets to configurations

inserting resources into configurations

moving resources between configurations

creating networks

connecting configurations and networks

defining configuration connection properties

defining resource network properties

setting up I/O wiring

To switch to the hardware architecture view

• From the Window menu, choose project_name-Hardware Architecture.
DS800 Development Suite 2.1 - Workbench 109

Configurations
A configuration represents a hardware definition:

When creating a new project, a default configuration is automatically created. Subsequent
configurations must be manually inserted.

You can resize configuration windows by placing the cursor over an edge or corner until it
shows double arrows and dragging:

Creating Configurations

You can create configurations using the main menu or a contextual menu, accessed by
right-clicking within the workspace. Following the creation of a configuration, the
Configuration Properties dialog box automatically appears where you attach it to a target.
Choosing a target leads to the accessibility of network, I/O devices, and RAS device functions
and function blocks supported by this target.

To create a configuration

1. Switch to hardware architecture View .

2. From the Insert menu, choose Configuration.

An empty configuration is created using a default name, then the Configuration
Properties dialog box appears:
110 DS800 Development Suite 2.1 - User Manual

3. On the Hardware Tab, choose a Target to attach to the configuration:

Deleting Configurations

You can delete configurations using the main menu or a contextual menu, accessed by
right-clicking a configuration’s title bar. You cannot delete the last configuration of a project;
projects must have at least one configuration.

To delete a configuration

1. Select the hardware architecture view .

2. Select a configuration.

Note: To deselect resources in the configuration window, click an empty space in the
configuration window.

3. From the Edit menu, choose Delete .
DS800 Development Suite 2.1 - Workbench 111

Moving Configurations

When you move configurations, the hardware architecture view is re-drawn to tidy-up the
display. Fixed-sized gaps are placed between network and configurations.

To move a configuration

1. Select the configuration.

The selected configuration's title bar is highlighted.

2. Drag and drop the configuration as desired.

Inserting Resources

You can choose to insert, i.e., create, resources directly in a configuration while in the hardware
architecture view of your project. You can also create resources in the link architecture view.
However, in the link architecture, new resources are automatically assigned to the first
configuration.

To insert a resource in a configuration

You can insert resources using the main menu or a contextual menu, accessed by right-clicking
the empty space in the configuration’s window.

1. Select a configuration.

2. From the Insert menu, choose Resource.
112 DS800 Development Suite 2.1 - User Manual

Moving Resources Between Configurations

When moving resources from one configuration to another, you need to make sure several
aspects of the destination configuration are compatible with those of the source configuration:

Network Information, when both configurations are connected to the same networks,
resource information remains intact. Otherwise, you will need to change the binding
network information for the moved resource.

C function or C function block calls, when the list of available C functions or function
blocks is different for both configurations, when proceeding to build the resource, some
errors may occur when the functions called do not point to the functions declared in the
target.

I/O Wiring, when the I/O device list is different for both configurations, the I/O wiring of
the moved resource is deleted.

To move a resource from one configuration to another

1. Click and hold the mouse button on the required resource.

2. Drag and drop the resource to the new configuration.
DS800 Development Suite 2.1 - Workbench 113

Configuration Properties
Configuration properties are defined from the hardware architecture view.

To access the Configuration Properties window

1. From the Window menu, choose project_name-Hardware Architecture.

The hardware architecture view appears displaying all configurations defined for a
project.

2. Select a configuration.

3. From the Edit menu, choose Properties.

The Configuration Properties window appears.
114 DS800 Development Suite 2.1 - User Manual

Configuration Link to ROCLINK Configuration File

The configuration general properties enable you to assign a meaningful name to a
configuration and link the configuration to a ROCLINK 800 configuration file. You need to
link a configuration to a ROCLINK 800 configuration file before defining TLP variables in the
dictonary. When the configuration is linked to a configuration file, the name and location of
the configuration file is automatically entered in the Comment field. Comments appear within
(* *) next to the name of the configuration in its title bar.

Note: The ROCLINK 800 Configuration Software must be installed on the same computer
running the DS800 Workbench.

You can choose to replace the configuration representation in the hardware architecture view
with a custom bitmap by checking the Use bitmap option, then browsing to locate the bitmap.

When using a custom bitmap for configurations, a copy of the bitmap is automatically placed
in the configuration folder and renamed to use the configuration’s name.

Standard Configuration Representation Sample Bitmap Representation
DS800 Development Suite 2.1 - Workbench 115

You specify the configuration general properties in the General tab of the Configuration
Properties window:

To link a configuration to a ROCLINK 800 configuration file

1. Click .

2. In the Select ROCLINK 800 Configuration File browser, locate the configuration file to
link.

3. Click Open.

DS800 extracts the IP address of the RAS device target from the ROCLINK 800 configuration
file and automatically creates the network connection. The configuration file name and
location is indicated in the Comment field.
116 DS800 Development Suite 2.1 - User Manual

Configuration Target Definitions

The configuration target definition property enables you to attach a target to the configuration.
Changing targets for a configuration affects all resources attached to the configuration.

You specify the configuration target definition property in the Hardware tab of the
Configuration Properties window:

The selection of the target determines:

the network on which you can connect the configuration and that can be used in Binding
definition.

the I/O devices that you will be able to use in the I/O Wiring Tool

the list of C functions and function blocks that you will be able to call in your programs.

Warning: Changing the target of a configuration may lead to the destruction of the I/O wiring
of all resources within the configuration and connections to networks. You should assign
targets to configurations as a first step in your project development.

When the advanced options are installed, you can choose whether to download the advanced
options features such as alarms and events definitions, trends definitions, events server
configuration, and trends server configuration.

You can also choose to add a help file using the Help button.
DS800 Development Suite 2.1 - Workbench 117

Target Access Control
For configuration security, you can control access to a target by setting a password. This
password is embedded on the target and can only be set or changed while running in real-time
or debug mode. The configuration access control prevents the connection of all IXL clients not
having the target’s password.

At run time, the security state of a configuration is indicated by its title bar icon:

To specify access control for a configuration

You set access control for a configuration in the configuration’s Security properties.

In the Password field, enter the password for the configuration, then reenter the password
in the Confirm Password field.

Note: You can only change a password while in real-time or debug mode. Otherwise, the
password embedded on the target remains unchanged.

Configuration
Icon

Security
State

The configuration has no access control. All IXL clients can access the
target.
The configuration is not accessible; the target does not recognize the
password. IXL clients not having the target password cannot access the
target.
The configuration is accessible; the target recognizes the password. IXL
clients having the target password can access the target.
118 DS800 Development Suite 2.1 - User Manual

Configuration Description

A free-format text description of the configuration.

To edit the configuration description

1. Right-click on the configuration title bar.

The contextual menu appears.

2. Choose Edit Description.

3. Edit the description as required.
DS800 Development Suite 2.1 - Workbench 119

Networks
Networks provide the means for communication between configurations. Configurations need
to communicate when bindings have been defined within them. Configurations are connected
to the network. The target attached to the configuration must support the network the
configuration is connected to. You define network properties when you create them.

When you create DS800 projects, networks are automatically inserted.

Networks are represented in the hardware architecture view as a horizontal 'bar':

Notes:

A project can contain an unlimited number of networks.

If the network is not implemented in the target, it is the responsibility of the integrator to
develop and implement a driver for that particular network. Creating a Network.

The default network is ETCP.

ISaRSI is only used to connect the Workbench to the RAS device target. ISaRSI does not
support projects with multiple configurations.

Creating Networks

You define network properties at the time of creation. You need to specify the protocol (also
called Network Driver) to use for communications between configurations when bindings are
defined. The parameters defining the network appear in the grid. Some parameters may be
read-only (greyed). Not all networks require parameters at this level, e.g., ETCP for Ethernet.

When you create DS800 projects, networks are automatically inserted.

You can choose to integrate help using the Help button.
120 DS800 Development Suite 2.1 - User Manual

To create a network

1. Switch to the hardware architecture view .

2. From the Insert menu, choose Network.

A new Network is created and the Network Properties dialog box from which you select a
protocol. The available protocols are ETCP and ISaRSI.

Note: ISaRSI is only used to connect the Workbench to the RAS device device. ISaRSI does
not support projects with multiple configurations.

Moving Networks

The Network can be moved vertically within the workspace. This facility is simply a method
of providing a preferred view for the user, usually the default view is preferred.

To move a network

1. Select the network.

The selected network is highlighted.
DS800 Development Suite 2.1 - Workbench 121

2. Drag and drop the network as required.

Note: The hardware architecture view is re-drawn to 'tidy-up' the display. Fixed-sized gaps are
placed between network and configurations.
122 DS800 Development Suite 2.1 - User Manual

Connections
Connections between networks and configurations enable communications to flow. DS800
automatically creates connections when creating projects. When you link a configuration to a
ROCLINK 800 configuration file, the IP address is automatically assigned. A configuration
can be linked to many networks. Similarly, a network can be linked to many configurations.

Creating Connections

When creating a connection, make sure to not select the configuration or network. Click
elsewhere in the workspace to deselect these items. In the connection’s properties, you need to
specify the IP address of the target, for example:

192.168.2.36

Note: DS800 automatically creates connections when creating projects. When you link a
configuration to a ROCLINK 800 configuration file, the IP address is automatically assigned.

The list of available parameters depends on the network to which the configuration is
connected. This list may be empty. Some parameters may be read-only (displayed greyed). For
the ETCP (Ethernet) network driver, only the IP address of the configuration is required.

Note: A connection may fail if the network protocol is not supported by the configuration's
target.
DS800 Development Suite 2.1 - Workbench 123

To connect a configuration and network

1. Click and hold the mouse button on the title bar of the configuration to connect.

The mouse becomes a network connection cursor:

2. Drag and drop the mouse cursor to the required network.

The connection is created and the Connection Properties dialog box is displayed.

3. In the Value field, enter the IP address, then click OK.

Deleting Connections

You can remove existing connections between configurations and networks.

To delete a connection between a configuration and network

1. Select the connection.

2. Do one of the following:

From the Edit menu, choose Delete Connection.

Press Delete.
124 DS800 Development Suite 2.1 - User Manual

Dictionary View
 The Dictionary is an editing tool using tree views and grids for the declaration of the

variables, functions, and function block parameters, user types and defined words of the
project.

The various components are sorted in a tree-like hierarchy, e.g., by resource or by Type. The
Tree name is displayed on the window title bar. The four dictionary tree views are:

Note: You need to declare variables before proceeding with the I/O Wiring process.

To switch to the Dictionary view

Do one of the following steps:

From the Project menu, choose either Types, Variables, Function/Function Block
Parameters, or Defined Words.

Note: The choices available differ depending on whether you are in the hardware architecture
or link architecture views.

On the Window Buttons toolbar, click .

Open a variable group.

To switch to the Dictionary view from a language editor

Opening the Dictionary from an Editor opens the Variable Tree and grid for the POU being
edited.

Variables Tree

Parameters Tree

Types Tree

Defined Words Tree
DS800 Development Suite 2.1 - Workbench 125

Do one of the following steps:

From the File menu, choose Dictionary.

On the Standard Buttons toolbar, click .

Appearance
The Dictionary view is displayed maximized in the workspace. The menus and toolbar now
reflect Dictionary options only.

The left of the dictionary workspace is a tree-like hierarchical structure of either variables,
parameters, types, or defined words. The right side of the workspace displays a grid-like table.

Titlebar
Menu Bar
Toolbars

Workspace

Status Bar
126 DS800 Development Suite 2.1 - User Manual

Variables Tree
The branches provide different ways to access the variables of each resource:

Note: When the cursor is positioned over an item, the full name and comments are displayed
in the ToolTip.

Top Level

Resources

Variable Group Grid displays only variables in that
group.

Any Group

All Variables Grid contains all variables in the
resource

Global Variables Grid contains all global variables

Programs Grid contains global variables and
variables local to the program

Functions Grid contains global variable and
variables local to the function
DS800 Development Suite 2.1 - Workbench 127

Parameters Tree
The branches in each resource show all functions and function blocks, in order to define their
parameters in the corresponding grid.

Note: When the cursor is positioned over an item, the full name and comments are displayed
in the ToolTip

Top Level

Resources

Functions

Function Grid displays the parameters of the
function

Function Blocks

Function Block Grid displays the parameters of the
function block
128 DS800 Development Suite 2.1 - User Manual

Types Tree
The various tree levels are represented using the following icons:

When the cursor is positioned over an item, the full name and comments are displayed in the
ToolTip.

Types have a Common Scope, they can be used as a type or any variable of any resource.

Creating Structures

To create a structure

1. Right-click on the 'Structures' top of tree.

2. From the Edit menu, choose Add Structure.

A structure has been created at the end of the tree. Its name is displayed and ready for
editing.

Note: In addition to a name, you can include a comment, e.g., StructName (* comment *).

Top Level

Arrays

Structures Level

Structures Individual Structures
DS800 Development Suite 2.1 - Workbench 129

Renaming Structures

You can rename a structure using the main menu or a contextual menu, accessed by
right-clicking a structure.

To rename a structure

1. Right-click on the structure to rename.

2. From the Edit menu, choose Rename Structure.

3. Enter a name and comment in the dialog box.

Deleting Structures

You can delete structures using the main menu or a contextual menu, accessed by
right-clicking the structure.

To delete a structure

1. Select the structure in the tree.

2. From the Edit menu, choose Delete Structure.

Defined Words Tree
There is no Tree for defined words, these are entered in the grid. Defined words have a
Common Scope, they can be used in any POU of any resource. For information on the Defined
Words grid, see page 145.
130 DS800 Development Suite 2.1 - User Manual

Working with the Grids
Grids display characteristics and values for components corresponding to the selected Tree
View. You create, manipulate, and make changes for variables, functions, and function block
parameters, user types and defined words directly in the grids. The grid is a table formatted
database. You can use one of two editing modes while working in the grids:

Grid, where you can access individual cells. In this mode, a grid outlines individual cells:

Line, where you can access complete rows, i.e., lines. The information contained in the
line appears in a dialog box where you can change it. In this mode, no grid appears:

Keyboard shortcuts enable navigating throughout the grid. The behavior of the shortcuts differs
depending on the editing mode of the grid.

Note: When defining TLP variables, you need to set the variables grid to the line editing mode.

To switch editing modes

Directly above the grid, click .

Shortcut Grid Mode Line Mode
Tab Moves from one grid cell to the next

from left to right. When editing the
contents of a cell, the edition mode is
retained in the next cells.

Moves from one line to the next from
top to bottom

Shift+Tab Moves from one grid cell to the next
from right to left. When editing the
contents of a cell, the edition mode is
retained in the next cells.

Moves from one line to the next from
bottom to top

End Moves to the bottom of the variables list Moves to the line at the bottom of the
variables list

Home Moves to the top of the variables list Moves to the line at the top of the
variables list
DS800 Development Suite 2.1 - Workbench 131

Resizing Columns

You can resize columns or rows.

To resize a column (or row)

1. Click and hold a cell header divider:

2. Drag and drop it as required (drag to the left in the above example to shrink the Name
column).

Selecting Rows and Elements

You can select either rows or individual cells in the grid depending on the selected editing
mode:

To select rows

While in the Line editing mode, click on the row.

While in the Grid editing mode, click the left-most edge of the row.

To select items in the grid

While in the Line editing mode, you can select one or more items in the grid.

1. To select a single item, click the item.

2. To select more than one consecutive item, click the first item, then while holding down
the <SHIFT> key, click the last one.

All the elements between the first and last are selected.

3. To select many individual items, click each one while holding down the <Ctrl> key.
132 DS800 Development Suite 2.1 - User Manual

Editing the Contents of the Grid

You can edit the contents of individual cells or complete rows depending on the selected
editing mode. To edit the contents of a cell

While in Grid mode, double-click an element within the row.

To edit the contents of a row

1. While in Line mode, double-click a row.

The variable dialog is displayed.

2. Make the necessary changes to the variable fields. For the Type field, you can also access
the Select Data Types browser by clicking .
DS800 Development Suite 2.1 - Workbench 133

Adding or Inserting Rows

You can edit the contents of existing rows, add rows at the end of the grid, or insert rows at a
specific location in the grid. You can perform these tasks from the main menu or a contextual
menu, accessed by right-clicking in the grid.

To add a row

From the Edit menu, choose Add Row.

The grid dialog box appears:

Some fields have pull-down menus, showing the options available for that field. The Type field
also enables access to the Select Data Types browser.

Note: The group name is automatically asserted when a variable group is selected in the
Variable Tree.

To insert a row in the grid

1. Select a row in the grid.

2. From the Edit menu, choose Insert Row.

When the Line editing mode is selected, a row is inserted in the grid. When the Grid editing
mode is selected, grid dialog box appears.
134 DS800 Development Suite 2.1 - User Manual

Moving Rows

You can change the position of a variable or a parameter in the grid, by dragging the line to a
new position.

Note: You cannot undo row-moving operations.

Expanding or Collapsing Grid Components

Variables with user types (Arrays and Structures) are initially displayed 'collapsed', i.e. only
the variable definition row is displayed, with a + sign in the row header cell. Clicking on the
row header cell expands or collapses that variable.

For example, the variable In1 of type arr1, where arr1 is defined in the Dictionary as an Array
of [1..3] Booleans, is initially displayed as:

When expanded, the complete definition of in1 is shown:
DS800 Development Suite 2.1 - Workbench 135

Cutting, Copying, and Deleting Elements

You can cut, copy, or delete either rows or individual cells in the grid depending on the selected
editing mode. The Cut command removes selected elements and places them on the clipboard.
The Copy command places the selected item on the clipboard. The clipboard holds only one
item at a time.

To cut elements

1. Select an element.

2. From the Edit menu, choose Cut <Ctrl+X>.

To copy elements

1. Select an element.

2. From the Edit menu, choose Copy <Ctrl+C>.

Deleting elements

Select an element then press Delete.
136 DS800 Development Suite 2.1 - User Manual

Finding and Replacing Elements

You can search for and replace elements in the grid. , however, you can only replace the
following elements in the respective grids:

To differentiate between upper and lower case characters during a search, check Match Case.

To search or replace an element (a character, word or phrase):

1. From the Edit menu, choose 'Find / Replace' <Ctrl + F>.

The Find / Replace dialog is displayed.

2. To search for an element, in the Find what field, enter the element to search for, then
click Find Next.

3. To replace an element, in the Replace with field, enter the element, then click Replace.
To replace all occurrences of the element, click Replace All.

Variables Parameters Types Defined Words
Name Name Name Word
Alias Short Name () Equivalent
() Comment Comment Comment
Init.Value ()
Dimension Dimension
Address
Comment
DS800 Development Suite 2.1 - Workbench 137

Pasting Elements

You can paste the contents of the clipboard above the currently selected row(s), if one or more
rows have been copied or cut.

To paste

1. Click on the required insertion point.

2. From the Edit menu, choose Paste <Ctrl+V> or on the Standard toolbar, click ..

OR

1. Right-click the required insertion point.

2. From the contextual menu, choose Paste.

Sorting the Grid

You can sort the contents of individual columns of the grid from the main menu, from the
toolbar, or by clicking the individual column headers.

To sort the grid

1. Do one of the following:

From the Tools menu, choose Sort Ascending or Sort Descending.

On the toolbar, click to sort in an ascending manner or to sort in a
descending manner.

2. In the Sorting dialog box, choose the criteria (column) to use for sorting, then click OK.
138 DS800 Development Suite 2.1 - User Manual

Duplicating Rows

You can duplicate rows, automatically generating sequentially numbered 'name' copies.

To duplicate a row

1. Select the row to Duplicate.

2. Do one of the following:

From the Tools menu, choose Duplicate <Ctrl+U>.

On the Standard toolbar, click .

The Duplicate dialog box is displayed:

3. Enter the From and To numbers to use for the automatic generation of names.

4. Click OK.

The newly created rows are inserted below the selected row.
DS800 Development Suite 2.1 - Workbench 139

Renumbering Addresses

Renumbering addresses automatically generates contiguous addresses within a selected range
of the grid. Renumbering is only available in the variables grid. When renumbering, certain
cells such as a function block instances are ignored since they have no address.

The reduced symbol table contains the set of variables with addresses.

To renumber addresses

1. Select the rows to renumber their address

2. From the Tools menu, choose Renumber Addresses.

3. In the Renumber Addresses dialog, enter the 'From Address' (hexadecimal value ranging
from : 1 to FFFF).

4. Click OK.

Example
If A1 is entered as a Start Address, A1, A2, A3, A4... are generated.
If AA is entered as a Start Address, AA, AB, AC, AD... are generated.
140 DS800 Development Suite 2.1 - User Manual

Printing a Grid

You can choose to print the current grid. This command launches the Document Generator
with the standard list of elements to be printed for a grid. For information on the Document
Generator, see page 337.

To print the current grid

• From the File menu, choose Print.
DS800 Development Suite 2.1 - Workbench 141

Variables Grid
The variables grid allows the definition of variables for each resource created in the project.

The columns of the variables grid are:

Column Details

Name Variable name: limited to 128 characters, conforming to the IEC 61131
standard

Alias Any name. Used in LD Editor
Group Group name or "None"
Type BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD,

LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, STRING, Array
Types, Structure Types, Function Blocks. See Glossary.

() if Type is STRING this represents the string length (max. 255 characters)
Dimension For example: [1..4,1..7]. See Glossary.
Attribute For example: READ-ONLY. See Glossary.
Scope Global or local to a program or function. see Glossary.
Direction of I/O Wiring; Input, Output or Internal.
Init.value Numeric or Textual. See Glossary.
Wiring Read-only cell, generated by the I/O Wiring tool. Uses syntax of Directly

Represented Variable
Comment User comments: Free format
Retain Yes or No. See Glossary and Resource Settings Properties.
Address Hexadecimal value in the range 1 to FFFF.
142 DS800 Development Suite 2.1 - User Manual

Parameters Grid
The Parameters grid defines the interface of the functions and function blocks created in the
project resources. The columns for parameters are:

Note: Parameters are sorted within the database; "Input", then "Output", then "Local".
Functions have only one output parameter which must be a simple type (i.e., no arrays or
structures). Function block instances can only be defined as local parameters of function
blocks. To call a function block in a function block (nested function blocks), you may create
the instance of the called function block as a local parameter of the calling function block. This
enables you to spy the local parameters of the called block .

Column Details

Name Parameter name: Limited to a maximum of 128 characters and must conform
to the IEC 61131 Standard.

Short Name Short name used in the FBD and LD Editors for display only (max. 4 chars).
Type BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD,

LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, STRING, Array
Type, Structure Type, Function Block Type. see Glossary

() If Type is STRING, () is the length (max. 255 chars).
Dimension Example [1..4,1..7] for a two dimensional Array. see Glossary
Direction Input Parameter, Output Parameter or Local
Comment User comments: Free format
DS800 Development Suite 2.1 - Workbench 143

Types Grid
In the Types grid, you create complex types that will then be available for variable declaration,
i.e., new types will appear in the 'Type' selection in all grids. The columns for types are:

Arrays:

Structures:

Notes:
To create a structure with an element with a dimension, first create an array, then create a
structure with an element of type <Array name>.
Type recursive use is not allowed, e.g., one field of 'str1' cannot use the 'str1' type

Column Details

Name Array name: maximum 128 characters, conforming to the IEC 61131 Standard
Element Type Array Element Type: BOOL, SINT, USINT, BYTE, INT, UINT, WORD,

DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME,
DATE, STRING, User Arrays, Structures

() If Type is STRING, this represents the length (maximum 255 characters)
Dimension Example: [1..10] for a one dimensional Array, [1..4,1..7], for a two

dimensional Array. The dimension must be defined as a positive double integer
(DINT) value.

Comment User comments: Free format

Column Details

Name Element name: maximum 128 characters, conforming to the IEC 61131
Standard

Element Type Element Type: BOOL, SINT, USINT, BYTE, INT, UINT, WORD, DINT,
UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE,
STRING, User Arrays, Structures

() If type is STRING, this represents the length (maximum 255 characters)
Comment User comments: Free format
144 DS800 Development Suite 2.1 - User Manual

Defined Words Grid
The columns for defined words are:

Column Details

Word Name used in ST source files: first character must be a letter, following
characters must be letters, digits or underscore ('_').

Equivalent String according to ST syntax, that replaces the defined word during
compiling. Example: Word = PI, Equivalent = 3.14159

Comment User comments: Free format
DS800 Development Suite 2.1 - Workbench 145

Defining TLP Variables
The TLP browser enables the selection of TLP numeric point locations from the
ROCLINK 800 configuration file for use as TLP variables in the DS800 environment. Before
defining TLP variables, you need to link the configuration to a ROCLINK 800 configuration
file and set the configuration target definition property to the applicable RAS device target.
DS800 automatically performs the wiring from defined TLP variables to TLP devices. Each
TLP variable is assigned a TLP device.

In the TLP browser, you select three parameters to define point locations:

Point Type (T) - The point type opens a list of logical numbers and parameters belonging
to that Point Type.
146 DS800 Development Suite 2.1 - User Manual

Logical Number (L) - In the configuration screens, the Logical Number is generally
referred to as Point Number or Number.

Parameter (P) - These are usually called by the same term as the Tag on the configuration
screen.

The display field at the bottom left of the TLP browser displays the numeric point location of
the TLP point and its data type as well as the point’s read/write attribute. You also set the
read/write attribute of the TLP variable for the DS800 Workbench.

The ROCLINK 800 data types are matched to the corresponding DS800 data type:

In the dictionary, the Comment field indicates the TLP numeric point definition and location

DS800 automatically generates the correct wiring for TLP variables entered in the dictionary.
When a TLP variable is deleted from the dictionary, its assigned device is also deleted. Also,
when a TLP device is deleted, its wired TLP variable is also deleted. When importing TLP
variables, the automatic wiring is not executed.

Correspondence of Data Types
ROCLINK 800 DS800
FL REAL
UINT8 DINT
UINT16 DINT
INT16 DINT
UINT32 DINT
ACx STRING(x)
TIME STRING(22)
TLP tlpAddress
HOURMI DINT
BIN DINT
Softpoint Softpoint
DS800 Development Suite 2.1 - Workbench 147

When selecting a Softpoint Parameter point type with the 0 parameter, the TLP variable has
the Softpoint structure type. For a Softpoint structure, you may need to disable the write
permission for its individual fields; by default, Softpoint structure fields have the write
permissions.

To disable the write permission for a structure field, in the I/O wiring view, select the
corresponding field, then in the I/O Parameter dialog, set the parameter’s field to FALSE.

To define TLP variables in the dictionary

You access the TLP browser from the dictionary’s variables grid while in the line editing mode.

1. Select a row in the variables grid, then from the Edit menu, choose Add Row.

2. In the grid dialog, click .

3. In the TLP browser, to define the point location, select the point type, logical number, and
parameter, then indicate the read/write permissions for the device assigned to the TLP
variable and click OK.

The TLP variable’s attributes are displayed in the grid dialog.

4. To enter the TLP variable in the variable grid, click OK.

When you save changes in the dictionary, DS800 automatically performs the wiring from the
TLP variable to a TLP device. The assigned TLP device’s directly represented variable naming
is displayed in the Wiring field of the variable grid.

To disable the write permission for a Softpoint structure field

1. In the dictionary’s Wiring field, identify the TLP device index to which the Softpoint
structure is wired.

The TLP device index is indicated in the directly represented variable naming used in the
Wiring grid of the dictionary’s variable grid. For example, the %QU19.0 means that the
TLP device index is 19.
148 DS800 Development Suite 2.1 - User Manual

2. In the I/O Wiring view, locate and expand the TLP device having the corresponding
index.

The TLP device index is the number appearing at the left in a device’s name. In the
following example, the device index is 19:
19:DS800:TLP:TLP_SOFT_POINT_WRITE(* *)

3. Expand the Parameters element, then double-click any field.

4. In the I/O Parameters dialog, locate the field for which to disable the write permission,
then set its Value to FALSE.

5. Click OK.

The selected SoftPoint structure field’s write permission is disabled.
DS800 Development Suite 2.1 - Workbench 149

Initial Values
Initial values can only apply to variables. If no initial value is entered in the variables grid, a
value of 0 (or FALSE) is used by default.

The initial values are:

Variable Default Possible Values

BOOL FALSE TRUE or FALSE
SINT 0 any other short integer value
USINT 0 any other unsigned short integer value
BYTE 0 any byte value
INT 0 any other integer value
UINT 0 any other unsigned integer value
WORD 0 any other word value
DINT 0 any other double integer value
UDINT 0 any other unsigned double integer value
DWORD 0 any other double word value
LINT 0 any other long integer value
ULINT 0 any other unsigned long integer value
LWORD 0 any other long word value
REAL 0.0 any other float value (not double). Scientific format

1.2E+10 can be entered
LREAL 0.0 any other float value. Scientific format 1.2E+10 can be

entered
TIME t#0s any other timer value using the following syntax:

t#WhXmYsZms or t#Z

0 <= W: number of hours
0 <= X: number of minutes
0 <= Y: number of seconds
0 <= Z: number of milliseconds
Note: The h, m, s, and ms fields are optional. If t#100
is entered, it corresponds to t#100ms.
150 DS800 Development Suite 2.1 - User Manual

* When initializing the values of elements for arrays or structures, the total number of
characters, including commas automatically inserted to separate the initial values defined for
each element, cannot exceed 482. In the Dictionary window, the Initial Value field at the root
of the array or structure displays this cumulation.

To initialize the elements of an array

You initialize an array one element at a time.

1. Set the dictionary to grid mode.

2. Expand the array by clicking the '+' sign.

3. Double-click the array element’s Init Value column.

4. Enter a value corresponding to the element type.

DATE d#1970-01-01 any other date value ranging from 1970-01-01 to
2038-01-18 using the following syntax:
d#yyyy-mm-dd

STRING empty any set of characters contained within single quotes,
for example, 'hello'

Array initialization 0 or FALSE you need to initialize each element of an array*
Structure initialization 0 or FALSE you need to initialize each field in a structure*
DS800 Development Suite 2.1 - Workbench 151

To initialize the fields of a structure

The first line, with the structure's name, displays the list of each field's values. You initialize a
structure one field at a time.

1. Set the dictionary into the grid mode.

2. Expand the structure by clicking on the '+' sign.

3. Double-click on the structure field, in the 'Initial Value' column.

4. Enter the value that corresponds to the field's type.

The first line, with the structure's name, displays the list of field's values. The parenthesis
display a list of values that correspond to the array's elements.
152 DS800 Development Suite 2.1 - User Manual

Validation
Validation is performed at all levels of input and use of the grid.

When an error is detected, a message box with an error description appears.

Cell-level Validation

The system processes cell-level validation:

IEC 61131 compliance checks of:

Variable, Array and Structure names

Dimensions

Initial values

Text length (for example, Comments, Alias)

Variable, Array, and Structure names cannot be the same as Reserved Keywords

Validity and range checks of Addresses

Row-level Validation

The system validates the rows (records) at grid-level. When editing a row, the system checks:

Retain variables cannot be Input/Output

If Type is not of type String, the "()" column must be empty Direction checks:

Internal: Wiring must be empty

Input: Wiring must begin with %I

Output: Wiring must begin with %Q
DS800 Development Suite 2.1 - Workbench 153

Attribute checks:

Can only be "Read-only" for Inputs

Can only be "Write" or "Free" for Outputs

Inputs cannot have an initial value

Retain variables cannot have an initial value

Database-level Validation

The system validates the database. When saving, the system checks:

IEC 61131 functions have one (and only one) Output parameter, named as the function

Function and function block parameter names are not duplicated

Parameters are ordered (Input then Outputs)

Variable names are not duplicated within a resource

Local variable names:

are not duplicated within a POU

do not have the same name as a global variable

within a Structure, a field in not repeated

the Maximum number of function and function block parameters respects target
capabilities
154 DS800 Development Suite 2.1 - User Manual

I/O Wiring View
I/O wiring enables you to define links between the variables defined in a project and the
channels of the devices existing on the target system. Wiring is performed at the resource level,
therefore, I/O wiring is only available when a resource is selected in either the link architecture
or hardware architecture views and when a target has been attached to the current
configuration.

After creating variables in the Dictionary, you perform I/O wiring in the I/O wiring tool by
adding I/O devices, setting device parameters and I/O filters, then wiring the channels of the
devices to variables in the grid. You can also define the mapping of logical channels to physical
channels.

To open the I/O wiring tool from the link or hardware architecture view

1. Select a resource.

2. Do one of the following:

From the Project menu, choose I/O wiring.

On the Window Buttons toolbar, click .

To open the I/O wiring tool from the link architecture view

Within a resource window, open the parameters component, then the I/O wiring
component.
DS800 Development Suite 2.1 - Workbench 155

Appearance
The I/O Wiring view is displayed in the workspace. The menus and toolbar now reflect I/O
Wiring options only.

The left of the I/O Wiring Workspace is a hierarchical 'Tree View' of defined I/O devices. The
right side of the workspace displays a grid-like table of the free (unwired) variables of the
current resource. These unwired variables are listed in alphabetical order. A Splitter is
available to change the proportion of the width of the Tree and grid windows.

Title bar
Menu bar
Toolbars

Workspace

Output
window
156 DS800 Development Suite 2.1 - User Manual

I/O Wiring Tree View

When a device has been added, you can use Direct Variable Representation (%IX1.1) to access
IO values. This syntax is shown in the Tree. You can also wire variables that you have already
declared in the Dictionary to the device channels, and use these Variable names in your
programs to access channel values. The diagram above shows examples of certain simple
devices in the I/O Wiring Tree view.

Simple Device Packagename:DriverName:Device
Name (* comment of the I/O
device *)

Parameters (Only displayed if the I/O device
has defined parameters).

BoardRef

BoardAddress

Wired Channel

Direct Alternatively: Reverse (for
Boolean values)

Conversion

Simple Device

Free Channel

Gain for numeric values

Offset for numeric values

Conversion

Complex Device
DS800 Development Suite 2.1 - Workbench 157

Parameters

Double-click on any parameter in the tree to open a dialog box that allows you to modify
its value.

Direct/ Reverse

For a boolean IO channel, you can switch between the original value (direct) or its negation
(reverse). Simply double click on 'Direct' or 'Reverse' to swap from one choice to another.

Gain/Offset

For a numerical channel, you can apply a gain and an offset to a channel value.

For inputs, the original value (coming from the input device) is multiplied by the gain, and the
offset value is added. This gives the value used by the programs of the resource.

For outputs, the value of the variable resulting from the execution of the program is multiplied
by the gain and the offset value added, before updating the output device.

Double-click 'Gain' or 'Offset' in the tree to open a dialog box that allows you to modify
the values.

Note: Gain is composed of a multiplier factor and a divider factor.

The conversion formula applied is as follows:

NewValue = (Value * MultFactor) / DivFactor + Offset

For details on specific implementations, contact your supplier.

Conversions

Conversions can be applied to any kind of channels. The list of available conversions depends
on the target implementation. Please contact your supplier for more information on
conversions they provide.

Simply double click on 'Conversion' in the tree to open a dialog box that allows you to select
the desired conversion for the channel.
158 DS800 Development Suite 2.1 - User Manual

I/O Wiring Grid View
The Grid view displays a read-only list of the available (non-wired) variables of the resource
that match the type and direction of the device selected in the Tree View.
DS800 Development Suite 2.1 - Workbench 159

Working with the I/O Wiring Tool
When defining the I/O Wiring the first time, the Tree and Grid views are empty. After an I/O
device is added, the Grid view lists all the variables of the current resource that correspond to
the device type and direction. Example: all Boolean inputs for an I/O device: BOOL - Input.

The I/O devices correspond to I/O modules in the RAS device unit:

Analog Input

Analog Output

Discrete Input

Discrete Output

MVS Input

Pulse Input

RTD Input

System Analog Input

Thermocouple Input
160 DS800 Development Suite 2.1 - User Manual

DS800 Development Suite 2.1 - Workbench 161

TLP Devices (Automatic Wiring)

When you define TLP variables in the dictionary, these are automatically wired to
TLP devices. You may need to modify the write permissions for the fields of Softpoint
structures. While modifying the permissions for these fields, avoid interfering with the
automatic wiring.

Note: The DS800 TLP I/O device drivers require ROC800-Series firmware 2.10 or greater.

The following devices are available for automatic wiring:

TLP_DINT_READ
TLP_DINT_WRITE
TLP_REAL_READ
TLP_REAL_WRITE
TLP_STRING_READ
TLP_STRING_WRITE
TLP_SOFT_POINT_READ
TLP_SOFT_POINT_WRITE
TLP_REGISTER_READ
TLP_REGISTER_WRITE
162 DS800 Development Suite 2.1 - User Manual

Analog Input - 4 Point

This Wiring is set in the I/O Wiring View. The parameters are Board number and Slot number.
Board number is always set to 1, and the Slot number refers to the slot in the RAS device
housing in which the AI module resides. The I/O module wiring in DS800 software is NOT
self-identifying, as it is in ROCLINK 800 software.

Before wiring, each variable must be defined in the Dictionary View Variables Grid. Select the
appropriate variable from the unwired variables list. The Name should identify the I/O module.
The direction can be set three ways. If defined as I (Input) then the variable will have to be
wired to an Input module, if defined as O (Output) then the variable will have to be wired to an
Output module, or if defined as Internal then it can not be wired to a ROC I/O module. The
Attribute should be R (read for Inputs), W (write for Outputs), or Free (for Inputs or Outputs
that will be used as Inputs in other locations in the algorithm).

Analog Output - 4 Point

This Wiring is set in the I/O Wiring View. The parameters are Board number and Slot number.
Board number is always set to 1, and the Slot number refers to the slot in the RAS device
housing in which the AO module resides. The I/O module wiring in DS800 software is NOT
self-identifying, as it is in ROCLINK 800 software.

Before wiring, each variable must be defined in the Dictionary View Variables Grid. Select the
appropriate variable from the unwired variables list. The Name should identify the I/O module.
The direction can be set 3 ways. If defined as I (Input) then the variable will have to be wired
to an Input module, if defined as O (Output) then the variable will have to be wired to an Output
module, or if defined as Internal then it can not be wired to a ROC I/O module. The Attribute
should be R (read for Inputs), W (write for Outputs), or Free (for Inputs or Outputs that will be
used as Inputs in other locations in the algorithm).
DS800 Development Suite 2.1 - Workbench 163

Discrete Input - 8 Point

This Wiring is set in the I/O Wiring View. The parameters are Board number and Slot number.
Board number is always set to 1, and the Slot number refers to the slot in the RAS device
housing in which the DI module resides. The I/O module wiring in DS800 software is NOT
self-identifying, as it is in ROCLINK 800 software.

Before wiring, each variable must be defined in the Dictionary View Variables Grid. Select
the appropriate variable from the unwired variables list. The Name should identify the I/O
module. The direction can be set 3 ways. If defined as I (Input) then the variable will have to
be wired to an Input module, if defined as O (Output) then the variable will have to be wired
to an Output module, or if defined as Internal then it can not be wired to a ROC I/O module.
The Attribute should be R (read for Inputs), W (write for Outputs), or Free (for Inputs or
Outputs that will be used as Inputs in other locations in the algorithm).

Discrete Output - 5 Point

This Wiring is set in the I/O Wiring View. The parameters are Board number and Slot number.
Board number is always set to 1, and the Slot number refers to the slot in the RAS device
housing in which the DO module resides. The I/O module wiring in DS800 software is NOT
self-identifying, as it is in ROCLINK 800 software.

Before wiring, each variable must be defined in the Dictionary View Variables Grid. Select the
appropriate variable from the unwired variables list. The Name should identify the I/O module.
The direction can be set 3 ways. If defined as I (Input) then the variable will have to be wired
to an Input module, if defined as O (Output) then the variable will have to be wired to an Output
module, or if defined as Internal then it can not be wired to a ROC I/O module. The Attribute
should be R (read for Inputs), W (write for Outputs), or Free (for Inputs or Outputs that will be
used as Inputs in other locations in the algorithm).
164 DS800 Development Suite 2.1 - User Manual

Multi-Variable Sensor Input - 6 Point

This Wiring is set in the I/O Wiring View. The three channels refer to the three points received
from the MVS Sensor:

Differential Pressure (DP)

Static Pressure (SP)

Temperature

For more information on these points, refer to the ROCLINK 800 Configuration Software User
Manual.

The parameters are Board number, Slot number, and Point number. Board number is always
set to 1. The Slot number refers to the slot in the RAS device housing in which the MVS
module resides. The Point number refers to which of the 6 MVS sensor points is being used.
The I/O module wiring in DS800 software is NOT self-identifying, as it is in ROCLINK 800
software.

Before wiring, each variable must be defined in the Dictionary View Variables Grid. Select the
appropriate variable from the unwired variables list. The Name (tag) should identify the I/O
module. The direction can be set three ways. If defined as I (Input) then the variable will have
to be wired to an Input module, if defined as O (Output) then the variable will have to be wired
to an Output module, or if defined as Internal then it cannot be wired to a ROC I/O module.
The Attribute should be R (read for Inputs), W (write for Outputs), or Free (for Inputs or
Outputs that will be used as Inputs in other locations in the algorithm).
DS800 Development Suite 2.1 - Workbench 165

Pulse Input - 2 Point

This Wiring is set in the I/O Wiring View. The parameters are Board number and Slot number.
Board number refers to which RAS device PI Module is being wired (as more than 1 PI module
may be used), and the Slot number refers to the slot in the RAS device housing in which the PI
module resides. The I/O module wiring in DS800 software is NOT self-identifying, as it is in
ROCLINK 800 software.

Before wiring, each I/O module must be defined as a variable in the Dictionary View Variables
Grid. The Name should be A (Analog), D (Discrete), P (Pulse), MVS, RTD, SA (System
Analog), or TC, the direction should be I (Input), O (Output), or Internal (for System AI). The
Attribute should be R (read), W (write), or Free.
166 DS800 Development Suite 2.1 - User Manual

RTD Input - 2 Point

This Wiring is set in the I/O Wiring View. The parameters are Board number and Slot number.
Board number is always set to 1, and the Slot number refers to the slot in the RAS device
housing in which the RTD module resides. The I/O module wiring in DS800 software is NOT
self-identifying, as it is in ROCLINK 800 software.

Before wiring, each variable must be defined in the Dictionary View Variables Grid. Select the
appropriate variable from the unwired variables list. The Name should identify the I/O module.
The direction can be set 3 ways. If defined as I (Input) then the variable will have to be wired
to an Input module, if defined as O (Output) then the variable will have to be wired to an Output
module, or if defined as Internal then it can not be wired to a ROC I/O module. The Attribute
should be R (read for Inputs), W (write for Outputs), or Free (for Inputs or Outputs that will be
used as Inputs in other locations in the algorithm).

System Analog Input - 5 Point

This Wiring is set in the I/O Wiring View. The 5 points (channels) refer to inputs for:

+/- BATT (supply from Battery to power supply module is low)

+/- CHG (Supply to solar Charge is low)

Module V (Voltage monitor from power supply module to I/O and Comm modules)

One point that is not used

Board Temperature (monitor of thermistor on CPU)

For more information on these points, refer to the ROCLINK 800 Configuration Software User
Manual.

The parameters are Board number and Slot number. Board number is always set to 1, and the
Slot number is fixed (non-configurable) as it has no physical location in the RAS device
housing. The I/O module wiring in DS800 software is NOT self-identifying, as it is in
ROCLINK 800 software.
DS800 Development Suite 2.1 - Workbench 167

Before wiring, each variable must be defined in the Dictionary View Variables Grid. Select the
appropriate variable from the unwired variables list. The Name should identify the I/O module.
The direction can be set three ways. If defined as I (Input) then the variable will have to be
wired to an Input module, if defined as O (Output) then the variable will have to be wired to an
Output module, or if defined as Internal then it cannot be wired to a ROC I/O module. The
Attribute should be R (read for Inputs), W (write for Outputs), or Free (for Inputs or Outputs
that will be used as Inputs in other locations in the algorithm).

Thermocouple Input - 5 Point

This Wiring is set in the I/O Wiring View. The parameters are Board number and Slot number.
Board number is always set to 1, and the Slot number refers to the slot in the RAS device
housing in which the T/C module resides. The I/O module wiring in DS800 software is NOT
self-identifying, as it is in ROCLINK 800 software.

Before wiring, each variable must be defined in the Dictionary View Variables Grid. Select the
appropriate variable from the unwired variables list. The Name should identify the I/O module.
The direction can be set 3 ways. If defined as I (Input) then the variable will have to be wired
to an Input module, if defined as O (Output) then the variable will have to be wired to an Output
module, or if defined as Internal then it can not be wired to a ROC I/O module. The Attribute
should be R (read for Inputs), W (write for Outputs), or Free (for Inputs or Outputs that will be
used as Inputs in other locations in the algorithm).
168 DS800 Development Suite 2.1 - User Manual

Adding I/O Devices

You can add simple and complex devices to the I/O wiring tree. Available devices for a target
are displayed in the device selection list. When adding complex devices, the number of
channels, i.e., device size, of individual simple devices making up a complex device varies
depending on the definition of the complex device in the target.

To add an I/O device

1. From the Edit menu, choose Add I/O Device or click on the I/O Wiring toolbar.

The Device Selection dialog box appears:

2. Choose the device from the pull-down menu.

3. Change the device index and number of channels (if required and available).

4. Click OK.
DS800 Development Suite 2.1 - Workbench 169

Opening Devices

You can open existing devices defined for any resource of a project.

To open an existing device

1. From the File menu, choose Open Device or click on the I/O Wiring toolbar.

2. In the Open window, browse to select the resource holding the device, then click Open.

The devices defined for the selected resource are displayed in the I/O Wiring View.
170 DS800 Development Suite 2.1 - User Manual

Deleting Devices and Conversions

You can delete devices and conversions from the I/O wiring view. You cannot delete
Parameter, Gain, or Offset elements. You remove a current conversion by replacing it with
"None". You can also disconnect variables attached to selected channels.

When deleting devices, all variables are unwired from the device (as with Free I/O device
channels).

To delete a device or conversion

You can delete devices or conversions using the main menu or the I/O Wiring toolbar.

From the Edit menu, choose Delete Device or click on the I/O Wiring toolbar.

Setting the Real or Virtual Attribute

This command sets the Real/Virtual attribute for the currently selected device.

To toggle the Real/Virtual attribute:

1. Select the device in the Tree View.

2. From the Edit menu, choose Real / Virtual I/O Device or click on the I/O Wiring
toolbar.

The Tree View icon for a virtual device is .

In Real Mode, I/O variables are directly linked to the corresponding I/O devices. Input or
Output operations in the programs correspond directly to the input or output conditions of the
actual I/O device fields. In virtual mode, I/O variables are processed as internal variables. They
can be read or updated by the Debugger so that the user can simulate the I/O processing, but
no actual connection is made.
DS800 Development Suite 2.1 - Workbench 171

Wiring Channels

You wire variables to channels by selecting a channel in the Tree, then double-clicking or
pressing <Return>on a variable in the grid. If the channel is already wired, the existing
variable is unwired and replaced by the one in the grid.

After a connection, the variable is removed from the grid and the next channel is selected; only
variables available for wiring appear in the grid.

Note: If no channel is selected, nothing happens.

Mapping Channels

You can define the mapping of logical channels to physical channels. When mapping channels,
only one link can send to or receive from a logical channel. For an input device, you can map
a physical input to one or more logical inputs. Whereas, you cannot map more than one
physical input to a logical input. For an output device, you can only link one logical output to
one physical output:

When performing online changes, you can modify channel mappings.

To map logical and physical channels for a device

1. In the I/O wiring tool, select the device.

Input Device Output Device
Physical
Input

Logical
Input

Physical
Output

Logical
Ouput
172 DS800 Development Suite 2.1 - User Manual

2. From the Edit menu, choose Map Channels or click on the I/O Wiring toolbar.

The Map Channels editor displays the current mapping of channels for the device:

3. For each logical channel to map, locate and double-click its corresponding physical
channel, then from the drop-down list assign the new physical channel by
double-clicking it.

4. Click OK.
DS800 Development Suite 2.1 - Workbench 173

Freeing Channels

You can unwire one or all variables for a selected device.

To free one channel

1. Select a wired channel in the tree view.

2. Do one of the following:

From the Edit menu, choose Free I/O device channel.

From the I/O wiring toolbar, click on the I/O Wiring toolbar.

Press Delete.

To free all channels

1. Select a device in the tree view.

2. Do one of the following:

From the Edit menu, choose Free all I/O device channels.

From the I/O wiring toolbar, click .
174 DS800 Development Suite 2.1 - User Manual

Run-time System Events
You can log run-time system events on the Windows platform using the Events Logger and
view these events using the Events Viewer.

You access the Events Logger and Events Viewer from the Workbench. You can also start the
logger and viewer from command lines.

Logging Events
The Events Logger receives events from DS800 targets. You can view these events using the
Events Viewer. Events are stored in a log file, in Unicode format, located in the Events Logger
folder of the current project’s directory. A new log file is automatically created each day at
00:00:00 hours.

The name of the log file is Events_YYYYMMDD.txt where YYYY is the year, MM is the month,
and DD is the day on which the file is created.

You can open the log file in text format using a text editor.

When starting the Events Viewer from the Workbench while an application is running, the
Events Logger automatically points towards the application’s project and the logger is started.
You can also choose to start the Events Logger from a command line.

To start the Events Logger from a command line

You can set the Events Logger to start for a given Workbench project from a command line
using the following syntax:

EventsLogger -P"full_directory_path"

The executable file for the Events Logger is installed in the following location:

Program Files\Emerson\DS800\bin\EventsLogger.exe
DS800 Development Suite 2.1 - Workbench 175

When manually starting the Events Logger, you may need to provide the location of the
Workbench project. The Events Logger needs to be started in it's location directory. For
example:

C:> cd "Program Files\Emerson\DS800\Bin"
C:> EventsLogger -P"Program Files\Emerson\Projects\DS800\
Prj\MyProject"

You can also start the Events Viewer from a command line.

To open a log file

You can view the log of events as a text file by opening the log in a text editor such as Notepad.
The default location for the log file is in the Events Logger folder of the current project’s
directory.

Locate and double-click the .txt file.

The file opens in the associated text editor.

Viewing Events
The Events Viewer displays run-time system events logged with the Events Logger.

The Events Viewer displays the contents of the log file, created daily by the Events Logger. In
the viewer, events appear as they occur. You can sort events according to the categories at the
top of the viewer window:

Date and time when the event took place

Level, the level of the event. Possible values include Error, Warning, and Info.

Module, the module sending the event

Sub-module, the sub-module sending the event

Error, the code number of the error

Description, a textual description of the event
176 DS800 Development Suite 2.1 - User Manual

Value, a number relating to target development values

Configuration, the name of the configuration running on the target that sent the event.
When the event is related to a resource, the resource name is added to the configuration
name, for example, Config1.Res1.

You can choose to view events for a day other than the current day. You can also view events
for a day in a different month and year as long as the log file for the specified date is available.
Furthermore, you can sort the contents of the viewer according to individual columns in
ascending or descending order by clicking a column heading a first time for ascending order
and a second time for descending order.

When viewing events, you can access more detailed information for specific messages by
pressing F1.

Note: The Events Logger only logs target errors; Simulator errors are not displayed in the
Events Viewer.

To access the Events Viewer

When starting the Events Viewer while running an application, the Events Logger
automatically points towards the application’s project and is started.

In the Workbench, from the Tools menu, choose Events Viewer.

To sort events in the Events Viewer

At the top of the window, click a category heading. To inverse sorting order, click the
category heading a second time.

To view events for another day

1. At the top of the window, click the date.

The Events Viewer Date Selection window appears:
DS800 Development Suite 2.1 - Workbench 177

2. To view the events for another day, click the day on the calendar.

3. To view the dates for another month, do one of the following:

Click or to scroll through the previous or following months.

Click on the month at the top of the calendar, then choose one from the list.

4. To change the year, click the year at the top of the calendar, then choose one from the list.

5. To return to viewing events for the current day, click below the calendar.

To start the Events Viewer from a command line

You can set the Events Viewer to start for a given Workbench project from a command line
using the following syntax:

EventsViewer -P"full_directory_path"

The executable file for the Events Viewer is installed in the following location:

Program Files\Emerson\DS800\bin\EventsViewer.exe
178 DS800 Development Suite 2.1 - User Manual

The Events Viewer needs to be started in it's location directory. For example:

C:> cd "Program Files\Emerson\DS800\Bin"
C:> EventsViewer -P"Program Files\Emerson\Projects\DS800\
Prj\MyProject"

You can also start the Events Logger from a command line.
DS800 Development Suite 2.1 - Workbench 179

Language Editors
The Workbench holds several language editors, having some Common Editor Features, for use
with the many supported languages.

SFC Editor

FC Editor

Multi-language Editor

Composite IEC 61499 Editor

Common Editor Features
Each Editor in the Workbench has a similar and consistent interface using standard Windows
layout and functionality (for example, menus, toolbars).

The Dictionary, listing variables that can be used in the current POU, or used to declare new
variables, can be opened from any Editor. Building POU Code and starting Test Mode can also
be performed from all the Editors.

Printing from an Editor launches the Document Generator with elements specific to that Editor.
DS800 Development Suite 2.1 - Workbench 181

Appearance

Title Bar

For help locating the title bar, see the Appearance diagram. The title bar displays the
application name and filename of the active Program.

Control Icon

At the left end of the title bar is the Control Icon, which is used to access the Control Menu (see
following section). Double-clicking on the Control Icon closes the Editor.

Control Menu

Clicking on the Control icon opens the Control Menu. The Control Menu is used to position
the Main Window or to exit.

title bar
menu bar
toolbars

workspace

output
window

status bar
182 DS800 Development Suite 2.1 - User Manual

Window Buttons

The standard window buttons appear at the right end of the title bar. Use these to resize or close
the Window.

Menu Bar

The Menu Bar contains the Editor's menus. For help locating the menu bar, see the Appearance
diagram. Each menu lists a "family" of selections, each selection performs a specific action.

Note: Menus that are not currently available are temporarily removed from the menu bar.
Menu Items not available are displayed in gray.

Using the Menus

1. Open a menu by clicking on it, or by pressing <Alt> plus the letter that is underlined in
the menu's title. For example, to open the File Menu, you press <Alt> + <F> (shown in
this User's Guide as ALT+F).

2. Choose a menu selection by clicking on it, by pressing its underlined letter, or by using
the cursor keys to highlight it and then pressing <Enter>. Menu selections that appear in
grey are not currently available.

Control Icon

When a Program is open, the menu bar has a Control Icon on the left.

Control Menu

Clicking on the Control Icon opens the Control Menu. The Control Menu is used to position
the Window or to alternate between them.

Window Buttons

The standard window buttons appear at the right end of the menu bar.
DS800 Development Suite 2.1 - Workbench 183

Toolbars

The language editors holds toolbars performing various functions.

Displaying the toolbars

To show or hide a toolbar

1. From the Options Menu, choose Layout.

The Layout Dialog Box appears.

2. Check / uncheck the names of the toolbars to show / hide.

Moving toolbars

The toolbars can be placed anywhere on the screen.

To move a toolbar

1. Point the cursor at the toolbar's title bar or main panel.

Note: Do not point at the control icon or one of the window's buttons.

2. Press and hold the left mouse-button.

3. Drag the toolbar by moving the mouse.

4. Release the mouse-button.
184 DS800 Development Suite 2.1 - User Manual

Docking toolbars

Dock a toolbar to a side of the Workspace by positioning it at the Workspace's edge, this
toggles between a toolbar's floating and docked states.

The toolbar shown above appears as follows in its floating state:

Standard Toolbar

Opens a POU

Saves the current POU

Cuts the selection and places it on the clipboard

Copies the selection and places it on the
clipboard

Pastes the contents of the clipboard

Undoes the last operation

Redoes the last operation

Accesses the document generator

Finds and replaces items
DS800 Development Suite 2.1 - Workbench 185

Options Toolbar

Accesses the Dictionary view

Sets or removes a breakpoint

Removes breakpoints

Inserts identifiers

Builds the current POU

Stops a build

Switches the application to debug mode

Switches an application to simulation mode

Accesses the cross references browser

Displays the grid

Adjusts the zoom
186 DS800 Development Suite 2.1 - User Manual

Debug Toolbar

The Debug toolbar is accessible when you run a POU in either debug or simulation mode.

Increases the X to Y Ratio (LD Only) Cells are displayed wider

Decreases the X to Y Ratio (LD Only) Cells are displayed narrower

Starts all stopped resources

Starts a stopped resource

Stops all running resources

Stops a running resource

Switches the application to Real-time mode

Switches the application to cycle-to-cycle mode

Executes one cycle

Steps to the next line of code or rung

Steps into the next line of code or rung
DS800 Development Suite 2.1 - Workbench 187

Locates the current step

Sets the cycle timing

Sets or removes a breakpoint. For LD programs only.

Removes breakpoints. For LD programs only.

Shows/Hides output values. For FBD programs only.

Debugs a function block

Displays the spy variable list

Stops the debug/simulation mode

Refreshes the status of resources

Clears the output window
188 DS800 Development Suite 2.1 - User Manual

SFC Breakpoints Toolbar

SFC Tools

Sets a breakpoint on step activation

Sets a breakpoint on step deactivation

Sets a breakpoint on transition

Removes a breakpoint

Removes all breakpoints

Clears a transition

Select

Insert Initial Step

Add a Step

Add a Transition

Add an OR Divergence
DS800 Development Suite 2.1 - Workbench 189

Add an OR Convergence

Add an AND Divergence

Add an AND Convergence

New Branch

Add a Link

Jump

Renumber

Add Action Block

Move Action Block Up

Move Action Block Down

Delete Action Block
190 DS800 Development Suite 2.1 - User Manual

Flow Chart Tools

Select

Insert Action

Insert I/O Specific Action

Insert Test

Insert Flow

Insert Connector

IF-THEN-ELSE

DO-WHILE

WHILE-DO

Insert Sub-Program

Renumber Flow Chart

Insert Comment
DS800 Development Suite 2.1 - Workbench 191

ST Tools

This toolbar is displayed when editing an ST POU, an Action, or a test of an FC or SFC POU
written in ST. Clicking on one button of this toolbar inserts the corresponding word, at the caret
position, in the text of the current POU.

Assignment

Boolean True

Boolean False

Boolean AND operator

Boolean OR operator

Boolean XOR operator

RETURN statement

IF Statement

THEN Statement

ELSIF Statement

ELSE Statement
192 DS800 Development Suite 2.1 - User Manual

IL Tools

This toolbar is displayed when editing an IL POU or an action or a test of an FC or SFC POU
written in IL. Clicking on a button of this toolbar inserts the corresponding word, at the caret
position, in the text of the current POU.

END_IF Statement

CASE Structure

END_CASE Structure
DS800 Development Suite 2.1 - Workbench 193

LD Tools

This toolbar is displayed when editing an LD POU or an Action or a test of an FC or SFC POU
written in LD.

Insert Contact before

Insert Contact after

Insert parallel Contact

Insert Coil

Insert Block before

Insert Block after

Insert parallel Block
194 DS800 Development Suite 2.1 - User Manual

FBD Tools

The FBD tools bar is displayed when editing a POU written in the FBD language.

Insert a Jump

Insert RETURN

Change Coil/Contact Type (pressing the <spacebar> has the same effect)

Insert link

Align coils

Selects items

Adds a variable

Adds a function block

Draws a link

Draws a link with negation

Adds a corner

Inserts a jump to label
DS800 Development Suite 2.1 - Workbench 195

Inserts a label

Inserts a return

Adds a left power bar

Adds a contact

Adds an LD vertical connection

Adds a coil

Change Coil/Contact Type (pressing the
<spacebar> has the same effect)

Adds a right power bar

Adds a comment

Shows or hides the execution order
196 DS800 Development Suite 2.1 - User Manual

Workspace

When you open a POU, it appears in a window. This windows appear within the Editor's
Workspace.

For the FBD and LD language editors, you can also change the foreground and background
colors.

The Workspace of the FC (Flow Chart) and SFC Editors can be sub-divided into two
simultaneous views:

Each view can be zoomed independently.

To split the workspace

1. From the Window menu, choose Split.

2. Drag and drop the vertical division to the required position.

Grid

The editing grid shows matrix cells. An editor option allows the user to show or hide the grid
during development. The grid is very useful for placing new elements.
DS800 Development Suite 2.1 - Workbench 197

To toggle (display / hide) the grid

From the Layout sub-menu of the Options Menu, choose Grid or click on the
Options toolbar.

Note: The grid visibility does not affect its use to position elements, simply whether or not it
can be seen.

X-Y Ratio

The x-y ratio determines the relative width spacing of the grid compared to the height of each
grid 'cell'. This is a display property only, it has no effect on the definition or execution of the
Program.

To change the x-y ratio

From the Options Menu, choose Layout OR use the buttons (,) on the
Options toolbar.

Note: The X-Y ratio features are only available when editing LD.
198 DS800 Development Suite 2.1 - User Manual

Contextual Menus

The Contextual Menus are displayed by clicking the right mouse-button in the Editor
Workspace.

The commands on the Contextual Menu are generally available in the Edit Menu.

Example

Output Window

To view the output window

From the Window Menu, choose Show Output Window.

The output window appears, docked to the status bar:
DS800 Development Suite 2.1 - Workbench 199

Note: The output window is moved like a toolbar. It is automatically displayed when Building
and Debugging a Program. Compilation errors are displayed in the output window.

To clear the output window

From the Window Menu, choose Clear Output Window.

Status Bar

The Status Bar appears at the bottom of the Main Window. Information about commands,
operations and POUs is given on the Status Bar.
200 DS800 Development Suite 2.1 - User Manual

Inserting Identifiers

You can insert identifiers, i.e., variables, previously declared in the Dictionary. You can also
create new variables and enter constant values into a POU as well as access the parameters of
functions or function blocks. When creating a new variable, you need to assign a unique name
(not corresponding to an existing variable) as well as specify its type and scope: global or local
to the POU. These variables are added to the project database with default values for their other
attributes (Internal, Free). For new variables of the STRING type, a string of 80 characters is
automatically defined.

You insert identifiers using the Select Variable dialog. You can list all types of variables or
individual standard IEC 61131 types as well as defined words, arrays, and structures. You can
also list variable groups and variable directions. When editing functions or function blocks, the
parameters option appears in this list. When typing identifier names, the selector automatically
searches for the first item in the list matching the entered criteria.

Note: Arrays must be declared in the Dictionary View before using them in Functional Block
Diagrams (FBD).

To insert an identifier in a POU

1. From the Edit menu, choose Insert Identifier or click from the Standard toolbar.

The Select Variable dialog box is displayed.
DS800 Development Suite 2.1 - Workbench 201

2. To reduce the number of variables appearing in the list, select a type, variable group, and
direction of the identifiers to list. To list the parameters for functions and function blocks,
select the Parameters option.

3. Do one of the following:

To use a previously declared variable, select a variable from the list or type the name
of the variable in the field at the top left.

To create a new variable, in the top left field, type a unique name and click OK, then
in the New Variable dialog box, specify the type and scope for the new variable
(optionally an alias and comment). To specify the local scope, select the name of the
currently edited POU.

To enter a constant value, type the value in the field at the top left.

4. Click OK.

The identifier is inserted in the currently edited POU at the current position.
202 DS800 Development Suite 2.1 - User Manual

Inserting Blocks

You insert blocks, i.e. operators, functions, and function blocks into programs from the Select
Blocks window. The items displayed in the list depend on the program type. For SFC, FC, ST,
LD, FBD, and IL programs, the available items are operators (OPE), standard functions (SFU),
standard function blocks (SFB), user IEC 61131 Functions (IFU), user IEC 61131 Function
Blocks (IFB) and all "C" Functions (CFU) and Function Blocks (CFB) supported by the target
attached to the current resource.

The block identifier field (top left) indicates the selected operator, function, or function
block. When an instance is selected, the instance name is displayed.

The Blocks list enables you to display all or various types of operators, functions, and
function blocks.

Inputs are only available for operators such as +, *, and AND to define the number of
input connections for the block.

For FBD 61131 programs, the Instance field is only available when the currently selected
Block is a declared instance. The Instance field enables you to select the Instance name to
DS800 Development Suite 2.1 - Workbench 203

insert into the POU. When the field is left blank, an automatic instance is created for the
function block.

The Help button displays the description of the Block or Function or the associated help if it
exists (C Function or Function Block).

The Parameters tab is significant only for some "C" Functions and Function Blocks. It shows
the Parameters that are not shown when inserting the block in the program editor. These
Parameters are called "Hidden Parameters". They correspond to Input Parameters of the Block
to which you can give a constant value. The Parameters tab allows you to enter a value for these
Parameters.

Select the parameter name in the list, and enter its value in the "Value" edit box, press Enter to
assign the value.
204 DS800 Development Suite 2.1 - User Manual

Printing POUs

You can choose to print a standard list of elements for a POU from the Document Generator.
For information about the Document Generator, see page 337.

To print the current POU

From the File menu, choose Print or click on the Standard toolbar.

Opening the Dictionary

From a language editor, you can open the Dictionary filtered for the current POU.

To open the Dictionary

From the File menu, choose Dictionary or click on the Standard toolbar.
DS800 Development Suite 2.1 - Workbench 205

Opening Another POU

From a language editor, you can open another POU written with the language supported by the
current editor from any resource.

To open another POU from a language editor

1. From the file menu, choose Open or click on the Standard toolbar.

2. In the Open dialog box, from the project tree, select the resource holding the POU to
open, then the file from the list of available files.
206 DS800 Development Suite 2.1 - User Manual

Finding and Replacing in POUs

You can find and replace text throughout all POUs. You can specify to search an entire project,
a configuration, a resource, or a POU.

Searches include level 2 code of SFC and FC POUs as well as action block names of steps. The
Find / Replace in POUs utility is not case-sensitive, for instance, FIND is the same as FinD.

To find a step or transition name in an SFC chart or an action or test name in an FC chart, use
the Goto command in the Edit menu from the respective editor.

To find an item (characters, word, or phrase)

Searches are performed from top to bottom and from left to right.

1. From the Edit menu, choose Find / Replace in POUs <Ctrl+F> or click on the
toolbar.

Note: While in the Dictionary view, the toolbar element accesses the Dictionary grid
Find/Replace utility and the shortcut key for the Find/Replace In POUs menu item
is Ctrl+Shift+F.

2. Enter the item to search for. To perform a case sensitive search, check Match Case.

3. To find the next occurence of the item, click Find Next.
DS800 Development Suite 2.1 - Workbench 207

4. To replace found items, in the Replace field, enter the text to replace, then do one of the
following:

To replace the found occurence, click Replace.

To replace all occurences of an item, click Replace All.
208 DS800 Development Suite 2.1 - User Manual

SFC Editor
 The SFC (Sequential Function Chart) Editor is launched automatically when an SFC

program is opened from the Workbench. The SFC language is used to describe operations of a
sequential process. It uses a simple graphic representation for the different steps of a process,
and conditions that enable the change of active steps. An SFC Program is entered by using the
graphical SFC editor.

SFC is the core of the IEC 61131-3 standard. The other languages (except Flow Chart) usually
describe the actions within the steps and the logical conditions for the transitions. The SFC
editor allows the user to enter complete SFC programs. It combines graphic and text editing
capabilities, thus allowing the entry of both the SFC chart, and the corresponding actions and
conditions.

The SFC editor is automatically opened when an SFC program is edited.

Note: Before creating new programs, you need to close the Dictionary.

To subsequently open another program from the SFC Editor

From the File Menu, choose Open (CTRL+O) or click , on the Standard toolbar.
DS800 Development Suite 2.1 - Workbench 209

Appearance

Title Bar
Menu Bar
Toolbar

Workspace

Output
Window

Status Bar
210 DS800 Development Suite 2.1 - User Manual

Menu Bar

Some options are available as keyboard commands.

File Open Ctrl+O opens an existing POU
Close Alt+F4 closes the POU
Save Ctrl+S saves the current POU
Build Program Alt+F3 builds the code for the current POU
Stop Build Program stops the build in progress for the

current POU
Dictionary Ctrl+D opens the dictionary filtered for the

current POU
Description Ctrl+K accesses the program description
Print Ctrl+P prints the current POU
Exit Ctrl+Q leaves the language editor

Edit Cut Ctrl+X removes the selected item and places
it on clipboard

Copy Ctrl+C takes a copy of the selected item and
places it on the clipboard

Paste Ctrl+V inserts the contents of the clipboard
into the selected item

Delete DEL removes the selected item
Undo Ctrl+Z cancels the last action
Redo Ctrl+Y restores the last cancelled action
Find / Replace in POUs Ctrl+F finds and replaces text in a project, a

configuration, a resource, or a POU
Go to Ctrl+G jumps to the indicated step or

transition number
Rename Step/Transition Ctrl+R renames the element
Renumber renumbers all elements in the chart

in sequential order
Add Action Block add an action block
DS800 Development Suite 2.1 - Workbench 211

Edit
(Continued)

Delete Action Block deletes an action block
Edit Level 2 Enter opens the level 2 programming for

an element
Edit Level 2 in Separate
Window

Ctrl+
Enter

opens the level 2 programming for
an element in a separate window

Insert/Set Identifier Ctrl+I accesses the Select Variable dialog
box where you can insert a variable

Insert New Rung Ctrl+R inserts a rung
Tools Browser Ctrl+B accesses the Cross References

browser listing and localizing all
instances of global variables and
I/Os declared in a project

Debug Debug Alt+F6 switches the application to debug
mode

Simulation Alt+F7 switches the application to
simulation mode

Debug FB F11 opens a selected function block in
the language editor with its
instantiation values

Options Set Level 2 Language sets the programming language used
for level 2 programming. For
programs, possible languages are
ST, IL, and LD. For function blocks,
possible languages are ST and LD.

Customize Ctrl+U accesses the customization
properties for Workbench views and
editors

Target/Code Settings accesses the compilation options for
the POU
212 DS800 Development Suite 2.1 - User Manual

Window Cascade sets the different views of the project
to appear in a cascading manner

Tile sets the different views of the project
to appear in a tiled manner

Split splits the workspace into two
simultaneous views

Show Output Window Ctrl+4 displays the output window below
the workspace

Clear Output Window clears the contents of the output
window

Help Contents F1 accesses the online help
Search Help On... not currently supported
About displays product and version

information
Support Info not currently supported
DS800 Development Suite 2.1 - Workbench 213

Working with the Editor

The SFC language is used to represent sequential processes. The SFC programming is usually
separated into two different levels:

Level 1 shows the graphic chart, the reference names of the steps and the transitions, and
the comments.

Level 2 is the ST, LD or IL programming of the actions within the steps, or the conditions
attached to the transitions. Actions or conditions may refer to functions written in other
languages (FBD, LD, ST or IL). The level 2 programming of a step includes action
blocks programmed in ST, LD or IL. The level 2 programming of a transition describes a
Boolean condition entered in ST, LD or IL.

Individual elements are automatically linked if the SFC editor considers them to be in a valid
position.

From the editor, you can:

Build the current program code to check your program and prepare the code for building
the resource code.

Print your program.

Launch the Dictionary.

You can also enter a description to document your Program

From the File menu, choose Description.
214 DS800 Development Suite 2.1 - User Manual

SFC Elements

To draw an SFC chart, you simply introduce the significant components of the chart. The SFC
editor automatically draws most of the single lines joining two elements (horizontally or
vertically). Lines (or links) can be drawn manually.

To place an SFC component on the chart, the user has to select the type of the component in
the editor toolbar and then click in the edition workspace at the desired position. If the mouse
button is kept depressed, a "ghost" of the element is shown in order not to place it blindly.
When the symbol is placed, links can be created automatically depending on the element
position regarding the existing elements. The editor may not accept the placement of the
element. For example, you cannot place an element over an existing element.

Initial Step

Every SFC program must have an Initial Step. Initial steps are double bordered. For
information about initial steps, see page 396.

To place an Initial Step

1. On the SFC toolbar, click .

2. Click in the workspace at the desired position.
DS800 Development Suite 2.1 - Workbench 215

Step

Steps are given sequentially numbered default names, e.g. S1, S3, S5... For information about
steps, see page 396.

To place a Step

1. On the SFC toolbar, click .

2. Click in the Workspace at the desired position.

Note: To link a step to an existing transition, place the mouse cursor on the grid cell above or
below the transition.

Transition

Transitions are given sequentially numbered default names, e.g. T2, T4, T6... For information
about transitions, see page 397.
216 DS800 Development Suite 2.1 - User Manual

To place a Transition

1. On the SFC toolbar, click .

2. Click in the workspace at the desired position.

If you want to link the transition to an existing step, click the mouse with the cursor on the grid
cell above or below the step.

Divergence/Convergence

To place a divergence, click on the button on the SFC Toolbar then click in the chart
workspace at the desired position.

To link an OR divergence () to an existing step, place the mouse cursor on the
grid cell below the step.

To link an AND divergence () to an existing transition, click grid cell below
the transition:
DS800 Development Suite 2.1 - Workbench 217

To place a convergence and attach it to previous elements, click the left-most branch. OR

convergences () are attached to the preceding transitions, AND convergences

()are attached to preceding steps.
218 DS800 Development Suite 2.1 - User Manual

Creating New Branches

Inserting a new branch creates an alternative routing for connections.

To insert a new branch on a divergence or convergence

1. Select a divergence / convergence.

2. On the SFC toolbar, click .

Note: Moving the upper handles, on the left or right of a divergence or convergence,
automatically causes a new branch to be created.

To create a branch next to existing branches, select the divergence (OR divergence for
transitions, AND divergence for steps), then press F9 or click the new branch icon and add an
element (transition or step).

Example

Right-click or press F9 to add a branch Add element on new branch
DS800 Development Suite 2.1 - Workbench 219

Deleting Branches

Moving non-connected branches back onto the nearest connected branch deletes 'extra'
branches.

Select the divergence, place the cursor on the upper-right handle (red square), then drag the
branch onto the branch with S29:

Deleting an element removes the branch directly above it.

Select branch end and move towards
existing element

Branch is removed from
divergence

Select and delete element Element and branch are removed
220 DS800 Development Suite 2.1 - User Manual

Link

Drawing a link is a drag and drop operation linking one element to another. Links always move
from a step to a transition or from a transition to a step. Links can be moved using drag and
drop operations on the handles (red squares), displayed when the link is selected. For
information about oriented links, see page 398.

To insert a link

Inserting a link with a single click on the link origin, or dropping the link in an empty area of
the workspace, displays the Jump to a Step dialog. The "Jump to a Step" dialog is only
displayed when the link origin is a transition.

Choose the required step name then click OK.
DS800 Development Suite 2.1 - Workbench 221

Jump

You can insert jumps between transitions and steps. For information about jumps to steps, see
page 398.

To insert a jump

1. On the SFC toolbar, click .

The cursor changes to a 'Jump' cursor.

2. Click on the workspace, immediately below the transition to jump 'from'.

3. In the Jump to a Step dialog, select the required step name then click OK.

The step name is indicated next to the jump symbol.
222 DS800 Development Suite 2.1 - User Manual

Managing Elements

SFC elements can be cut, copied, and pasted within a Sequential Function Chart or, if more
than one is open, between different charts. When an element is moved, removed or added, the
chart is automatically refreshed, elements are placed according to the grid and links are
redrawn.

Select

To select an item simply click on it with the left mouse-button. Multiple selections are made
by clicking a blank area of the workspace then drag and drop until the required items are
hightlighted. Alternatively, multiple items are selected by holding down (CTRL) or (SHIFT)
then clicking elements to add to the selection.
DS800 Development Suite 2.1 - Workbench 223

Rename

You can rename steps and transitions.

To rename elements

1. Select the element to rename.

2. From the Edit menu, choose Rename Step (Transition) OR right-click on the element to
display the contextual menu.

The Change Name dialog box appears:

3. Edit the name then click OK.

OR

1. Select the element to rename.

2. Click on the name to edit.

3. Edit the name directly in the program element:

4. When finished, click elsewhere in the workspace.
224 DS800 Development Suite 2.1 - User Manual

Move

To move elements

1. Select the element(s) to move.

2. Drag the 'ghost' to a valid location.

3. Drop the elements as required.

Cut

Use the cut command to remove selected elements and move them to the clipboard, replacing
the clipboard's current contents.

To cut elements

Select the element(s) to cut, then from the Edit menu, choose Cut (CTRL+X) or

click , on the Standard toolbar.

Copy

Use the copy command to copy selected elements and place them on the clipboard, replacing
the clipboard's current contents.

To copy elements

Select the element(s) to copy, then from the Edit menu, choose Copy (CTRL+C) or

click , on the Standard toolbar.
DS800 Development Suite 2.1 - Workbench 225

Paste

Use the Paste command to place the contents of the clipboard at the insertion point. Pasted
elements are automatically assigned sequentially numbered names.

To paste elements

1. From the Edit menu, choose Paste (CTRL+V).

2. Position the 'ghost'.

3. Click to paste at the new location
OR

1. On the Standard toolbar, click .

2. Position the 'ghost'.

3. Click to paste at the new location
226 DS800 Development Suite 2.1 - User Manual

Delete

To delete elements

Select the element(s), then from the Edit menu, choose Delete <Delete>.

Goto

The step / transition is selected in the level 1.

To go to a step or transition in the current SFC program

1. From the Edit menu, choose Goto.

2. In the Goto Step/Transition dialog, select the element from the list then click OK.
DS800 Development Suite 2.1 - Workbench 227

Level 2

The Level 2 window displays the coding for steps and transitions. For steps, the window
displays the defined action blocks. For transitions, the window displays the defined conditions.
You can also display a second level 2 window for another step or transition. When first coding
steps, you need to add action blocks.

To edit the Level 2

The Edit Level 2 option is available from the main menu and the contextual menu accessed by
right-clicking a step or transition.

1. Select the step or transition.

2. From the Edit menu, choose Edit Level 2.

3. To display a second level 2 window for another step or transition, do one of the
following:

Right-click an element (without selecting it), then choose Edit Level 2 in separate
window from the contextual menu
Drag to select an element, then press Ctrl+Enter
228 DS800 Development Suite 2.1 - User Manual

Coding Action Blocks for Steps

You attach action blocks to steps by adding them in the level 2 window, then defining their
name, comment (optional), type, and qualifier. Comments are displayed after the action block
name in the level 2 window for a step, for example, InitAction (* initialize all *). When
changing the type of an action block, the code zone must be empty. For details on actions
within steps, see page 404.

You can specify the ST, IL, or LD language for use as default for the level 2 programming
of steps.

The available action block types are the following:

Boo

IL

LD

SFC child

ST

Boo action blocks require the selection of a Boolean variable from the variable selector. These
action blocks take the name of the selected variable. SFC child action blocks require assigning
the name of the SFC child to the action block. You cannot program Boo or SFC-child action
blocks.

The available qualifiers for all action block types are None Store Action (N), Set (S), and
Reset (R). The qualifiers for IL, LD, and ST action block types also include the Pulse on
Deactivation Action (P0) and Pulse On Activation Action (P1).

To add action blocks to steps

You can add action blocks using the main menu, the SFC toolbar, or a contextual menu
accessed by right-clicking in the level 2 window.

1. In the SFC chart, select the step for which to add an action block, then from the Edit
menu choose Edit Level 2.
DS800 Development Suite 2.1 - Workbench 229

2. Click in the level 2 window, then from the Edit menu, choose Add Action Block or click

, from the SFC toolbar.

3. In the Add Action Block dialog, enter a name and comment (optional), then select a type
and qualifier for the action block. For the Boo type, the selected variable’s name is
automatically entered in the Name field. For the SFC child type, enter the name of the
SFC child in the Name field.

4. Click OK.

5. In the editor window, enter the code for the action block. You cannot program Boo and
SFC child action blocks.

To specify the default programming language for steps

From the Options menu, choose Set Default Level 2 Language, then Step, then the
desired programming language.
230 DS800 Development Suite 2.1 - User Manual

Coding Conditions for Transitions

You attach conditions to transitions by programming these in the level 2 window. Only one
condition can be attached to a transition. When defining conditions, you indicate a name, a
comment (optional), and the programming language (type). The available programming
languages for transitions are LD and ST. When changing the programming language of a
transition, the code zone must be empty. For details on conditions attached to transitions, see
page 410.

You can specify the ST or LD language for use as default for the level 2 programming of
transitions.

To attach conditions to transitions

1. In the SFC chart, select the transition for which to attach a condition, then from the Edit
menu choose Edit Level 2.

The level 2 window is displayed with the transition’s name and set for programming in
the ST language.

2. To change the name or programming language for the transition, double-click the level 2
window title bar, then in the Properties dialog, make the necessary changes and click OK.

To specify the default programming language for transitions

From the Options menu, choose Set Default Level 2 Language, then Transition, then the
desired programming language.
DS800 Development Suite 2.1 - Workbench 231

Moving Action Blocks Up or Down

You can change the order of the action blocks in a step. The displayed order is used during
execution.

To move an action block up

1. Select the step in the SFC chart, then from the Edit menu, choose Edit Level 2.

2. In the level 2 window, click the action block to move up, then do one of the following:

Right-click the action block, then from the contextual menu, choose Move Up.

On the SFC toolbar, click .

To move an action block down

1. Select the step in the SFC chart, then from the Edit menu, choose Edit Level 2.

2. In the level 2 window, click the action block to move up, then do one of the following:

Right-click the action block, then from the contextual menu, choose Move Down.

On the SFC toolbar, click .
232 DS800 Development Suite 2.1 - User Manual

Deleting an Action Block

You delete action blocks from a step from within the level 2 window.

To delete an action block

1. Select the step in the SFC chart, then from the Edit menu, choose Edit Level 2.

2. In the level 2 window, click the action block to delete, then do one of the following:

From the Edit menu, choose Delete Action Block.

From the SFC toolbar, click .

Renumbering Charts

Renumbering of SFC elements takes place from top to bottom, then from left to right.
Renumbering is only applied to steps and transitions having the standard default names (Sx and
Tx).

To renumber a chart

From the Edit menu, choose Renumber or click , on the SFC toolbar.

Before Renumbering After Renumbering
DS800 Development Suite 2.1 - Workbench 233

FC Editor
 The FC (Flow Chart) editor is launched automatically when an FC program is edited

from the Workbench.

Note: Before creating new programs, you need to close the Dictionary.

To subsequently open another program, from the FC editor

From the File menu, choose Open (CTRL+O) or click , on the Standard toolbar.

Appearance

Title Bar
Menu Bar
Toolbar

Workspace

Output
Window

Status Bar
DS800 Development Suite 2.1 - Workbench 235

Menu Bar

Some options are available as keyboard commands.

File Open Ctrl+O opens an existing POU
Close Alt+F4 closes the POU
Save Ctrl+S saves the current POU
Build Program Alt+F3 builds the code for the current POU
Stop Build Program stops the build in progress for the

current POU
Dictionary Ctrl+D opens the dictionary filtered for the

current POU
Description Ctrl+K accesses the program description
Print Ctrl+P prints the current POU
Exit Ctrl+Q leaves the language editor

Edit Undo Ctrl+Z cancels the last action
Redo Ctrl+Y restores the last cancelled action
Cut Ctrl+X removes the selected item and places

it on clipboard
Copy Ctrl+C takes a copy of the selected item and

places it on the clipboard
Paste Ctrl+V inserts the contents of the clipboard

into the selected item
Delete DEL removes the selected item
Find / Replace in POUs Ctrl+F finds and replaces text in a project, a

configuration, a resource, or a POU
Go to Ctrl+G jumps to the indicated element

number
Renumber renumbers all elements in the chart

in sequential order
Edit Level 2 Enter opens the level 2 programming for

an element
236 DS800 Development Suite 2.1 - User Manual

Edit
(Continued)

Edit Level 2 in Separate
Window

Ctrl+Enter opens the level 2 programming for
an element in a separate window

Insert/Set Identifier Ctrl+I accesses the Select Variable dialog
box where you can insert a variable
in the current POU

Insert New Rung Ctrl+R inserts a rung
Change Yes/No Direction changes the direction of an

IF-THEN-ELSE structure
Tools Browser Ctrl+B accesses the Cross References

browser listing and localizing all
instances of global variables and
I/Os declared in a project

Debug Debug Alt+F6 switches the application to debug
mode

Simulation Alt+F7 switches the application to
simulation mode

Debug FB F11 opens a selected function block in
the language editor with its
instantiation values

Options Set Level 2 Language sets the programming language used
for level 2 programming. Possible
languages are LD, ST, and IL.

Layout accesses the Layout editor where
you specify options such as the
toolbars to display, the
magnification of the workspace area,
and other level 2 options

Customize Ctrl+U accesses the customization
properties for Workbench views and
editors

Target/Code Settings accesses the compilation options for
the POU
DS800 Development Suite 2.1 - Workbench 237

Window Cascade sets the different views of the project
to appear in a cascading manner

Tile sets the different views of the project
to appear in a tiled manner

Split splits the workspace into two
simultaneous views

Show Output Window Ctrl+4 displays the output window below
the workspace

Clear Output Window clears the contents of the output
window

Help Contents F1 accesses the online help
Search Help On... not currently supported
About displays product and version

information
Support Info not currently supported
238 DS800 Development Suite 2.1 - User Manual

Working with Flow Charts

Flow Chart programs are created in a resource in the link architecture view of the Workbench.
After having opened the program, you can create / insert new elements in the Level 1 (diagram)
or modify / move existing elements.

Every Flow Chart must have a BEGIN and an END, these are automatically inserted when a
new Flow Chart is created from the link architecture view. These elements can be moved, but
not deleted.

Level 2 programming of each action and test using ST, LD or IL syntax is also performed
within the Flow Chart editor.

To save the current flow chart

From the File menu, choose Save (CTRL+S) or click , on the Standard toolbar.

From the editor, you can:

Build the current program code to check your program and prepare the code for building
the resource code.

Print your program.

Launch the Dictionary.

To include a description documenting your program

From the File menu, choose Description.
DS800 Development Suite 2.1 - Workbench 239

Flow Chart Elements

Most common operations are performed with the mouse: insertion, selection and drag and drop
of elements. Moving an element also moves all the elements directly linked below. Elements
are individually re-sizable.

Action

 Insert FC action creates a new action each time the mouse button is pressed.
Actions are automatically linked by the Flow Chart editor. An action number is automatically
generated, sequentially for each new action. For details about FC actions, see page 420.

Test

 Insert a test to branch between sections of the program that are executed
conditionally. Double-clicking the Yes or No text, swaps their position. For details about FC
conditions, see page 420.
240 DS800 Development Suite 2.1 - User Manual

IF-THEN-ELSE

 This generates a standard IF-THEN-ELSE structure in the Flow Chart. Examples
of Flow Chart complex structures are available on page 425.

Actions can be added on both Branches before the Connection.

Example
DS800 Development Suite 2.1 - Workbench 241

DO-WHILE

 This generates a standard DO-WHILE structure in the Flow Chart. Examples of
Flow Chart complex structures are available on page 425.

Note: The difference between this structure and the WHILE-DO is the location of the action(s)
to repeat.

WHILE-DO

 This generates a standard WHILE-DO structure in the Flow Chart. The difference
between this structure and the DO-WHILE is the location of the action(s) to repeat. Examples
of Flow Chart complex structures are available on page 425.
242 DS800 Development Suite 2.1 - User Manual

Flow

 A Flow indicates a link between two elements. For details about FC flow links, see
page 419.

To insert a flow

1. On the Flow Chart Tools toolbar, click .

2. Click on the elements to flow from.

3. Drag the link to a point on another link or a non-connected element.

4. Drop the Flow link.
DS800 Development Suite 2.1 - Workbench 243

Connector

 A Connector is used to link to an element, without specifically 'drawing' the
link.For details about FC connectors, see page 424.

The Connect To Dialog Box is automatically displayed:

1. Expand (or collapse) sections in the tree by clicking on the (or) Buttons.

2. Select an element then click OK.

I/O Specific

 An I/O Specific action is one that contains hardware dependent code, they must
be re-written for different I/Os. For details about FC I/O specific actions, see page 423.
244 DS800 Development Suite 2.1 - User Manual

Comment

 Comments are free format text inserted anywhere in the Flow Chart for
documentation puposes only. For details about FC comments, see page 424.

Sub-Program

 When inserting a Sub-program symbol, a dialog box is displayed to select the
Sub-program from the list within the current program. For details about FC sub-programs, see
page 422.

Note: Double-clicking on a Sub-program opens the selection dialog box to change the
sub-program reference
DS800 Development Suite 2.1 - Workbench 245

Managing Elements

Flow Chart elements can be cut, copied and pasted within a Flow Chart or, if more than one
Flow Chart is open, between different Flow Charts. When an element is moved, removed or
added, the chart is automatically refreshed, elements are placed according to the grid and links
are redrawn.

Select

 To Select an item, simply click on it with the left mouse-button. Multiple selections
are made by clicking a blank area of the workspace then drag and drop until the required items
are hightlighted. The shift key, combined with a mouse click, selects multiple, distant,
elements.
246 DS800 Development Suite 2.1 - User Manual

Cut

Use the cut command to remove selected elements and move them to the clipboard, replacing
the clipboard's current contents.

To cut elements

1. Select the element(s) to cut.

2. From the Edit menu, choose Cut (CTRL+X).

OR

1. Select the element(s) to cut.

2. On the Standard toolbar, click .

Copy

Use the copy command to copy selected elements and place them on the clipboard, replacing
the clipboard's current contents.

To copy elements

1. Select the element(s) to copy.

2. From the Edit menu, choose Copy (CTRL+C).

OR

1. Select the element(s) to copy.

2. On the Standard toolbar, click .
DS800 Development Suite 2.1 - Workbench 247

Paste

Use the Paste command to place the contents of the clipboard at the insertion point. Any
existing selected items are automatically unselected.

To paste elements

1. From the Edit menu, choose Paste (CTRL+V) or click , on the Standard toolbar.

2. Position the 'ghost'.

3. Click to paste at the new location

Delete

To delete elements

1. Select the element(s).

2. From the Edit menu, choose Delete OR press <Delete>.

Move

All elements linked directly below a 'moved' element are automatically moved and their flow
links re-drawn.

To move elements

1. Select the element(s) to move.

2. Drag the 'ghost' to a valid location.

3. Drop the elements as required.
248 DS800 Development Suite 2.1 - User Manual

GoTo

To go to a symbol in the current FC program

1. From the Edit menu, choose Goto.

The Goto dialog box appears:

2. Select the element from the list then click OK.

The Action / Test Level 1 is selected.

Renumber

 Two elements cannot have the same logical number within one Flow Chart. In this
case, a renumber facility is provided to automatically generate sequential numbers. The order
in which the chart is renumbered is based on each element's position, from top to bottom, then
from left to right.
DS800 Development Suite 2.1 - Workbench 249

Level 2

To view the Level 2 window of an FC Element (action or test)

1. Select an FC element.

2. Do one of the following:

From the Edit menu, choose Edit Level 2.

Double-click an FC element.

Note: The FC Level 2 is also shown within the corresponding element representation in the
Level 1 Workspace.

To view the Level 2 of another element, follow the instructions above, in which case the new
Level 2 will replace the one displayed, or open the new Level 2 in a separate window.
250 DS800 Development Suite 2.1 - User Manual

To open the Level 2 in a separate window

1. Select an FC element.

2. Do one of the following:

From the Edit menu, choose Edit Level 2 in separate window.

Press <Ctrl+Return>.

You can close level 2 windows by clicking on the close icon on the right of their title bar.

Level 2 Window

When the Edit Level 2 command is used:

If no Level 2 window exists, a level 2 window is opened.

If one level 2 window is already open, it is replaced by the level 2 of the current element.

(The Level 2 of the FC window is sub-divisible).

If there are two level 2 windows, the level 2 window that had the focus is replaced by the
level 2 of the currently selected element.

A maximum of two separate windows (elements) can be opened for simultaneous editing.
DS800 Development Suite 2.1 - Workbench 251

Edit the Level 2

ST is the default language of the level 2. You can change the language to LD or IL with the list
displayed on the right of the title bar of the level 2 window.

You can set the default language for the level 2 programming from the menu by choosing
Options, then Set Level 2 Language, then the desired default language.

In a test only one condition can be written; In the case of editing in LD, there is only one
coil without any variable attached. The coil value corresponds to the value of the test.

In a test, no pulse is permitted, i.e. neither positive, nor negative contacts can be used.

Related Topics
Multi-language Editor
252 DS800 Development Suite 2.1 - User Manual

Multi-language Editor
 The Multi-language editor has editing functions for graphical and textual languages.

These editing functions are automatically launched when an FBD, ST, IL, or LD program is
opened from the Workbench.

The editor only allows new elements to be inserted if the current position is valid. Use the
mouse or cursor keys to move the current position around within the Workspace.

From the editor, you can perform several tasks:

Build the current Program code (to check your Program and prepare the code for building
the Resource code)

Print programs

Launch the Dictionary

Note: Before creating new programs, you need to close the Dictionary.

When printing programs, the fonts used in the diagram are the same as for the editor. The FBD
and LD diagrams are scaled to fit the width of the printed page format (portrait or landscape).
To adjust the font for printed diagrams, you need to modify the font used for the editor.

To subsequently open another program, from the Multi-language editor

From the File menu, choose Open (CTRL+O).

To add a description to a program

From the File menu, choose Description.
DS800 Development Suite 2.1 - Workbench 253

Appearance

Note: The Language toolbar contains tools for LD, ST, IL, or FBD.

Workspace

You can arrange the workspace of the FBD editor to show guideline areas. These areas divide
the workspace into logical sections: Inputs, From, Logics, To, and Outputs. Elements move
independently of the area guidelines. You can choose to hide individual areas and resize the
areas. You can also choose to restore the default area sizes.

When moving the cursor across the FBD or LD editor, the cursor’s coordinates are displayed
in the status bar. These coordinates refer to grid areas. For instance, the top-leftmost grid area
is coordinate (0,0) and the grid area to its immediate right is coordinate (1,0). The grid
coordinates remain the same whether the zoom or cell width changes.

Title Bar
Menu Bar
Toolbars

Workspace
with or
without

Guidelines

Output
Window

Status Bar
254 DS800 Development Suite 2.1 - User Manual

To manage the guidelines

You access the Areas layout options window from the menu or by right-clicking an
area titlebar.

1. To show or hide the guideline areas, from the Tools menu, choose Show/Hide Areas,
then in the areas layout window, check the areas to display.

2. To resize an area, drag the boundary on the left or right side of the heading until the area
is the width you want.

3. To return the area guidelines to their initial widths, click Restore Default Area Sizes.
DS800 Development Suite 2.1 - Workbench 255

Menu Bar

The options available differ depending on the POU’s programming language. Some options are
available as keyboard commands.

File Open Ctrl+O opens an existing POU
Close Alt+F4 closes the POU
Save Ctrl+S saves the current POU
Build Program Alt+F3 builds the code for the current POU
Stop Build Program stops to build in progress for the

current POU
Dictionary Ctrl+D opens the dictionary filtered for the

current POU
Description Ctrl+K accesses the program description
Print Ctrl+P prints the current POU
Exit Ctrl+Q leaves the language editor

Edit Undo Ctrl+Z cancels the last action
Redo Ctrl+Y restores the last cancelled action
Cut Ctrl+X removes the selected item and places

it on clipboard
Copy Ctrl+C takes a copy of the selected item and

places it on the clipboard
Paste Ctrl+V inserts the contents of the clipboard

into the selected item
Special Paste places the contents of the clipboard

in a specified position
Delete DEL removes the selected item
Select All Ctrl+A selects all items in the active view
Find / Replace in POUs Ctrl+F finds and replaces text in a project, a

configuration, a resource, or a POU
Find Matching Name Alt+F2 finds and selects matching variable

names in the current POU
256 DS800 Development Suite 2.1 - User Manual

Edit
(Continued)

Find Matching Coil Alt+F5 finds and selects matching variable
names for coils in the current POU

Go to Line Ctrl+G jumps to the indicated line number
Insert/Set Identifier Ctrl+I accesses the Select Variable dialog

box where you can insert a variable
in the current POU

Insert/Set Block Ctrl+R accesses the list of all available
functions and function blocks to
insert in the current POU

Insert Rung Ctrl+R inserts a rung
Change Coil/Contact Type Space changes the selected coil or contact

type
Insert Comment inserts a comment above a rung in

LD diagrams
Tools Browser Ctrl+B accesses the Cross References

browser listing and localizing all
instances of global variables and
I/Os declared in a project

Show/Hide Execution Order Ctrl+W shows or hides the execution order
of FBD diagrams

Show/Hide Areas accesses the areas layout window
where you check the areas to display
in the FBD editor workspace

Show/Hide Output Values shows or hides the output values of
blocks (operators, functions, and
function blocks) in the FBD and
LD editors, while in debug or
simulation mode

Debug Debug Alt+F6 switches the application to debug
mode

Simulation Alt+F7 switches the application to
simulation mode

Spy Selection adds a selected variable to the
Spy List while in Debug mode
DS800 Development Suite 2.1 - Workbench 257

Debug
(Continued)

Debug FB F11 opens a selected function block in
the language editor with its
instantiation values

Toggle Breakpoint F10 sets or removes a breakpoint for
step-by-step mode

Breakpoints removes a breakpoint for
step-by-step mode

Real Time switches the application to real-time
mode

Cycle to Cycle switches the application to
cycle-to-cycle mode

Execute One Cycle Alt+F10 executes one cycle
Step Alt+F8 executes the current line then steps

to the next line
Step Into Alt+F9 executes the current line then steps

into the next line
Show Current Step shows the current step

Options Layout accesses the Layout editor where
you specify which toolbars to
display and the magnification of the
workspace area

Customize Ctrl+U accesses the customization
properties for Workbench views and
editors as well as working
preferences

Tab Setting sets the number of spaces for the Tab
character

Show Coils/Contacts sets the display of the name, alias, or
name and alias for coils and contacts

Target/Code Settings accesses the compilation options for
the POU

Auto Input assigns a variable name or block
when inserting elements
258 DS800 Development Suite 2.1 - User Manual

Options
(Continued)

Manual Input assigns a variable name or block at
any time

Numerical Display sets the numerical display of values
Show I/O Variable Comments in the FBD editor, displays

comments for I/O variables, entered
in the dictionary

Hide I/O variable Comments in the FBD editor, hides comments
for I/O variables

Show Internal Variable
Comments

displays comments for I/O variables,
entered in the dictionary

Hide Internal Variable
Comments

hides comments for I/O variables

Window Cascade sets the different views of the project
to appear in a cascading manner

Tile sets the different views of the project
to appear in a tiled manner

Show Spy List accesses the Spy List window where
you specify variables whose values
are displayed while in test mode

Show Output Window Ctrl+4 displays the output window below
the workspace

Clear Output Window clears the contents of the output
window

Show Call Stack displays the call stack window
Help Contents F1 accesses the online help

Search Help On... not currently supported
About displays product and version

information
Support Info not currently supported
DS800 Development Suite 2.1 - Workbench 259

Multi-Language Elements

The language used for the Program currently edited determines the elements that can be
inserted. This is reflected in the menu commands and toolbar buttons.

ST/IL Elements

LD Elements

FBD Elements

Note: Arrays must be declared in the Dictionary View before inserting them in Functional
Block Diagrams (FBD).

ST/IL Elements

The main keywords of the ST or IL language are available in the Language toolbar. When
entering ST or IL syntax, basic coding is black while other items are displayed using color:

Keywords are pink

Numbers are brown

Comments are green

Inserting a variable name can be done directly by typing it or by using the Insert Identifier
command from the Edit menu. To insert block instances or to get help on a block, use the Insert
Block command from the Edit menu.
260 DS800 Development Suite 2.1 - User Manual

LD Elements

When editing an LD POU, you can place elements by using the keyboard. Keyboard shortcuts
are indicated on the LD toolbar. Alternatively, use the mouse to select the element to insert
from the toolbar. The element is inserted at the current position in the diagram.

The current position is the cell that is marked in black.

To attach a variable to a coil or a contact, double-click on it or press <Return> when it is
selected. The Select Variable dialog box is displayed. You can also use the Insert identifier

button on the Standard toolbar.

To attach a block type to a block, double-click on it or press <Return> when it is selected.

The Select Block dialog box is displayed. You can also use the Insert Identifier button
on the Standard toolbar.

If you want to enter a variable name or block type when you place the element, check "Auto
input" in the Option menu. If you want to do it at a later time, uncheck this option.

Contact on the Left

 The contact is inserted to the left of the current position (highlighted in black).

Note: Pressing F2 on the keyboard has the same effect.

Contact on the Right

 The contact is inserted to the right of the current position (highlighted in black).

Note: Pressing F3 on the keyboard has the same effect.
DS800 Development Suite 2.1 - Workbench 261

Parallel Contact

 Inserts a contact, parallel to the current selection.

Note: Pressing F4 on the keyboard has the same effect.

Coil

 Inserts a coil on the current rung.

Note: Pressing F5 on the keyboard has the same effect.

Block on the Left

 The block is inserted to the left of the current position (highlighted in black).

Note: Pressing F6 on the keyboard has the same effect.

Block on the Right

 The block is inserted to the right of the current position (highlighted in black).

Note: Pressing F7 on the keyboard has the same effect.

Parallel Block

 Inserts a block, parallel to the current selection.

Note: Pressing F8 on the keyboard has the same effect.

Jump

 Inserts a jump to a label.

Note: Pressing F9 on the keyboard has the same effect.
262 DS800 Development Suite 2.1 - User Manual

Label

In Ladder, the label indentifies a rung.

To enter a label identifying a rung

1. Press Enter or double-click the header-cell of the rung

2. In the dialog box, enter a name for the label.

3. Press OK to confirm.

Return

 Inserts a return symbol.

Note: Pressing Shift+F9 on the keyboard has the same effect.

Change Coil/Contact Type

 The available types of coils and contacts are listed in the Language Reference.

For LD elements in FBD diagrams, you can also change the type of contact or coil.

To change the type of a coil or a contact

1. Select the coil or contact.

2. Do one of the following:

From the Edit menu, choose Change coil/contact type.

On the LD toolbar, click .

Press the <space bar>.
DS800 Development Suite 2.1 - Workbench 263

Insert New Rung

To insert a rung between two existing rungs

From the Edit menu, choose Insert New Rung.

The new rung is inserted above the rung that contains at least one selected element. The
rung is composed of one contact and one coil.

When you press any button on the LD toolbar at the end of the diagram, a new rung is created.

Other Operations

To insert a link

1. Select the desired part of the rung by clicking on it.

2. On the right hand side of the LD toolbar, click .

The new link is inserted to the left of the position highlighted in black.

To align coils on all rungs

"justifies" the coils on each rung so that coils are aligned vertically on the right.
264 DS800 Development Suite 2.1 - User Manual

FBD Elements

When programming in FBD, choose the element to be inserted from the FBD toolbar and place
it in the Program Workspace.

Place all elements (blocks and variables), then link them by using links. An element is
automatically linked to another element if it is placed next to it such that their connectors meet.
When wiring intersects or diverges, the junction is indicated by a dot.

Before using arrays in FBD, these must be declared in the Dictionary View. Ladder elements
are also available for use in FBD programs.

To show the order of execution of an FBD program

You can show the order of execution in the form of numerical tags for the following elements
in an FBD program: coils, returns, jumps, instances of function blocks (declared or not), and
variables where a value is assigned in the program. When the order cannot be determined, the
tags display question marks (?). You can perform this task from the menu bar, the toolbar, or
keyboard shortcut (Ctrl+W).

From the Tools menu, choose Show/Hide Execution Order or click on the

Standard toolbar.

To assign a name to a variable or block graphic symbol

Select the graphic symbol, then on the Standard toolbar, click or select the graphic
symbol, then double-click it.

To assign variable names or block types when placing an element

In the Options menu, choose Auto Input.

To assign variable names or block types at any time

In the Options menu, choose Manual Input.
DS800 Development Suite 2.1 - Workbench 265

Variable

 Accesses the variable selector enabling the insertion of a variable or constant into
the workspace.

To connect a new symbol to an existing one (another variable, a block input, or a block output),
keep the mouse button depressed (the cursor becomes a "ghost" symbol) and drag the element
until its connecting line on the left (or right) overlaps an existing connecting point. When the
mouse is released, the new symbol is automatically created and linked.

For input and output variables, you can choose to display comments entered in the dictionary
directly below the variable by choosing Show I/O Variable Comments from the Options
menu. You hide comments by choosing Hide I/O Variable Comments. When moving the
cursor over a selected variable, its data type and hidden comment is displayed as a tooltip.

When entering variable blocks, you can choose to have the Workbench automatically prompt
you to enter a constant or select a variable from the Select Variable dialog by choosing Auto
Input from the Options menu. You can also choose to enter variable names manually by
choosing Manual Input.

You can resize variable blocks.

Drag to place the element: Release the mouse button. The new
variable is automatically connected:
266 DS800 Development Suite 2.1 - User Manual

Function Block

 Accesses the block selector enabling the insertion of a block into the workspace.
Blocks can be function blocks ("RAS device" or IEC 61131), functions ("RAS device" or IEC
61131) or operators.

Inputs and outputs can be connected to variables, contacts or coils, or other block inputs or
outputs. Formal parameter short names are displayed inside the block.

When moving the cursor over a selected function block or instance of a function block, its
comment is displayed as a tooltip. Furthermore, when moving over a parameter, its data type
and comment is displayed as a tooltip.

You can resize function blocks.

Link

 Connection links are drawn between elements in the diagram.

 Negation connection links are equivalent to placing a NOT block on a direct link.

Both direct links and negated links are always drawn from an output to an input point (in the
direction of the data flow).

Corner

 User-defined points may be inserted in the diagram that determine the routing of
links. First, place a corner, then add links to and from this point. If no corner is placed, the
editor uses a default routing algorithm.
DS800 Development Suite 2.1 - Workbench 267

Jump

 Inserts a jump in the workspace.

A dialog box containing a list of labels to jump to is displayed. Alternatively, by entering a new
name in the edit box, then clicking OK, a Jump is created to a new Label (the corresponding
Label symbol must then be placed in the diagram).

A Jump symbol must be linked to a Boolean point. When this Boolean (left) connection is
TRUE, the execution of the diagram Jumps directly to the target Label.

Note: Backward jumps may lead to a blocking of the PLC loop in some cases.

Label

 Inserts a label in the workspace.

The Jump Label dialog box is displayed to enter and create a Label name. Alternatively, if a
Jump symbol was previously inserted, and a new Label name was entered in the edit box, the
Label name specified when creating that Jump can be chosen from the list.

Labels can be placed anywhere in an FBD diagram. They are used as a target for Jump
instructions, to change the execution order of the diagram. Labels are not connected to other
elements.

Note: It is highly recommended to place Labels on the left of the diagram in order to increase
diagram readability.

For more details about labels, see page 431.
268 DS800 Development Suite 2.1 - User Manual

Return

 Inserts a return symbol in the workspace.

If the connection line (to the left of the Return symbol) has the Boolean state TRUE, the
Program ends - no further part of the diagram is executed.

No connection can be put on the right of a RETURN symbol.

For more details about return statements, see page 431.
DS800 Development Suite 2.1 - Workbench 269

LD Elements

The LD elements available for use in Function Block Diagrams are the following:

 Left Power Bar

 Contacts of the Ladder Diagram language must be connected, on the left, to a left
power bar which represents the initial "TRUE" state. The editor also allows the connection of
any Boolean symbol to a left power bar.

You can resize the height of a left power bar.

 Contacts

 A contact can be connected, on the left, to a left power bar or another contact. A
contact can be connected, on the right, to any other Boolean point; another contact, a coil, a
Boolean input of a block...

By default, a direct contact is inserted. To change the contact type, select the contact and press
the <spacebar>. Repeatedly pressing the <spacebar> cycles between all contact types.

 LD Vertical "OR" Connection

 LD vertical connection accepts several connections on the left and several
connections on the right. Each connection on the right is equal to the OR combination of the
connections on the left.

You can resize the height of an OR Connection.
270 DS800 Development Suite 2.1 - User Manual

 Coils

A coil represents an Action. It must be connected on the left to a Boolean symbol,
such as a contact or the Boolean output of a block. By default, a coil is inserted with a small
Right Power Bar. If a link is inserted, from the right of a coil to a Right Power Bar, this small
Bar is removed.

Before linking to a Right Power Bar:

After linking to a Right Power Bar:

By default, a direct coil is inserted. To change the coil type, select the coil and press the
<spacebar>. Repeatedly pressing the <spacebar> cycles between the all coil types.

 Right Power Bar

 Coils may be connected, on the right, to a right power bar. This is optional. If a coil
is not connected on the right, a small right power bar is included. For details about multiple
connections, see page 437. For details about basic LD contacts and coils, see page 439.

You can resize the height of a right power bar.
DS800 Development Suite 2.1 - Workbench 271

Comment

 Press this button, on the Language toolbar, then click in the Workspace to insert a
comment. Comments are free format text inserted anywhere in the FBD POU, for
documentation puposes only.

After entering text, click elsewhere in the Workspace to 'validate' the comment.

You can also resize comments.
272 DS800 Development Suite 2.1 - User Manual

Managing Elements

Programming elements can be cut, copied and pasted within a program or, if more than one is
open, between different programs. When an element is moved, removed or added, the chart is
automatically refreshed, elements are placed according to the grid and links are redrawn.

Select

 Selections can contain text, graphics or both.

To make a selection

Click the cursor on an element to make / change a selection.

To select multiple elements in LD or ST or IL

Drag the cursor to highlight multiple elements in the workspace.

OR

Hold down SHIFT then use the cursor keys to extend the current selection.

To select multiple elements in FBD

Click in a blank area of the workspace then drag to enclose the required elements.

OR

Hold down CTRL or SHIFT, then use the mouse, to add to the current selection.

Note: In the FBD editor, ESC removes the current selection. If the editor is in 'element
insertion' mode, ESC returns to 'select' mode.
DS800 Development Suite 2.1 - Workbench 273

Resize

The dimensions of individual programming elements can be changed. Resizing elements in the
Multi-language editor is only valid for FBD POUs.

To resize an element

1. Select the element to resize.

2. Click and hold the cursor over on the edge of the selected element.

3. Drag the edge to the desired position.

The cursor changes during a resize.

4. Release the mouse button to complete the operation.

Note: Elements cannot be resized so that they overlap other elements, you may need to move
elements prior to resizing.

Undo/Redo

The Multi-language editor provides a multi-level Undo / Redo facility (limited to only one
action for ST and IL).

To Undo (Redo) the previous action

From the Edit menu, choose Undo (Redo) or click or , on the Standard
toolbar.
274 DS800 Development Suite 2.1 - User Manual

Move

Moving elements in the Multi-language editor is only valid for FBD IEC 61131 POUs. You
can drag individual elements to a new position in the workspace without first selecting them.
However, to drag multiple elements, you need to select each element.

To move elements

To move a single element, click the element and while holding down the mouse drag the
element to its new position, then release the mouse.

To move multiple elements, select all elements and while holding down the mouse drag
the elements to their new position, then release the mouse.

Cut

Use the Cut command to remove selected Elements and move them to the clipboard, replacing
the clipboard's current contents.

To cut elements

1. Select the element(s) to cut.

2. From the Edit menu, choose Cut (CTRL+X).

OR

1. Select the element(s) to cut.

2. On the Standard toolbar, click .
DS800 Development Suite 2.1 - Workbench 275

Copy

Use the Copy command to copy selected elements and place them on the clipboard, replacing
the clipboard's current contents.

To copy elements

1. Select the element(s) to copy.

2. From the Edit menu, choose Copy (CTRL+C).

OR

1. Select the element(s) to copy.

2. On the Standard toolbar, click .

Paste

Use the Paste command to place the contents of the clipboard at the insertion point.

For ST and IL, if text is selected before a paste, it is replaced by the contents of the
clipboard.

For LD, the elements on the clipboard are pasted in parallel with selected elements.
To paste before or after a selection, use the Paste Special command. The Paste
command may fail when placing a coil in parallel with a contact or a contact in parallel
with a coil

For FBD, using the ghost (keeping the mouse button depressed) enables moving pasted
elements to the desired position.

To paste elements

From the Edit menu, choose Paste (CTRL+V) or click , on the Standard toolbar.
276 DS800 Development Suite 2.1 - User Manual

Paste Special

This command is only valid for LD POUs. The Paste Special command places the contents of
the clipboard in a specified position.

Notes:

The standard Paste command has the same effect as a Parallel Paste Special command.

The Paste command may fail because: a coil can not be put in parallel with a contact,or
a contact can not be put in parallel with a coil.

To paste elements

1. From the Edit menu, choose Paste Special.

A dialog box appears, to choose the paste location:

2. Choose the desired paste location.

3. Click OK.

Delete

To delete elements

1. Select the element(s).

2. From the Edit menu, choose Delete.
DS800 Development Suite 2.1 - Workbench 277

Select All

All the elements in the current Program are simultaneously selected with the Select All
command.

To Select All elements

From the Edit menu, choose Select All (CTRL+A)

Find Matching Name

For LD only. Find Matching Name finds and selects matched variable names within the current
POU. You can also find matching names for function blocks or rung labels.

To find a matching variable name

1. Select a variable with the name to match.

2. To select the next element with the same variable name as the current selection,
press <ALT+F2>.

Find Matching Coil

For LD only. Find Matching Coil finds and selects matched variable names within the current
POU. This feature is mainly used while in debug mode, to quickly find rungs forcing
suspicious variables.

To find a matching coil

1. Select a variable name to match.

2. To select the next coil with the same variable name as the current selection,
press <ALT+F5>.
278 DS800 Development Suite 2.1 - User Manual

Go to Line

The Go To Line command is only valid when editing ST and IL POUs. In the Multi-language
editor, you access it from the File menu by choosing Go To Line.

You enter a line number, for the current POU, indicating the line to which to move the cursor.

Display/Hide Comments

You specify displaying or hiding variable comments at the language editor level. However, you
can also choose to display or hide individual variable comments. For instance, you can choose
to display all internal variable comments, then hide the comment for a specific internal
variable. You can also choose to hide all I/O variable comments, then display the comment for
a specific I/O variable. The display/hide setting for individual comments overrides the
display/hide setting at the editor level (for either I/O variable or internal variable comments).

To display/hide comments defined for I/O variables

You display or hide all comments defined for I/O variables at the editor level from the
main menu.

To display comments for I/O variables, from the Options menu, choose Show I/O
Variable Comments.

To hide comments for I/O variables, from the Options menu, choose Hide I/O Variable
Comments.

To display/hide comments defined for internal variables

You display or hide all comments defined for internal variables at the editor level from the
main menu.

To display comments for internal variables, from the Options menu, choose Show
Internal Variable Comments.

To hide comments for internal variables, from the Options menu, choose Hide Internal
Variable Comments.
DS800 Development Suite 2.1 - Workbench 279

To display/hide individual comments defined for variables

You display or hide individual comments defined for I/O variables and internal variables at the
comment level from a contextual menu. You can also reset individual variable comments to
use the display/hide setting defined for a given type of variable comments.

To display the variable comment, select the comment, then right-click and choose
Show Comment.

To hide the variable comment, select the comment, then right-click and choose
Hide Comment.

To set the variable comment to use the display/hide setting specified for the variable type,
select the comment, then right-click and choose Reset Default.
280 DS800 Development Suite 2.1 - User Manual

Libraries
Libraries are special projects made up of configurations and resources in which you define
functions and function blocks for reuse throughout DS800 Development Suite projects.
Libraries also enable you to modularize projects and to isolate functions and function blocks
so that these can be validated separately.

Functions and function blocks can be written using the IEC 61131 languages (FBD, LD, ST,
or IL). Libraries can also contain POUs, global variable definitions, and any other item used
for testing functions and function blocks.

Before using libraries, you need to create them.

Creating Libraries
You create libraries much the same as you create projects. You base a library on a template
then develop its elements, i.e., configurations, resources, programs, functions, and function
blocks. Libraries are stored in the same location as projects and are also MS-Access database
(.MDB) files:

<root directory>/prj/<library name>/PRJlibrary.MDB

Three templates are available for use with libraries:

LibSingleROC800 and LibSingleFB107, containing one resource in one configuration

LibMultipleROC800, containing two resources in two different configurations linked by
an Ethernet network
DS800 Development Suite 2.1 - Workbench 281

Furthermore, the target type of a library resource affects the usability of functions and function
blocks throughout projects using the library. Functions and function blocks can only be used
in resources referring to the same target type except when they use the SIMULATOR target
type. When library resources use the SIMULATOR target type, all of their functions and
function blocks can be used in any project resource regardless of its target type. Below are
examples of possible combinations of resource target types:

Library functions and function blocks must have unique names. When they have the same
names as those defined in a project in which they are used, only those from the project will be
recognized. Furthermore, you do not need to compile functions and function blocks in the
library before using them in projects. They are compiled in the calling project space, in order
to take care of the compiling options defined for the project.

To create a library

1. From the File menu, choose New Project\Library.

2. Enter a name for the library.

3. Select a template.

4. Click OK.

Using Libraries in a Project
Projects can use functions and function blocks from one or more libraries. You need to create
libraries before using them. Furthermore, you need to define a project’s dependencies, i.e., the
set of libraries the project will use, before using a library’s defined elements. A project can
depend on more than one library.

You can also add dependencies to third-party library projects. However, to enable their use,
you need to license third-party library projects. Otherwise, their dependency appears invalid.

Target in library Target in project Usage

SIMULATOR ROC809 OK
ROC809 ROC809 OK
282 DS800 Development Suite 2.1 - User Manual

Library functions and function blocks can refer to some global defined words or data types
defined in the library. In such a case, these defined words and data types from the library can
also be used in the project.

A library cannot use functions and function blocks from another library. In other words, you
cannot define external dependencies for a library. However, a function or function block from
a library can call other functions or function blocks from the same library. Furthermore,
functions or function blocks from libraries can call 'C' written functions and function blocks
defined for the corresponding target.

All functions and function blocks within a project, including those coming from libraries, must
have unique names. When more than one uses the same name, the following conditions apply:

If the functions or function blocks come from different libraries, warnings are generated
at compilation and only the first definition is recognized

If one function or function block is defined in the project and the other from a library,
only the one defined in the project is recognized. The other is ignored.

Furthermore, when the same name is used for several types or several defined words having
different definitions in a project and attached libraries, an error is generated at compilation
time. However, when a data type or defined word is defined several times with the same
contents or definition, a warning is reported but the project can be compiled.
DS800 Development Suite 2.1 - Workbench 283

You specify a project’s dependencies in the Add/Remove Dependencies window. This window
is divided into the Dependencies list and the Information and Status areas. The Dependencies
list displays the full pathnames of all libraries used by the project. The Information area shows
the description of the library currently selected in the Dependencies list. The Status area shows
the status of the library.

Once a project’s dependencies are set up, you can access the functions and function blocks
contained in the specified libraries from the Select Blocks dialog box, available in the ST, LD,
and FBD editors. In this dialog box, library items appear with the IFB or IFU types and the
source library’s path. The IFB type indicates an IEC Function Block and the IFU type indicates
an IEC Function.
284 DS800 Development Suite 2.1 - User Manual

In the dictionary, when declaring an instance of a function block from a library, the pathname
of the library is also displayed together with the function block’s type:

When a project has dependencies, an icon indicating the status of its dependencies appears at
the bottom right-hand corner of both the hardware and link architecture views:

The status of the project’s dependencies is OK

The project dependencies refer to an invalid library. This can happen
if a library has been removed, renamed or moved.
DS800 Development Suite 2.1 - Workbench 285

When a project has a dependency on an invalid library, to retain all associations between the
project and library upon renaming or moving, you need to reestablish the library path. Upon
deleting a library, all associations are broken.

To define a project’s dependencies

You can access the Add/Remove Dependencies window from the menu or the main toolbar.
You can only define the dependencies for the currently opened project.

1. From the Tools menu, choose Add/Remove Dependencies.

The Add/Remove Dependencies window appears.

2. To add a new library to the list of dependencies:

a) Click Add.

b) In the file browser, locate the library’s PRJlibrary.MDB file.

c) Click Open.

3. To remove a library from the list of dependencies:

a) From the Dependencies list, select the library to remove.

b) Click Remove.
286 DS800 Development Suite 2.1 - User Manual

To reestablish an invalid library path

You reestablish an invalid library path for a renamed or moved library from the Add/Remove
Dependencies window. Reestablishing a library path restores all associations between a project
and library.

1. From the Tools menu, choose Add/Remove Dependencies.

The Add/Remove Dependencies window appears.

2. From the Dependencies list, select the invalid library to reestablish.

3. Click Browse, then locate and select the library.

To license a third-party library project

You can choose to license third-party library projects while adding them as dependencies or at
any other time. You initiate licensing for these library projects in the Add/Remove
Dependencies window, then complete the process in the License Manager.

1. Make sure the third-party library project is copied onto your disk, then from the Tools
menu, choose Add/Remove Dependencies.

2. In the Add/Remove Dependencies window, add the third-party library project to the list
of dependencies:

a) Click Add.

b) In the file browser, locate the library’s PRJlibrary.MDB file.

c) Click Open.

A message stating that the library is not licensed is displayed.

d) Click OK.

The License Manager is displayed
DS800 Development Suite 2.1 - Workbench 287

3. Do one of the following:

To license the third-party library project at this time, click Send in the License
Manager, then include all required information and send the email.

To license the third-party library project at a later time, click Cancel in the License
Manager. You can launch the licensing process at any time by selecting the
unlicensed third-party library project, then clicking Browse to locate, select, and
open the library’s PRJlibrary.MDB file.

The original setup code and user codes as well as a Registration Key 1 and Registration
Key 2 will be returned via e-mail.

4. Upon reception, make sure the setup and user codes are the same as those in the License
Manager window, then copy and paste the registration keys in their respective fields.

The third-party library project is enabled for use.
288 DS800 Development Suite 2.1 - User Manual

Debug
When developing an application, you can choose to debug, i.e., detect and remove errors, from
a project using one of two methods:

Simulation mode. In this case, inputs and outputs are not managed by the target virtual
machine. The rest (i.e. Binding exchanges and execution of the POUs of each resource) is
executed by the standard Windows platform. Each resource will be executed by one
virtual machine on the PC running the Workbench.
Online mode. In this case, each resource is executed by one DS800 Development Suite
virtual machine on the real platform. A download operation is required, to download the
code of each resource to the corresponding platform. For details on downloads, see
page 293.

Note: To enable the debugging of a Project, you must first build it using the Build Project
command. For details on building projects and resources, see page 347.

Before simulating a resource, the code for the simulation has to be generated for each resource.
By default, this option is checked in a resource’s compilation options. For details on
compilation options, see page 55.

When switching an application to Debug mode, the Workbench verifies the coherency between
the current resource definitions and the resources’ compiled code. The Workbench also verifies
the coherency between all versions of the resource code. You can access version information
for a resource.

While in debug mode, the security state of unlocked resources and resources having no access
control switches to read-only mode. The security state of unlocked POUs and POUs having no
access control also switches to read-only mode. Locked resources and locked POUs remain
locked.

To test a resource "online", its TIC code must be produced and downloaded to the target
system, otherwise, the corresponding virtual machine may have been generated with the "C"
code of the application.
DS800 Development Suite 2.1 - Workbench 289

Status Information
When running a project in Debug mode, status information for resources from the target is
updated at a regular interval, indicated by the debug refresh rate. The status information is
displayed in resource title bars as:

resource icons

text information

You can also choose to refresh the status information for resources at any time.

The debug refresh rate applies to all resource data including variables and status information
while in debug mode; its default value is 300 milliseconds. You set the refresh rate in the
DefaultRefreshTime property in the [REFRESH] section of the Dta.ini file located in the
Workbench’s Bin folder. You can also set refresh rates for individual resources by adding the
following entry for a resource in the same section: RefreshTime(X)=YYY, where X indicates
the resource number and YYY indicates the refresh time in milliseconds.

Note: For a project in normal editing mode, refreshing the status of resources will not refresh
the status of resources previously opened by other users for single-resource editing. To refresh
the displayed status for these resources, you need to reopen the Workbench project.

Resource Icons

The resource icons appear in the left-most corner of the title bar:

Icon Description

The resource belongs to the current project and is running on the configuration.

The resource belongs to the current project and is either running on the
configuration but with a different version or it is not running on the configuration
but the code of the resource is available on the configuration.
290 DS800 Development Suite 2.1 - User Manual

Resource icons also display the security state of a resource.

Text Information

The state of the resource appears next to the resource icon before the resource’s name, in the
title bar.

The resource belongs to the current project and is not running on the configuration
and no code is available on the configuration.

The resource does not belong to the current project but is running on the
configuration. In this case, a new empty resource appears with this icon in the link
architecture and hardware architecture views of the project.

Resource State Description

RUN The resource is running (real-time mode). You can switch the
resource to cycle-to-cycle mode.

STOP The resource is in cycle-to-cycle mode.
Possible operations are:
- switch the resource to real-time mode
- execute one cycle
- go to the next step (only when step-by-step mode is instantiated)

BREAK The resource is in break point mode (SFC POUs).
Possible operations are:
- switch the resource to real-time mode
- execute one cycle
- go to the next step (only when step-by-step mode is instantiated)

ERROR The resource is in error.
Possible operations are:
- switch the resource to real-time mode
- execute one cycle
- go to the next step (only when step-by-step mode is instantiated)

Icon Description
DS800 Development Suite 2.1 - Workbench 291

The BREAK, STOP, and ERROR states are possible while in cycle-to-cycle mode. I/Os and
bindings are done, but POUs are not executed. A complete cycle is executed when you execute
one cycle. The STEPPING and STEPPING_ERROR states are possible while in step-by-step
debugging mode.

The existence of code on the configuration is indicated with the following text:

On a running resource, when the version of code in the project differs from the code on the
corresponding virtual machine of the configuration, a message is displayed.

To refresh the status of resources

From the Debug menu, choose Refresh Status.

The status information displayed in the title bars of all resources is updated.

STEPPING The resource is in step-by-step mode.
Possible operations are:
- switch the resource to cycle-to-cycle mode returning the resource
to the start of its cycle without executing the remaining code
- execute one cycle
- execute the current step and go to the next one
- locate the current step
- switch the resource to real-time mode

STEPPING_ERROR The resource is in stepping error mode. This state is caused when an
invalid operation occurs such as a division by 0 or a bound check
error.
Possible operations are:
- locate the current step to debug it
- switch the resource to cycle-to-cycle mode returning the resource
to the start of its cycle without executing the remaining code

CODE The resource is not running but the code exists (disk or PROM) on the
configuration.

NOCODE The code does not exist on the configuration.

Resource State Description
292 DS800 Development Suite 2.1 - User Manual

Download
When simulating a project, you do not need to perform a download operation. You perfom a
download operation for each resource having code to send to a target.

The Download window shows the list of resources making up a project. In this list, resources
are displayed next to the name of the configuration to which they are attached. When the
resource code contains debug information generated for ST, IL, or LD programs, the word
"debug" appears in comments.

Note: Each time you perform a download operation, the Workbench verifies the coherency
between the current resource definitions and the resources’ code to download. The Workbench
also verifies the coherency between all versions of the resource code. You can access version
information for a resource.

Conditions necessary to download a resource:

1. The code (corresponding to the resource available on the hardware configuration) must
first be generated by building the project or resource. By default, TIC code is generated
for a DS800 virtual machine.

2. Verify that the Power Switch parameter in the DS800 screen of ROCLINK 800 is set
to on.

3. The computer where the Workbench is installed must be connected to the configuration
through a network supported by the Debugger. The standard network used by the
Workbench is Ethernet. If downloading a project with a single configuration, then you
may also choose to use the ISaRSI network.

In the Download window, select the resources to download by clicking on their name in the list
(click again to unselect). You can click Toggle to select or unselect a selected resource. You
can also choose to select all or unselect all resources.

Download options:

Start after download, indicates that the virtual machine executes the resource code upon
reception
DS800 Development Suite 2.1 - Workbench 293

Save after download, indicates that the virtual machine saves the resource code on the
configuration platform upon reception. The code can be saved to a disk, if the platform
has one, or another storage method, depending on the platform and the implementation of
the virtual machine.

To download the code of project resources

At anytime during a download operation, you can abort the operation by clicking Abort.

From the Debug menu, choose Download or click on the Standard Toolbar.
294 DS800 Development Suite 2.1 - User Manual

Debug/Simulate
You can test a project using one of two modes:

Debug, where you test resources online. The debugger establishes the connections with
remote configurations. Execution errors and warnings can appear in the Output Window.

Simulation, where you simulate the running of the project. The Configuration manager
and a virtual machine for each resource is launched. The Simulate I/Os Panel is
displayed.

While in debug or simulation mode, for FBD and LD programs and function blocks, you can
choose to graphically monitor the block (operator, function, or function block) output values.
You can temporarily resize variables to enable viewing their output values. Resized variables
return to their original size upon quitting debug or simulation mode.

Output values of boolean type are displayed using color. The output value color continues
to the next input. The default colors are red when True and blue when False. You can
customize the colors used for the boolean items.

Output values of SINT, USINT, BYTE, INT, UINT, WORD, DINT, UDINT, DWORD,
LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE, and STRING type are displayed
DS800 Development Suite 2.1 - Workbench 295

as a numeric or textual value in a label directly above the output. When the output is a
structure type, the displayed value is the selected member.

When the output value is unavailable, the ??? text is displayed in the output label.

To enable the graphic display of output values, you need to generate the symbols monitoring
information for individual FB and LD programs and function blocks before building. You can
choose to show or hide the output display values.

To start Debug mode

You can start Debug mode from the link architecture view, hardware architecture view, or from
a language editor.

From the Debug menu, choose Debug Target or click , on the Standard toolbar.

To start Simulation mode

You can start Simulation mode from the link architecture view, hardware architecture view, or
from a language editor.

From the Debug menu, choose Simulation or click , on the Standard toolbar.

To show or hide output values

You can choose to display the values of non-boolean outputs in the FBD and LD editors.

From the Tools menu, choose Show/Hide Output Values or click , on the
Debug toolbar.

To stop Debug or Simulation mode

From the Debug menu, choose Stop Debug/Simulation.

Or

On the Debug toolbar, click .
296 DS800 Development Suite 2.1 - User Manual

Start / Stop a Resource

The "Start" command on the Debug menu enables you to start a resource which has been
stopped. It launches the DS800 virtual machine on the RAS device system and the resource is
executed. The resource code must be available on the RAS device system.

To stop the execution of a resource and kill the corresponding virtual machine

From the Debug menu, choose Stop.

Or

On the Debug toolbar, click .

To stop all resources of the project

On the Debug toolbar, click .
DS800 Development Suite 2.1 - Workbench 297

Resource Execution Mode

You can execute a resource in one of three possible execution modes:

Real-time

Cycle-to-cycle

Step-by-step

When defining a resource’s Settings properties, you can set it to automatically start in real-time
or cycle-to-cycle execution mode prior to code generation. By default, resources start in
real-time mode.

Real-time Mode

Real-time mode is the run time normal execution mode where target cycles are triggered by the
programmed cycle timing. While in real-time mode, you can switch the resource to
cycle-to-cycle mode. When debug information is generated for POUs in a resource, the
resource automatically switches to step-by-step mode when the application encounters a
breakpoint.

A resource where real-time mode is activated is in the RUN state.

To activate real-time mode

On the Debug toolbar, click .
298 DS800 Development Suite 2.1 - User Manual

Cycle-to-cycle Mode

In cycle to cycle mode, the virtual machine loads the resource code but does not execute it until
you execute one cycle or activate real-time mode. When debug information is generated for
POUs in a resource, the resource automatically switches to step-by-step mode when the
application encounters a breakpoint. You can also switch to step-by-step mode by stepping.

A resource where cycle-to-cycle mode is activated can be in one of three states: STOP,
BREAK, and ERROR.

To activate cycle-to-cycle mode

On the Debug toolbar, click .

To execute one cycle

Cycle-to-cycle mode must be activated before executing individual cycles.

On the Debug toolbar, click .

Step-by-step Mode

You can instantiate step-by-step mode for ST, IL, and LD POUs. For ST and IL POUs, you set
breakpoints to specific lines of code. For LD POUs, you set breakpoints to rungs. When you
run an application in Debug mode, the application stops when it encounters a breakpoint. At
this time, depending on the state of the resource, you can choose to perform various operations:

Step to the next line of code or rung

Step into the next line of code or rung

Execute one cycle

Switch to cycle-to-cycle mode

Switch to real-time mode
DS800 Development Suite 2.1 - Workbench 299

A resource where step-by-step mode is activated is in the STEPPING state. When the resource
encounters a stepping error, the resource is in the STEPPING_ERROR state. When stepping
within a resource reaches the end of its cycle, the resource automatically switches to
cycle-to-cycle mode in the STOP state.

Note: You can only set breakpoints for resources producing TIC code; you cannot set
breakpoints for resources producing C source code. Furthermore, you cannot set or remove
SFC breakpoints while a resource is in the STEPPING state.

Before setting up step-by-step mode for ST, IL, and LD POUs, you need to specify the
generation of debug information for the resource and the individual POUs.

When switching an application to debug mode, to use step-by-step mode, defined breakpoints
are sent to the target. When you stop debug mode, you can choose to remove the breakpoints
from the target. Breakpoints remaining on a running target may interfere with its cycle.

In the language editor, while in step-by-step mode, defined breakpoints that have been
successfully sent to the target appear as red circles to the left of the line of code or rung;
breakpoints that are disabled on the target appear as . The current line is indicated with a
yellow arrow at its left. When stepping passes beyond the last line or rung of a POU, the arrow
points downward (). A Call Stack window shows stepping information such as the name of
the POU from which a Step Into command jumped from upon execution.
300 DS800 Development Suite 2.1 - User Manual

Setting Breakpoints

You set breakpoints for ST, IL, and LD POUs in the POU editor. Before setting breakpoints in
a POU, you need to specify the generation of debug information for the resource and the
individual POUs. For details on generating debug information, see page 56.

Note: You can only set breakpoints for resources producing TIC code; you cannot set
breakpoints for resources producing C source code.

To set a breakpoint in an ST, IL, or LD POU

1. Click in the line of code or rung on which to set the breakpoint.

2. On the toolbar, click .

A breakpoint appears to the left of the line of code or rung.

Removing Breakpoints

You can remove breakpoints set for ST, IL, and LD POUs for step-by-step mode.

To remove breakpoints

To remove a breakpoint while in its POU, click in the line of code or rung with the

breakpoint, then click on the toolbar.

The breakpoint is removed from the line of code or rung.

To remove a breakpoint from any POU in a resource, click on the toolbar, then
select the breakpoint from the list and click Remove. You can also remove all
breakpoints set in all POUs of the resource by clicking Remove All.
DS800 Development Suite 2.1 - Workbench 301

The individual or multiple breakpoints are removed from their POUs.

Stepping in POUs

While a resource is in the STEPPING state, you can step in a POU (ST, IL, and LD for which
you generated debug information) once its execution is interrupted by encountering a
breakpoint. You can execute one of two types of steps:

Step, executes the current line of code or rung then steps to the next line or rung

Step into, executes the current line of code or rung then steps into the next line of code or
rung. When the next line includes a call to a function, stepping continues in the called
function then returns to the next line of code or rung in the POU.

When a resource holds POUs for which debug information is generated, stepping is also
available while the resource is in either the STOP, BREAK, or ERROR state. However, in
these states, stepping jumps to the first line or rung of the first POU for which debug
information is generated.

When stepping in POUs, you can locate the current step from within any POU.
302 DS800 Development Suite 2.1 - User Manual

To step to the next line of code or rung

1. Select the POU to step in.

2. From the Debug toolbar, click .

The POU executes the current line of code or rung then steps to the next one.

To step into the next line of code or rung

1. Select the POU to step in.

2. From the Debug toolbar, click .

The POU executes the current line of code or rung then steps into the next one and stepping
continues in any called function before returning to the next line of the POU.

To locate the current step in a resource

From the Debug toolbar, click .

Set Cycle Time

While in debug mode, you can change the cycle time of a resource. You can also set the cycle
time before building the code for the resource in the run time settings for the resource. To view
the current value of the resource cycle time, from the Debug menu, choose Diagnosis.

To change the Cycle Time of the resource

1. Select the resource.

2. From the Debug Menu, choose Change Cycle Timing.
DS800 Development Suite 2.1 - Workbench 303

Write / Lock / Unlock

While in debug or simulation mode, you can view the values and lock status of variables from
within the dictionary view, LD editor, and FBD editor. In the dictionary view, the Locked
column indicates whether a variable is locked. You can also choose to display all variables,
locked variables, or unlocked variables.

In the LD and FBD editors, the symbol displayed at the left of a variable name indicates a
locked variable.

You lock and unlock variables, and force the values of variables from the dictionary view, LD
editor, and FBD editor. You can also unlock variables from the Diagnosis window.
304 DS800 Development Suite 2.1 - User Manual

For simple-type members of a complex variable such as a structure or array, locking or
unlocking any member affects the entire complex variable. For structure-type variables, you
can display one simple-type field. The write mechanism automatically displays the first field
of the structure.

For function blocks, you need to instantiate these before locking their parameters.

For locked variables, the values displayed in the Logical Value and Physical Value columns of
the dictionary view differ depending on their direction:

The following diagram shows the lock/unlock process.

To lock variables

Locking operates differently for simple variables, array and structure elements, and function
block parameters. For simple variables, individual variables are locked directly. For array and
structure elements, locking a single element causes all other elements to be locked.
For function block parameters, locking a parameter affects only that parameter.

From the dictionary view, double-click the variable’s corresponding cell in the Locked
column, then in the dialog, click Lock.

Locked Variable
Direction

Logical Value Physical Value

Input Locked Updated by the field value
Output Updated by the running TIC code Locked
Internal Locked Updated by the consumer binding

when one exists or else updated by
the running TIC code
DS800 Development Suite 2.1 - Workbench 305

From the LD or FBD editors, double-click the variable, then in the dialog, click Lock.

To unlock variables

From the dictionary view, double-click the variable’s corresponding cell in the Locked
column, then in the dialog, click Unlock.

In the LD or FBD editors, double-click the variable, then in the dialog, click Unlock.

You can also unlock variables from the Diagnosis window.

To force the values of variables

From the dictionary view, double-click the variable’s corresponding cell in the Logical
column, then in the dialog, enter a value and click Write.

From the LD and FBD editors, double-click the variable, then in the dialog, enter a value
and click Write.
306 DS800 Development Suite 2.1 - User Manual

Diagnosis

You can access diagnostic information for individual resources while running an application
in simulation mode. This information is divided into five categories:

Timing

System Variables

Locked Variables

Breakpoints

Version Information

For details on run-time settings for resources, see page 59.

To access diagnostic information for a resource

1. While the application runs in simulation mode, select a resource for which to obtain
diagnostic information.

2. From the Debug menu, choose Diagnosis.

The Diagnosis window displays the diagnostic information for the resource.

Timing

Timing information holds the current values of specific system variables for a selected
resource. The timing information is:

Programmed cycle time, the defined cycle time for the resource

Current cycle time, the time of the last executed cycle

Maximum cycle time, the longest period of time used for a cycle, since the resource was
started

Overflow, the number of cycles having exceeded the programmed cycle time
DS800 Development Suite 2.1 - Workbench 307

State, the current state of the resource. Possible states are RUN (real-time mode), STOP,
BREAK, ERROR, STEPPING, and STEPPING_ERROR.

Code, the indication of whether the code has been saved on the target system

For details on setting the cycle time of a resource, see page 303.

System Variables

System variables hold the current values of all system variables for the resource. You can read
from or write to system variables. These variables are defined in the dsys0def.h file. The
system variables are:

Variable Name Type Read/Write Description

__SYSVA_RESNAME STRING Read Resource name (max
length=255)

__SYSVA_SCANCNT DINT Read Input scan counter
__SYSVA_CYCLECNT DINT Read Cycle counter
__SYSVA_KVBPERR BOOL Read/Write Kernel variable binding

producing error (production
error). Not supported in DS800.

__SYSVA_KVBCERR BOOL Read/Write Kernel variable binding
consuming error (consumption
error)

__SYSVA_TCYCYCTIME TIME Read/Write Programmed cycle time
__SYSVA_TCYCURRENT TIME Read Current cycle time
__SYSVA_TCYMAXIMUM TIME Read Maximum cycle time since last

start
__SYSVA_TCYOVERFLOW DINT Read Number of cycle overflows
308 DS800 Development Suite 2.1 - User Manual

Warning: For the _SYSVA_CCEXEC system variable, its use in an ST program is not
significant because resources run in cycle-to-cycle mode. Therefore, programs are not
executed.

Locked Variables

Locked variables are input, output, and internal variables that have been locked. When deleting
locked variables through an online change, these deleted locked variables remain displayed but
are preceded by the _DEL_ prefix. To remove these variables from the list, you need to unlock
them.

You can unlock variables in the Diagnostic window. You can also unlock variables from the
from the dictionary view, LD editor, and FBD editor.

__SYSVA_RESMODE SINT Read Resource execution mode.
Possible modes are:
-1: Fatal error
0: No resource available
1: Stored resource available
NOT USED (CMG)
2: Ready to run
3: Run in real time
4: Run in cycle by cycle
5: Run with SFC breakpoint
encountered
7: Stopped in stepping mode

__SYSVA_CCEXEC BOOL Write Execute one cycle when
application is in cycle to cycle
mode

__SYSVA_WNGCMPTNM STRING Read Warning component name
__SYSVA_WNGCMD SINT Read/Write Warning command. Set it to 1 to

get next warning
__SYSVA_WNGARG DINT Read Warning Argument
__SYSVA_WNGNUM DINT Read Warning Number

Variable Name Type Read/Write Description
DS800 Development Suite 2.1 - Workbench 309

When viewing locked unwired IO channels, these are displayed with their directly represented
variable naming.

To unlock variables

To unlock a single variable, select its name in the list then click Unlock.

To unlock all variables, click Unlock All.

Breakpoints

You can view a list of all breakpoints defined for ST, IL, and LD POUs of a resource, for use
with the step-by-step mode.

Version Information

You can view version information including the compilation version number, the compilation
date, and the CRC (Cyclic Redundancy Checking) of the data the resource works on for three
sources of resource code:

the compiled code for the resource in the Workbench project

the code for the resource running on the target

the code for the resource stored on the target
310 DS800 Development Suite 2.1 - User Manual

SFC Breakpoints

While in Debug mode, you can place SFC breakpoints on SFC steps or transitions. When a
breakpoint is encountered, the resource is set to the BREAK state. This mode is equivalent to
the cycle-to-cycle mode. Then to overpass the breakpoint, you can choose either to execute one
cycle or switch real-time mode. When a resource is in the BREAK state and step-by-step
debugging is activated for ST, IL, or LD POUs within the resource, you can also step to the
first line of the first POU of the resource for which debug information is generated.

Note: You can only set breakpoints for resources producing TIC code; you cannot set
breakpoints for resources producing C source code. Furthermore, you cannot set or remove
SFC breakpoints while a resource is in the STEPPING state.

Four types of SFC breakpoints are available:

To set a breakpoint command on a step or transition

You can set breakpoint commands from the Breakpoints toolbar or from the contextual menu.

Right-click on the step or transition, then from the contextual menu choose the desired
breakpoint command.

Once the breakpoint is reached, you can execute one cycle or switch real-time mode to continue
the execution.

To remove breakpoints from steps

You can remove breakpoints from the Breakpoints toolbar or from the contextual menu.

Breakpoint on Step Activation

Breakpoint on Step Deactivation

Breakpoint on Transition

Transition Clearing Forcing
DS800 Development Suite 2.1 - Workbench 311

1. To remove a single breakpoint, right-click on the step, then from the contextual menu
choose Remove Breakpoint.

2. To remove all breakpoints, right-click on a step, then from the contextual menu choose
Remove All Breakpoints.

Breakpoint on Step Activation

When the step goes from the inactive (no token) to the active (token) state, then breakpoint
mode is set for the next cycle. The current cycle goes on executing normally. In particular
around the step where the breakpoint is placed, before breakpoint mode is really set:

All P0 actions, linked to all previous steps that become inactive, are executed.

All P1 – S – R – N actions, linked to the step that becomes active, are executed.

The following illustrates cycle execution when a breakpoint on step activation is encountered.

To set a breakpoint on step activation

You can set breakpoint commands from the Breakpoints toolbar or from the contextual menu.

Select the step, then from the toolbar, click .
312 DS800 Development Suite 2.1 - User Manual

Breakpoint on Step Deactivation

When the step goes from the active (token) to the inactive (no token) state, then breakpoint
mode is set for the next cycle. Current cycle goes on executing normally. In particular around
the step where the breakpoint is placed, before breakpoint mode is really set:

All P0 actions, linked to the step that becomes inactive, are executed.

All P1 – S – R – N actions, linked to all successor steps that become active, are executed.

The following illustrates cycle execution when a breakpoint on step de-activation is
encountered.

The behaviors of setting a breakpoint on step activation is the same as step de-activation. These
are both available to avoid setting multiple breakpoints as shown below.

Note: On a given step, you cannot set both a breakpoint on step activation and a breakpoint on
step de-activation.

To set a breakpoint on step deactivation

You can set breakpoint commands from the Breakpoints toolbar or from the contextual menu.

Select the step, then from the toolbar, click .
DS800 Development Suite 2.1 - Workbench 313

Breakpoint on Transition

When a transition becomes clearable (transition is valid i.e. all previous steps are active, and
its receptivity is true) then breakpoint mode is set for the next cycle. The current cycle goes on
executing normally except that the transition is not cleared and therefore related tokens are not
moved.

The following illustrates cycles execution when a breakpoint on transition is encountered.

To set a breakpoint on a transition

You can set breakpoint commands from the Breakpoints toolbar or from the contextual menu.

Select the transition, then from the toolbar, click .
314 DS800 Development Suite 2.1 - User Manual

Transition Clearing Forcing

This debug command allows to force the clearing of a transition whether the latter is valid or
not (i.e all previous steps are active or not). Tokens are moved and actions are executed as for
a usual transition clearing.

More precisely, tokens of all predecessor steps are removed, if any. Tokens of all successor
steps are created. All P0 actions linked to all predecessor steps are executed (even if no token
was placed). All P1 – S – R – N actions linked to all successor steps are executed.

The following illustrates cycles execution when clearing of a transition is forced.

Warning: Clearing a transition may lead to abnormal behavior of your chart since it may
create several tokens.

To clear a transition

You can clear transitions from the Breakpoints toolbar or from the contextual menu.

Select the transition, then from the toolbar, click .
DS800 Development Suite 2.1 - Workbench 315

Spying Variables

While in Debug mode, you can choose to spy on selected variables, i.e., view the changes of
values for these variables. You spy on variables by adding them to a spy list.

To access the Spy List window

You can access the Spy List window from either the link architecture, hardware architecture,
or dictionary views as well as the language editors.

From the Window menu, choose Show Spy List.

Adding Variables to the Spy List

You can add variables to the spy list from the Spy List window, from the dictionary view, and
from ST, LD, FBD, or IL programs.

To add a variable from the Spy List window

1. Within the Spy List window, in the Name column double-click …

2. From the list of available resources, select the resource holding the variable to spy on.

3. Using the keyboard arrows or the mouse, move to the Name cell, then press Enter.

The list of variables available for the resource appears (you may need to resize the Name
column to display complete names).

4. Using the keyboard arrows, move within the list of variables to the desired variable, then
press Enter.

To add a variable from the dictionary view

In the dictionary view, select then drag a variable from the dictionary grid to the Spy List
window.
316 DS800 Development Suite 2.1 - User Manual

To add a variable from ST, LD, FBD, or IL programs

In the language editors, you can add variables to the spy list using the menus, toolbars, or
contextual menus.

1. Start the project in Debug mode.

2. Double-click the program.

The editor is lauched displaying the program in read-only mode.

3. Select a variable to spy on.

4. From the editor’s toolbar, click .

Selecting Variables in the Spy List

You can select one or more variables in the spy list.

To select variables in the spy list

1. To select a single variable, click at the beginning of the line holding the variable.

2. To select more than one line contiguous lines, select the lines holding the variables while
holding down the Shift key.

3. To select more than one line non-contiguous lines, select the lines holding the variables
while holding down the Ctrl key.
DS800 Development Suite 2.1 - Workbench 317

Removing Variables from the Spy List

You remove variables from the Spy List window

To remove a variable from the spy list

1. In the Spy List window, select the variable by clicking on the very beginning of the line.

2. Press Delete.

Rearranging the Spy List

You can change the position of a variable within the spy list.

To change the position of a variable in the spy list

In the Spy List window, select the variable, then drag and drop it to its new position.

Saving a Spy List

You can save a spy list created for your projects. These lists are saved with the .SPY extension.

To save a spy list

1. In the Spy List window, right-click in the grid.

2. From the contextual menu, choose Save Spy list.

3. In the dialog box, enter a name for the file and choose a location then click Save.

Warning: You need to save your list each time you make changes.
318 DS800 Development Suite 2.1 - User Manual

Opening an Existing Spy List

You can choose to open a previously created spy list.

To open a previously created spy list

1. Within the Spy List window, right-click in the grid.

2. From the contextual menu, choose Load Spy List.

Forcing the Value of a Spy List Variable

You can force, i.e., change, the value of a variable in the spy list.

To force the value of a spy list variable

1. Double-click the Value cell of the variable.

2. Enter an new value.
DS800 Development Suite 2.1 - Workbench 319

Simulate a Panel of I/Os
You can simulate a panel of I/Os, i.e., display the values of inputs and outputs defined for a
project, in their I/O devices. When testing a project in simulation mode, the Simulator
(I/O Panel Simulation) is automatically launched. The Simulator is automatically closed when
the test mode is stopped. You can perform the following tasks from the Simulator:

Opening and closing I/O device windows

Forcing the values of input device channels

The following example shows the Simulator displaying two I/O devices for the "Project3"
project:

To display the Simulator

While the application runs in Test mode, in the Windows task bar,

click .
320 DS800 Development Suite 2.1 - User Manual

To open and close I/O device windows

You can choose to open individual I/O devices or all I/O devices belonging to items in a
project’s structure, i.e. resources, configurations, and projects.

1. From the browser, double-click an item in the structure. You can also drag and drop items
into the Simulator’s workspace.

2. To close I/O device windows, on the individual windows title bars, click the 'Close
Window' button.

To force the value of an input device channel

You can force, i.e., change, the value of BOOL, numeric-type, and STRING input device
channels. For BOOL input devices, forcing the value means changing a TRUE value to FALSE
and a FALSE value to TRUE. For numeric-type (SINT, USINT, BYTE, INT, UINT, WORD,
DINT, UDINT, DWORD, LINT, ULINT, LWORD, REAL, LREAL, TIME, DATE) or
STRING input devices, this means entering a new value. A value cell is any cell in the 'value
column' of an 'I/O device' window.

1. Double-click the value cell of the required input device channel.

2. For numeric-type and STRING input devices, press Enter.
DS800 Development Suite 2.1 - Workbench 321

Appearance

The Simulator is the environment where you can simulate a panel of I/Os. Its window is
divided into two parts: a browser and a workspace.

The browser, located on the left side of the window, displays the defined project items in a
tree-like structure, with the project as root. The workspace, to the right of the window, enables
you to display the I/O devices defined for the items selected in the browser. Each I/O Device
appears in a separate window showing the resource and configuration to which the I/O Device
belongs. You can customize many aspects of the Simulator including:

Resizing and moving individual I/O device windows

Moving and hiding the browser

Displaying I/O device window headers

menu bar
tool bar

browser
workspace

status bar
322 DS800 Development Suite 2.1 - User Manual

Menu Bar

Some options are available as keyboard commands.

File Open I/O Device Ctrl+O creates a new project
Exit Alt+F4 leaves the Simulator

View Toolbar shows or hides the Simulator’s
toolbar

Status Bar shows or hides the Simulator’s
status bar

Tree Bar shows or hides the Simulator’s
browser

Option Auto Vertical Tile Windows sets the I/O device windows to
automatically tile vertically

Auto Horizontal Tile Windows sets the I/O device windows to
automatically tile horizontally

Auto Cascade Windows sets the I/O device windows to
automatically display in a cascading
manner

Display Header displays a header at the top of I/O
device windows

Display Name displays the variable names
associated with each channel in all
I/O devices

Numerical Display sets the numerical display of values
Auto Save when Exit activates or deactivates the

automatic saving of changes to the
Simulator including the position and
look of all I/O device windows.
These changes are saved in the
current project directory
DS800 Development Suite 2.1 - Workbench 323

Toolbar

Window Cascade displays the I/O device windows in a
cascading manner

Tile displays the I/O device windows in a
tiling manner

Help Contents accesses the online help
Search for Help On not currently supported
About displays product and version

information
Support Info not currently supported

shows or hides the Simulator’s browser

display the variable names associated with each channel in all I/O devices

displays integer values in the hexadecimal format

displays integer values in the decimal format

sets real values to be rounded off to one digit after the decimal point.
Otherwise, values appear in scientific notation (1.0E+2) format

sets real values to be rounded off to two digits after the decimal point

sets real values to be rounded off to three digits after the decimal point

sets real values to be rounded off to four digits after the decimal point

sets real values to be rounded off to five digits after the decimal point
324 DS800 Development Suite 2.1 - User Manual

Contextual Menu

A contextual menu, accessed by right-clicking within an I/O device window, enables you to
change the numeric presentation of values, the display options (I/O window header and
variable name), and split the window.

Displaying I/O Device Window Headers

In the Simulator, you can choose to display a header at the top of device I/O windows in the
following format:

<Resource number>:<Resource name> (<configuration name>)
'Direction:' <'Input' / 'Output'> '- Type:' <type-name>
1: C1_R1 (Config C1)
Direction: Input - Type: BOOL

To display window headers

From the Option menu, choose Display Header.

sets the I/O device windows to appear in a cascading manner

sets the I/O device windows to appear in a horizontal tiling manner

sets the I/O device windows to appear in a vertical tiling manner
DS800 Development Suite 2.1 - Workbench 325

Moving or Hiding the Browser

You can move, resize, or hide the Simulator’s browser. To undock it, click on the 'double line'
and drag the window. You can move it to the top, bottom, left, and right of the workspace or
completely outside of the Simulator window.

To move or hide the browser

1. To move the browser, click its frame then drag it to the new location.

2. To hide the browser, from the View menu, choose Treebar.
326 DS800 Development Suite 2.1 - User Manual

Online Changes
You can modify a resource while it runs. This is sometimes necessary for chemical processes
where any interruption may jeopardize production or safety. When performing online changes,
you can choose to update a running resource at the time of download or at a later time.
However, online changes should be used with care. DS800 Development Suite may not
detect all possible conflicts generated by user-defined operations as a result of these online
changes.

To perform an online change

From the Debug menu, choose Online Change: Download, then choose the
desired option.

Code Sequences

A sequence of code is a complete set of ST, IL, LD, FBD 61131, or FBD 61499 instructions
executed in a row. In a cyclic program, a code sequence is the entire list of instructions written
in the program. In an SFC or FC program, a code sequence is the level 2 programming of one
step / action or transition / test.

An online change consists in replacing one or more code sequences, without stopping the PLC
execution cycle. Therefore, you cannot add, delete, or rename any POUs. Note that in such a
case, no compiler warning is generated and the changes will be denied at download step.

Particular case of SFC

Since the control of SFC tokens is very critical, you cannot modify an SFC structure or add,
renumber, or remove a step or transition.

The switch occurs between two cycles:

In the case of a step that was already active, if the new code of the step contains
non-stored boolean or SFC child actions or P1 actions, then such actions are not updated.
Afterwards when the step becomes inactive, the Boolean is reset / the SFC child is killed
/ P0 actions are executed.
DS800 Development Suite 2.1 - Workbench 327

In the case of a step that becomes inactive, if its code sequence has changed, then the new
one is used (P0 actions are executed).

Code sequence for receptivity equation of a transition is changed if it is required and it will be
evaluated when the transition is valid.

Particular case of IEC 61131 function blocks

You can make changes to the body of an IEC 61131 function block but cannot change its
definition. That is to say you cannot change:

The number of parameters.

Parameters name, type, direction (input, local, output), dimension for arrays, and string
size for string type.

Therefore, in case of graphic languages you cannot add/remove nested blocks ('C' block or
IEC 61131 block calls) because they lead to automatic instances and therefore number of
parameters modifications. For same reasons you cannot add/remove a 'pulse' variable.

Particular case of calls to Functions

You can add a call to a standard IEC 61131 function. You cannot add a call to a specific RAS
device function if it is its first use.

Particular case of calls to Function Blocks

When adding calls to IEC 61131 function blocks, you need to respect the particularities of
function block instances. For details on the particularities of function block instances, see
page 330.
328 DS800 Development Suite 2.1 - User Manual

Variables

As the variable database is a critical part of the resource, it can be accessed at any time by other
processes (via multitasking PLC). It is also possible to modify variable values from the
Debugger. Therefore, you cannot add, rename, or remove a variable online. However, you can
modify the way a variable is used in the application. You can also reserve "unused" internal or
I/O variables in the first version of the resource, so that future modifications can make use of
them.

Target databases contain different styles of variables each having their own limitations.

Declared Variables

Declared variables are declared using the Dictionary. You can add new variables with or
without initial values and you can remove variables. You cannot:

Add a variable with the name of a previously removed variable

Add/Remove an I/O variable

Change the definition of an existing variable

The definition of a variable refers to many aspects:

Name

Type

Scope

Dimension (arrays)

String size (for string type)

Direction (Input / Output / Internal)

Address

Retain attribute
DS800 Development Suite 2.1 - Workbench 329

Notes:

Renaming variables has the same effect as removing and adding them, i.e., their values
will be lost in the RAS device

During code generation, the Workbench linker keeps information about removed and
added variables in the PLC data memory map. Therefore, before performing complete
downloads instead of online changes, you should clean the project before building it.

When the initial value of an existing variable is changed, no warning message appears
but the modification is not taken into account by the target at online change stage. If
changes have been saved, the new initial value take effect at the next 'Stop’ /’Start’.

Function Block Instances

Each instance of IEC 61131 or RAS device written function corresponds to data stored in
DS800 Development Suite virtual machine real time database. You cannot add new
automatic instances of IEC 61131 function blocks or of standard 'C' function blocks with or
without initial values. To enable online changes, you need to work with function block
instances declared in the Dictionary.

You cannot add any user RAS device Function Blocks instances.

Compiler Allocated Hidden Variables

The compiler generates "hidden" temporary variables to solve complex expressions. The
compiler forces a minimum number of temporary variables to be allocated for each program,
even if not used for compiling the first version of the resource. As long as a new compiling of
the resource gives a number of allocated temporary variables lower than this minimum, the
online change will be possible.
330 DS800 Development Suite 2.1 - User Manual

I/O Devices

Since the I/O system is very open, required modifications should be implemented by an
integrator, using specific features of the corresponding hardware.

For simple or complex I/O devices, when supported by the driver, you can perform online
changes for OEM parameters. For I/O channels, also when supported by the driver, you can
perform online changes for the Gain, Offset, Direct, and Conversion parameters as well as the
mapping of logical and physical channels. You cannot add, connect, or remove an I/O variable,
or modify the description of an I/O device online. Operations such as modifying device
parameters may be available using specific functions provided by the integrator.

Memory Requirements

In order to support the "Online Change" capability, the target PLC must have free memory
space to enable the storage of:

The modified version of the code sequences. Original code and modified code have to be
stored in PLC memory.

The addition of new data variables

Online changes will be denied if there is not enough memory space. You specify the available
memory for online changes in the Advanced settings for resource properties. For details about
advanced settings for resources, see page 59.

Miscellaneous Limitations

As described before, you can change code sequences and add or remove variables with some
limitations. However, you cannot change the descriptions of I/O devices. Other limitations
exist for various items of a project:

Types, you cannot add, remove, or change types definitions. When required, you could
define extra types. Such extra types could then be used for future changes.
DS800 Development Suite 2.1 - Workbench 331

Bindings, for some changes made to bindings, no warning message appears during
compilation and modifications are not taken into account by the target at online change.

Resource properties, for some changes made to other options, no warning message
appears and the modification is not taken into account by the target at on line change.

During compilation, changes that are not allowed are detected result in the generation of
warning outputs. Online changes are denied. The target also does some extra checks. However
this function should be used with care. DS800 Development Suite may not detect all possible
conflicts generated by user-defined operations as a result of these online changes.

Operations

Modifying a running resource consists of the following operations:

1. Modifying the resource source code on the Workbench

2. Generating the new resource code

3. Downloading the new resource code using "Online change: download" command on the
Debug menu (instead of "download")

4. Switching from the old resource code to the new one in between PLC execution cycles,
using the "Online change: update" command on the Debug menu

This procedure guarantees that the RAS device Target always has a complete and reliable
running resource, and enables you to control the timing of the sample operations in a very safe
and efficient way. It also enables the user to modify the project when required.

Regardless to the process itself, the "Online Change" is essentially the same as a normal "stop,
download and start" set of commands. The only differences are that no variable state is lost and
the switching time is very short (usually 1 or 2 cycle duration). During the switch, no variable
is modified, and all internal, input, or output variables keep the same value before and after the
resource modification. During the switch, no action is performed, and SFC tokens are not
moved.
332 DS800 Development Suite 2.1 - User Manual

Detailed operations:

1. Before making any change on a running application, it is highly recommended to make a
copy of the current project under another name.

2. Before editing any program, you should edit the description of each POU that will be
modified and indicate the current date and the nature of the modification, to ease future
program maintenance. Select the POU and use the "Tools / Edit Description" command.

3. When one or more allowed changes have been made, the code of the new resource must
be generated on the workbench before downloading. Use the Project / Build Resource

command .

4. Use the "Debug / Online Change: Download" command . In the dialog box
displayed, check the options as desired:

Update and Save after download

Update after download

Update later

The modified code is downloaded by selecting the "Download" button. This may slightly slow
down the RAS device target during transfer.

To save your change later, once it is validated, use the command "Debug / Save code on target".
This command saves the code of the running resource (including changes). To update your
change later, use the command "Debug / On-line change: Update".

If you did not update the change after download (above option):

Using the Debugger, connect the RAS device target and perform any operation which can
make the resource update faster, or more safely, then run the "Debug / On-line change:
update" command

A message is displayed in the Output window to indicate the success of the switch. If
unsuccessful, the existing running application remains as is.
DS800 Development Suite 2.1 - Workbench 333

Debug Function Block Instances
You can visually debug instances of function blocks. Function blocks can be written in SFC,
ST, FBD 61131, FBD 61499, or LD language. Visual debugging consists of animating the
source code of the function block body with the data of a specified instance of the block.

Below is an example of a very simple function block programmed in FBD. The LIB_FB1
function block has the in input and the out output and a constant having a value of 1:

You can distinguish two types of instances of function blocks:

Declared instances declared in the variable dictionary. These instances are considered as
variables.

Automatic instances created in LD or FBD diagrams. The compiler automatically assigns
a unique identifier to each automatic instance. This identifier consists of the __INST
prefix and a sequential number before the function block’s name.

At debug time, you can select instances within a program to open and visualize their diagram.
The following examples show the LIB_FB1 function block used as an automatic instance and
a declared instance in the P2 program. The upper diagrams show the instances in the program,
whereas, the lower diagrams show the individual instances open.

Automatic Instance Declared Instance
334 DS800 Development Suite 2.1 - User Manual

The automatic instance is assigned the INST7LIB_FB1@P2 name and the declared instance
retains its defined name, INSTANCE_LIB_FB1@P2. For automatic and declared instances, a
suffix consisting of the @ symbol and scope is added to the instance name.

To debug declared instances of function blocks

You can debug variables declared instances of function blocks either from the dictionary, in
the LD and FBD diagrams, and in the resource window. However, when declared instances are
from a library, you can only debug these from the dictionary or from the LD and FBD
diagrams.

Note: You cannot debug function block instances declared as parameters of function blocks.

To debug a declared instance do one of the following:

From the dictionary view, select the block then from the Debug menu, choose
Debug FB.

In the function blocks section of a resource window, locate the block then
double-click it.

In the LD or FBD diagram, locate the block then double-click it.

To debug automatic instances of function blocks

You can only debug automatic instances of function blocks from the LD and FBD diagrams.

Open the LD or FBD diagram where the instance is inserted then double-click it.
DS800 Development Suite 2.1 - Workbench 335

Clean Stored Code
If you have downloaded a resource with the "Save" option checked in the Download dialog
box, the resource’s code is stored on the target system. Then if the target RAS device system
restarts, it will load this code and start a virtual machine to run this code.

Note: If you want to clean (i.e. remove) this code from the target and avoid restarting on it,
from the Debug menu, choose Clean Stored Code.
336 DS800 Development Suite 2.1 - User Manual

Document Generator
You can build and print the complete or partial documentation for the current project from
within the Document Generator.

You can access the Document Generator from the hardware architecture view, link architecture
view, dictionary view, or any of the language editors. The Document Generator window has
three tabs:

Table, showing a table (or tree) representing all items that can be printed for the current
project

Options, showing a list of printing options

Preview, displaying a preview of the project to print

To print the documentation for a project

You can choose to print from any tab of the Document Generator.

1. From the File menu, choose Print or click on the Standard toolbar.

The Document Generator is displayed.

2. On the Table tab, select the project items to print.

3. On the Options tab, set the desired printing options for the project documentation.

4. On the Preview tab, review the appearance of the documentation print job.

5. Click Print.

Building and formatting a project’s documentation may take a few minutes. Before running
other commands in the Workbench, you should wait until the printing task is completed.
Building the whole documentation may require a large space on the hard disk. If the disk is full,
an error message is displayed, then you need to either free up disk space by removing files or
reduce the size of the print task.
DS800 Development Suite 2.1 - Workbench 337

Table of Items
The table of items displays all items available for printing for a project. The items preselected
for printing differ depending on the location from which printing is initiated. For
example, when you initiate printing from the link architecture view where the Main resource
is selected, all items defined for this resource appear selected in the Document Generator.
When you initiate printing from a program, only the items defined for the program appear
selected in the Document Generator. You can always choose to select other items for printing.

You expand or collapse a branch of the tree, by clicking the / symbol before an item.

You select items for printing by checking the box at their left. You deselect items by
unchecking them. Checking an item at the top of a sub-tree automatically selects all items
below it for printing. In the following example, only the Main resource was checked for
printing:

Clicking here collapses GMAIN sub-tree

Clicking here expands Drive sub-tree
338 DS800 Development Suite 2.1 - User Manual

When some (but not all) items within a tree are selected, the check box at the top of the
structure is grayed:

When items such as projects, resources, or POUs are password-protected (locked), these are
unavailable for printing and appear grayed:
DS800 Development Suite 2.1 - Workbench 339

Printing Options
Project documentation uses the default printer settings specified for your computer. However,
you can define many other printing options. You can choose to place each item on a new page.
You can also choose to print diagrams in landscape orientation. This option sets the printing of
all FBD and LD diagrams using the landscape orientation while printing all other items using
the portrait orientation. FBD and LD diagrams including guideline areas are automatically
scaled to fit the width of the printed pages. You can also specify printing options for the
following documentation aspects:

Header / Footer. You can choose to display document information including the date and
page count as a header at the top of each page or as a footer at the bottom of each page.
You can also choose to have no headers or footers. You can modify the contents of the
displayed header or footer by clicking Edit in the Header/Footer section of the printing
options.

You can choose to use one of two formats as header/footer. One format provides three
fields where you can enter text. In both formats, you can change the logo by entering the
path and filename of a bitmap (.bmp) file. Click "…" to browse and select your file.
340 DS800 Development Suite 2.1 - User Manual

When replacing the bitmap for the format B option, you need to use one consistent with
the resolution of your printer. For example, the default bitmaps are consistent with a 600
dpi printer.

Page numbering. You can specify the page numbering method used for the project
document printing: page count (#/total number of pages), page number (#), or section
number (#.#.#.#.#).

For page count, the page section in the header/footer displays the page number out of the
total number of pages and the table of contents starts count at 1.

For page number, the page section in the header/footer displays the page number and the
table of contents starting count at the Start Page value. When no value is specified, page
numbering begins at 1.

For section number, the page section in the header/footer displays the page number and
the table of contents starting count at the Start Section value after the table of contents
page; the header and table of contents pages use the lower-case Roman numerals i and ii,
then section numbering begins. When no value is specified, section numbering begins
at 1.

You can only include page numbering in a header or footer.

Cover page. You can choose to include the header or footer on the cover page of the
project documentation. You can also choose to add a printing history. When the printing
starts up, a dialogue box is displayed where you can enter a note describing the actual
print command. Such notes are stored in a history file and are printed on the first page of
any future document (including the present one).

Margins. You can choose to include visible margins on all pages. When checked, the
width of each margin (top, bottom, left, right) is user-definable, using the corresponding
edit boxes.

Fonts. You can change the font used to print text by clicking Text font and making the
desired changes. You can change the font used to print all titles (corresponding to items
listed in the table) by clicking Title font and making the desired changes.
DS800 Development Suite 2.1 - Workbench 341

Preview
You can choose to preview a document with the selected items before printing. You can scroll
the complete document. You can also print previewed pages.
342 DS800 Development Suite 2.1 - User Manual

While printing pages, you can choose to print all of a document, the current page, or specific
sections of the document. When defining the printing of a range between sections, you need to
specify the start and end section.

Since pagination for project documentation is set using the default paper dimensions specified
for your computer, when changing the paper dimensions from the Print dialog, the pagination
for project documentation differs from the preview.
DS800 Development Suite 2.1 - Workbench 343

Code Generator
The Code Generator is launched with the "Build …" commands of the Workbench and editors.
The Code Generator shows compilation errors in the output window.

You can build the code of a single POU, a complete resource, or a whole Project.

Warning: Before building code, you should save all programs currently being editing.
Furthermore, for each resource, you could also verify the target type and the type of code to
generate.

Build
Before downloading code onto your RAS device target systems, you must first build the code
of the whole project. This operation builds the code of all resources of the project, and builds
information used to recognize your systems on networks. You cannot build projects open in the
read-only mode.

Once a project has been built, subsequent builds only recompile the parts of the project needing
recompilation. You can choose to rebuild a project, i.e., recompiling a whole project, to ensure
that the complete compiled version is up-to-date with the current Workbench project. You can
rebuild projects following a date change on a system or relocation of a project onto a different
computer.

You can choose to clean projects. However, after cleaning a project, you cannot perform online
changes. Therefore, to retain the ability to perform online changes, you can rebuild a project
rather than cleaning then building it.

While performing builds, the security state of unlocked resources and resources having no
access control switches to read-only mode. The security state of unlocked POUs and POUs
having no access control also switches to read-only mode. Locked resources and locked POUs
remain locked.

To build the project

From the Project menu, choose Build Project or click on the Standard toolbar.
DS800 Development Suite 2.1 - Workbench 345

If the hardware architecture view is not changed, building resource code is enough to update
one Virtual Machine.

To rebuild a project

From the Project menu, choose Rebuild Projector click on the Standard toolbar.

Build a POU

While editing a POU, the "Build program" command allows you to verify programming syntax
errors for the current program.

Error messages are displayed in the Output window. Double-clicking on the error message
places the caret on the error or, for graphic programs, selects the erroneous graphic element.

The Build program command verifies the current program even if it has not been modified
since its last verification.

While performing builds, the security state of unlocked POUs and POUs having no access
control switches to read-only mode. Locked POUs remain locked.
346 DS800 Development Suite 2.1 - User Manual

Building Resources / Projects

The "Build Resource" or "Build Project" command displays the number of the error detected
in all POUs in the Output window.

Double-clicking on the number of errors of a POU opens the corresponding editor for
corrections to be made.

The "Build Project" performs the "Build Resource" command for all resources of the project
and builds information used to recognize configurations on networks.

Note: While in single resource mode, you cannot build a resource having links to libraries
located on a different computer.

The "Build Resource" command constructs the entire code of the resource. Before generating
anything, this command checks the syntax of the declarations and programs of each resource.
Errors that cannot be detected during single program compiling are detected using these
commands. For example, the IO Wiring and Binding Links are checked.

While performing builds, the security state of unlocked resources and resources having no
access control switches to read-only mode. Locked resources remain locked.

Programs which have already been checked (with no errors detected) and have not been
modified since their last "Build program" operation are not re-compiled. Variable declaration
verification and coherence checking are always performed.
DS800 Development Suite 2.1 - Workbench 347

Stopping Builds

You can stop a build, i.e, compilation, in progress for a project, resource, or POU. This feature
is not available when using a PROPI interface. When a build process is stopped, it can be
restarted without affecting the incremental or full compilation. After a build is stopped, online
changes can be performed since a copy of the last build is kept until a complete new one is
generated.

To stop a build

From the Project menu, choose Stop Build.

Or

On the Standard toolbar, click .

You can also abort build operations by pressing the <ESCAPE> key.

Cleaning Projects

The "Clean Project" or "Clean Resource" commands (on the Project menu of the Workbench)
simulate a modification of all the project's (or resource's) programs, so that they are all verified
during the next "Build Project" or "Build Resource" operation.

Note: After cleaning a project, you cannot perform online changes. Cleaning projects or
resources actually deletes all files generated during the last "Build" command. Therefore, to
retain the ability to perform online changes, you can rebuild a project rather than cleaning then
building it.
348 DS800 Development Suite 2.1 - User Manual

Compiler Options
Compiler options are defined for each resource. These options enable setting up the parameters
used by the Code Generator to build and optimize the target code. In the Compilation Options
of a resource, you select the type of code to generate according to corresponding targets and
set up the optimizer parameters according to the expected compilation and run-time
requirements. For details on resource compilation options, see page 55.

The general compiler options are the following:

Check array index, enables the verification of array indices

Enable internal state information for functions. Functions containing no internal state
information denotes that the invocation of a function with the same arguments always
yields the same values.

Generate Diagnostic files from POU object files, To be defined
DS800 Development Suite 2.1 - Workbench 349

The link compiler options are the following:

To be defined

To access the compiler options for a resource

The general and link compiler options are accessed for individual resources from the resources
properties window.

1. From the Window menu, choose project_name-Link Architecture.

2. Select a resource.

3. From the Edit menu, choose Properties.

The Resource Properties window is displayed.

4. On the Target/Code tab, click Compiler Options.

The Compiler Options dialog is displayed.
350 DS800 Development Suite 2.1 - User Manual

C Source Code
The workbench compiler produces, by default, TIC code (Target Independent Code) that can
be executed by virtual machines. The compiler also enables the production of code in "C". You
select code production in the Compilation Options of a resource. For details on resource
compilation options, see page 55.

POUs written in FC (Flow Chart), FBD, LD, ST, IL and action blocks and conditions of SFC
POUs are generated in "C" source code format.

The "C" source files must be compiled and linked to the target libraries in order to produce the
final executable code. For further information about recommended implementation techniques,
refer to the "I/O Development Toolkit User's Guide".

Note: Some debugging features such as downloading the resource code, online modification,
and breakpoints are not available when the resource is compiled using the "C" language.
DS800 Development Suite 2.1 - Workbench 351

Project Tree View
The Project Tree View displays the project structure and enables accessing most aspects of the
currently opened project. For instance, you can access the link or hardware architecture views,
the internal binding list, elements (programs, functions, and function blocks) defined for
resources and I/O wiring. You can also access utilities such as the events viewer, trends logger,
and driver monitor.

Contextual menus enabling tasks such as locating and opening project elements are available
by right-clicking these elements.

To access the Project Tree View

From the Window menu, choose Show Project Tree View.
DS800 Development Suite 2.1 - Workbench 353

Cross References Browser
The Cross References Browser is a tool that finds in the POUs of a project all references to
global variables, i.e., cross references, defined in a project. It provides a total view of the
declared variables in the programs of the project and where these are used. The aim of the
browser is to list all the global variables, I/Os, and instances declared in the project, and to
localize, in the source of each program the parts of source code where those variables are used.
The browser is very useful for a global view of one variable life cycle. This helps localize side
effects, and reduce the time to understand the project during maintenance.

The browser is divided into five sections:

A, the list of global objects declared in a project

B, the search field where you enter a name to search in the list of objects

C, the description of the object selected in the list

D, the locations of the object selected in the list in the project POUs. For variables, the
description includes the direction, i.e., READING FROM, WRITING TO.

E, an output window where messages and error messages are displayed
DS800 Development Suite 2.1 - Workbench 355

When viewing global objects in the browser, the symbol indicates that the object is not
used in any POUs.

You can perform many tasks from the Browser’s toolbar:

To access the browser

You can access the browser using the menu, the toolbars, or from a contextual menu, available
by right-clicking in a language editor.

From the Tools menu, choose Browser or from the Window Buttons toolbar, click .

keeps the browser always on top

locates the name entered in the Find field (B) from the list
of global objects declared in the project (A)
browses, i.e., parse the POUs to re-calculate the cross
references
prints the cross references

clears the output window

shows or hides the list of declared objects

shows or hides the output window

accesses the available options for the calculation of cross
references
356 DS800 Development Suite 2.1 - User Manual

Calculating Cross References
When you calculate cross references, these are stored in a cross references file. Such a file is
automatically created for each resource of a project. These files eliminate the need to parse
POUs each time the browser is closed and re-opened. When files are missing or invalid due to
changes in the project, messages are displayed in the output window. The cross reference files
are deleted when you clean a project.

When cross references are out of date, the icon appears in the browser’s title bar.

To calculate cross references

From the Browser’s toolbar, click .

Browsing the POUs of a Project
Occurrences of a selected object in the source files of an open project appear in the locations
section of the browser. Double-clicking an occurrence opens the program directly where the
object appears.
DS800 Development Suite 2.1 - Workbench 357

Defining Search Options
You can define the search options used when finding cross references. The options consist of
three types: the global object to search for during the next scan, the objects to list in the browser
window, and the exact set of configurations and resources in which to search for selected
objects. You can choose to scan the cross references for one or more resources in order to
shorten calculation time.

The options for the global object to search for are:

The options specifying what objects to listed in the browser window are:

To define search options

Changes only take effect during the next scan.

1. From the Browser’s toolbar, click .

2. In the list of available options, check the desired options.

Variables all global variables and I/Os
Programs program names (SFC or FC names can be used in parent programs)
Functions all functions declared in the project or in attached libraries, plus "C"

and standard functions available for the corresponding RAS device
target

Function Blocks all function blocks declared in the project or in attached libraries, plus
"C" and standard function blocks available for the corresponding RAS
device target

Defined Words aliases defined in the "Defined Words" section of the dictionary, in the
project or in attached libraries

Unused list unused variables
Used list variables used in POUs
358 DS800 Development Suite 2.1 - User Manual

Version Source Control
You can manage the changing versions of Workbench elements including projects,
configurations, resources, and POUs by saving them to a version source control database.
Saving these elements to a control database enables you to retrieve older versions of the
elements at a later time. The information saved in the database also includes advanced options
definitions such as alarms and events, field communications, fail-over mechanisms, trending,
and Web HMI data servers. Version source control also applies to projects opened in
single-resource mode.

You save version source control information to a repository using one of two modes:

file mode where you specify a path for a local or remote computer

client/server mode where you specify login information and server location. Before
setting this mode, the repository project must exist.

The default uses the file mode and saves this information in a VSC folder in the project folder.
A repository folder, defined by the path, can hold multiple version source control projects. You
can choose to clear the version source control status for a project. Clearing the version source
control status for a project means disabling the version source control for the project. The
version source control repository must be removed manually.

Workbench elements are always editable. Therefore, you do not need to check these out of the
control database to modify them. At any time, you can check in, i.e., save, changes made to
elements in the control database. When you check in an element, all of its descendants are also
checked in. For instance, when you check in a project, all of its configurations, resources, and
POUs are checked in. You can only check in or get elements available for edition: you cannot
check in or get elements having the read-only attribute. However, you can view the history of
read-only elements.

When you retrieve, i.e., get, a Workbench element from the control database, this element is
automatically updated to the current version. Therefore, a local element containing more
current definitions could be overwritten. Before using a retrieved project or configuration, you
need to recompile the entire project. Before using a retrieved resource or POU, you need to
recompile the resource.
DS800 Development Suite 2.1 - Workbench 359

Deleting or renaming previously checked in Workbench elements detaches these from their
history in the control database. For instance, before retrieving any part of a deleted resource’s
history, you need to recreate a new instance of the resource having the same name.

When performing a check in, individual elements are placed in four file types within the control
database. For example, a project is split into a project file, a configuration file for each
configuration, a resource file for each resource, and a POU file for each POU. The project file
contains a list calling its configurations, resources, and POUs. The information retained in each
type of file varies:

Stored element files do not retain information such as imported target definitions, compilation
output files, driver definitions, and protocols. Each POU also has a second file holding the code
and instructions (POU_name.stf).

The version control status of an element is indicated in the Workbench. For a project, the status
is indicated in textual format in the title bar: Up-to-date or Locally modified. For a
configuration or resource, the status is displayed as an icon at the left-hand corner of its
title bar. For a POU, the status is applied directly to the POU icon.

Element Type Retained in Control Database File
POU POU properties, local variables, symbols, and advanced

options definitions as well as a list of contained child POUs
Resource Resource properties, global variables, internal/external

bindings, I/O devices, variable groups, and advanced options
definitions as well as a list of contained POUs

Configuration Configuration settings, network connections, and advanced
options definitions as well as a list of contained resources

Project Project settings, types, and advanced options definitions as
well as a list of contained configurations, and resources

Up-to-date. The file is identical to the latest version in the source control
database or to its retrieved version.

Locally modified. The file differs from the latest version in the source control
database or from its retrieved version. A modification at any level affects the
upwards status of the project elements. For instance, when modifying a
resource, the status of the resource as well as the configuration and project to
which it belongs become locally modified.
360 DS800 Development Suite 2.1 - User Manual

When using version source control with your projects, you can perform the following tasks:
Performing a Check in of a Workbench Element
Viewing the History of Workbench Elements

Results and errors for version source control operations are displayed in the output window.

To define a version source control repository

You can choose to save version source control information for a project using the file mode or
the client/server mode.

1. With the project open in the Workbench, from the File menu, choose Project Properties.

2. In the Project Properties window, select the Version Control tab.

3. In the Repository path and Repository Project field, specify the location in which to save
the version source control information by clicking to browse the path.

The syntax to specify a server repository path on a remote computer is as follows:
UserName:Password@RemoteComputer

where UserName and Password represent the logon information for the remote computer,
RemoteComputer represents the name or IP address of the computer.
DS800 Development Suite 2.1 - Workbench 361

To clear version source control status for a project

1. With the project open in the Workbench, from the File menu, choose Project Properties.

2. In the Project Properties window, select the Version Control tab.

3. Make sure the repository path is the correct one for the project, then click Clear VSC
status.

The version source control information is disabled for the project.
362 DS800 Development Suite 2.1 - User Manual

Performing a Check in of a Workbench Element
You can check in, i.e., save, project, configuration, resource, and POU definitions not having
the read-only attribute into a version source control database. For elements having access
control, the check-in process encrypts the element in the version source control database
making them accessible upon entering a valid password.

To check in a project

1. With the project open in the Workbench, from the Tools menu, choose Check In,
then Project.

2. In the Check In dialog, enter a comment (optional), then click OK.

The project definitions including all of its configurations, resources, and POUs is saved in the
version source control database.

To check in a configuration, resource, or POU

You can check in configurations and resources from the hardware architecture view. You can
check in resources and POUs from the link architecture view. You can check in configurations,
resources, or POUs using the main menu or from a contextual menu, available by right-clicking
the element.

1. In the applicable view, select the element to check in.

2. From the Tools menu, choose Check In, then the respective option.

3. In the Check In dialog, enter a comment (optional), then click OK.

The element’s definitions are saved in the version source control database. For configurations,
these definitions include all of its resources and POUs. For resources, these definitions include
all of its POUs.
DS800 Development Suite 2.1 - Workbench 363

Viewing the History of Workbench Elements
You can view the history of projects, configurations, resources, and POUs that have been
checked in repeatedly to the version source control database. Each checked in version appears
as a separate entry.

To view the history of a project

With the project open in the Workbench, from the Tools menu, choose View History,
then Project.

All previously checked-in versions of the project are displayed.

To view the history of a configuration, resource, or POU

You can view the history of configurations and resources from the hardware architecture view.
You can view the history of resources and POUs from the link architecture view. You can view
the history of configurations, resources, or POUs using the main menu or from a contextual
menu, available by right-clicking the element.

1. In the applicable view, select the element for which to view the history.

2. From the Tools menu, choose View History, then the respective option.

All previously checked-in versions of the element are displayed.
364 DS800 Development Suite 2.1 - User Manual

Getting a Previous Version

When viewing the history of a project, configuration, resource, or POU, you can choose to get,
i.e., retrieve, a previously checked in version of the element. For elements having access
control, you can access them upon entering a valid password.

Warning: Since getting an element from the control database automatically updates a locally
held version to the retrieved version, a local element or its underlying elements containing
more current definitions could be overwritten. For example, getting a project from the control
database where a resource and POU have been locally modified since the check in causes the
resource and POU to be overwritten with their older definitions contained in the control
database.

When you delete or rename a Workbench element that was checked in to the control database,
you cannot retrieve any part of the history for this element from the database unless you
recreate a new instance of this element having the same name.

To get a previous version of a Workbench element

In the History list of elements, select the version to retrieve, then click Get.

This older version replaces the current version.

Comparing Current and Previous Versions

When viewing the history of a project, configuration, resource, or POU, you can choose to
compare a previously checked in version of the element with the current version or another
checked-in version.

To compare a previous and current version of an element

In the History list of elements, select the version with which to compare, then click Diff.

The response indicates whether the files are different or identical. To navigate between
File Differences windows and the Workbench, you need to close the History window.
DS800 Development Suite 2.1 - Workbench 365

Ac cessing Details for a Previous Version

When viewing the historyof a project, configuration, resource, or POU, you can access history
details on a previously checked in version of the element. These details include the incremental
version number, automatically assigned at check in, the date on which the version was checked
in, and the identity of the user who checked in the version as well as an optional comment.

To access the history details of a previous version

In the History list of elements, select the version for which to access details, then
click Details.

The History Details dialog is displayed showing the details for the selected version.

Creating a History Report

When viewing the history of a project, configuration, resource, or POU, you can choose to
create a report of text format (.txt) on the history of the element. This report lists all or selected
incremental checked-in versions, the dates of each check in, and the user that performed each
check in. A report can also include the differences from one version to the next. Before sending
a report to a file, you can choose to preview it.

To create a history report for an element

1. In the History list of elements, click Report.

2. In the History Report dialog, do the following:

To include version numbers, check-in dates, and check-in users, check Include
details.

To include the differences between versions, check Include differences.

3. To preview the report before sending it to file, click Preview.

4. To send the report to file, click OK, then choose the location in which to save the file.
366 DS800 Development Suite 2.1 - User Manual

Language Reference

This Language Reference is a complete description of all available features for programming
ROC applications with this Workbench.

A description of the project architecture, variables and the syntax of each programming
language is given, along with a full listing of the standard functions, function blocks and
Operators that can be called by programs.
DS800 Development Suite 2.1 - Language Reference 367

Project Architecture
A Project is composed of configurations. A configuration is one RAS device unit and is
composed of one or more resources. A resource represents a DS800 target Virtual Machine. A
resource is divided into several programming units called POUs (Program Organization Unit).
The POUs of a resource are linked together in a tree-like architecture. POUs can be described
using any of SFC, FC, ST, IL, FBD, or LD graphic or literal languages. POUs can be
programs, functions or function blocks.

Programs
A Program is a logical programming unit, that describes operations between variables of the
process. Programs describe either sequential or cyclic operations. Cyclic programs are
executed at each target system Cycle. The execution of sequential programs has a Dynamic
Behavior.

Programs are linked together in a hierarchy tree. Those placed on the top of the hierarchy are
activated by the system. Child-programs (lower level of the hierarchy – only for SFC and FC:
Child SFC and FC Sub-programs) are activated by their father. A program can be described
with any of the available graphic or literal languages:

Sequential Function Chart (SFC)

Flow Chart (FC)

Function Block Diagram (FBD)

Ladder Diagram (LD)

Structured Text (ST)

Instruction List (IL)

The same program cannot mix several languages, except for LD and FBD which can be
combined into one diagram.
368 DS800 Development Suite 2.1 - User Manual

SFC programs and SFC child programs have dynamic behavior limits which are set at the
resource level. Whereas, SFC function blocks and SFC child function blocks each have their
own maximum number of tokens which are set in their individual properties.

Cyclic and Sequential Operations
The hierarchy of POUs is divided into three main sections or groups:

Programs before and after SFC and FC programs describe cyclic operations, and are not time
dependent. They are called cyclic programs. SFC and FC programs describe sequential
operations, where the time variable explicitly synchronizes basic operations. These are called
Sequential programs. Cyclic programs are systematically executed at the beginning of each
run time cycle. Main sequential programs (at the top of the hierarchy) are executed according
to the SFC and FC dynamic behavior.

POUs of the "Functions" section are programs that can be called by any other program in the
project. These are called functions. A function can call another function.

POUs of the "Function Block" section are programs that can be called by any other POU in the
project. Thes are called function blocks. A function block section can call functions or other
function blocks.

Main sequential programs must be described with the SFC or the FC language. Cyclic
programs cannot be described with the SFC language, neither with the FC language. Any SFC
program may own one or more SFC child. Any FC program can "call" one or more FC
sub-program.

Functions can be described with the ST, LD, or FBD languages and function blocks can be
described with the SFC, ST, LD, or FBD language. Functions and function blocks can be called
from actions or conditions of SFC or FC programs.

Program Section Programs located in this part represent the target cycle. Note that inside
this section, SFC and FC programs, which represent sequential
operations, are grouped together.

Function Section Set of functions that can be called by any program.

Function Block
Section

Set of function blocks that can be called by any program.
DS800 Development Suite 2.1 - Language Reference 369

Programs located at the beginning of the cycle (before sequential programs) are typically used
to describe preliminary operations on input devices to build high level filtered variables. Such
variables are frequently used by the programs of the sequential programs. Programs located at
the end of the cycle (after sequential programs) are typically used to describe security
operations on the variables operated on by sequential programs, before sending values to
output devices.

Child SFC POUs
Any SFC POU may control other SFC POUs. Such low level units are called child SFC. A
child SFC POU is a parallel unit that can be started, killed, frozen, or restarted by its parent.
The parent POU and child POU must both be described with the SFC language. A child SFC
POU may have local variables.

When a parent POU starts a child SFC, it puts an SFC token (activates) into each initial step
of the child. This command is described with the GSTART statement or with the name of the
child with the S qualifier. When a parent POU kills a child SFC, it clears all the tokens existing
in the steps of the child. Such a command is described with the GKILL statement or with the
name of the child and the R qualifier. When a father POU starts a child, the father continues its
execution.

When a parent POU freezes a child SFC, it clears all the tokens existing in the child, and keeps
their position in memory. Such a command is described with the GFREEZE statement. When
a parent POU restarts a frozen child SFC, it restores all the tokens cleared when the child was
frozen. Such a command is described with the GRST statement.

Child SFC function block instances, as their SFC function block fathers, have a maximum
number of tokens, unlike SFC programs whose dynamic behavior limits are set at the resource
level. You specify the tokens limit for an SFC function block in its setting properties, accessed
by selecting the block, then from the Edit menu, choosing Properties, then the Settings tab.

When using an SFC function block with an SFC child, you can access, for read-only purposes,
the local values of the child from its father by entering the child’s name and the parameter in
an action or transition’s code. For example, to access the Local1 parameter of an SFC child
named FB_Child, in an action or transition defined for the SFC function block father, you
would write the following:

FB_Child.Local1
370 DS800 Development Suite 2.1 - User Manual

FC Sub-Programs
Any FC program can call one or more FC program. The FC Sub-program execution is driven
by its parent program. The parent FC program execution is suspended until the FC
Sub-program execution ends.

Functions
A function execution is driven by its parent program. The execution of the parent program is
suspended until the function ends:

Any program of any Section may call one or more functions. A function may have local
variables. The ST, LD, FBD or IL languages can be used to describe a function.

Parent program FC sub-program FC sub-program

Main program Function Function
DS800 Development Suite 2.1 - Language Reference 371

Warning: The system does not support recursivity during function calls. A run-time error
occurs when a program of the "Functions" Section is called by itself or by one of its called
functions. Furthermore, a function does not store the local value of its local variables. A
function is not instantiated, therefore, cannot call function blocks.

The interface of a function must be explicitly defined, with a type and a unique name for each
of its calling (or Input Parameter) or return parameter (or Output Parameter). In order to
support the ST language convention, the return parameter must have the same name as the
function. There is only one output parameter.

The following information shows how to set the value of the return parameter in the body of a
function, in the various languages:

ST: assign the return parameter using its name (the same name as the
function):

FunctionName := <expression>;
IL: the value of the current result (IL register) at the end of the sequence

is stored in the return parameter:

LD 10
ADD 20 (* return parameter value = 30 *)

FBD: set the return parameter using its name:

FunctionName
LD: use a coil symbol with the name of the return parameter:

FunctionName
372 DS800 Development Suite 2.1 - User Manual

Function Blocks
Function blocks can use the SFC, ST, LD, or FBD languages. Function blocks are instantiated
meaning local variables of a function block are copied for each Instance. When calling a
function block in a program, you actually call the Instance of the block: the same code is called
but the data used are the one which have been allocated for the Instance. Values of the variables
of the Instance are stored from one cycle to the other.

The interface of a function block must be explicitly defined, with a type and a unique name for
each of its calling (or Input Parameter) or return parameters (or output parameters). A function
block can have more than one output parameter.

The following information shows how to set the value of an output parameter in the body of a
function block, in the various languages:

(* ST Programming *)

(* FB1 is a declared Instance
of the SAMPLE Function Block *)

Function Block Implementation

ST: assign the output parameter using its name concatenated with the function block
name
FunctionBlockName.OutputParaName := <expression>;

IL: use LD and ST operator:
LD FunctionBlockName.OutputParaName
ST 20 (* value of Parameter = 20 *)
DS800 Development Suite 2.1 - Language Reference 373

Warning: When you need a loop in your function block, you must use local variable before
doing the loop.

SFC function block instances, as their SFC child blocks, have a maximum number of tokens,
unlike SFC programs whose dynamic behavior limits are set at the resource level. You specify
the tokens limit for an SFC function block in its setting properties, accessed by selecting the
block, then from the Edit menu, choosing Properties, then the Settings tab.

FBD: set the return parameter using its name:
OutputParaName

LD: use a coil symbol with the name of the return parameter:
OutputParaName

This will not work: This is OK:
374 DS800 Development Suite 2.1 - User Manual

Description Language
A program can be described with any of the following graphic or literal languages:

A program cannot contain multiple languages. However, you can combine FBD and LD in a
single program. The language used to describe a program is chosen when creating the program
and cannot be changed.

Sequential Function Chart (SFC) for high level operations

Flow Chart (FC) for high level operations

Function Block Diagram (FBD) for cyclic complex operations

Ladder Diagram (LD) for Boolean operations only

Structured Text (ST) for any cyclic operations

Instruction List (IL) for low level operations
DS800 Development Suite 2.1 - Language Reference 375

Execution Rules
The system is Synchronous. All operations are triggered by a clock. The basic duration of the
clock is called the cycle timing:

1. Scan input variables

2. Consume bound variables

3. Execute POUs

4. Produce bound variables

5. Update output devices

In the case where bindings (Data Links between resources) have been defined, variables
consumed by this resource are updated after the inputs are scanned, and the variables produced
to other resources are "sent" before updating the outputs.

If a cycle time is programmed, the virtual machine waits until this time has elapsed before
starting the execution of a new cycle. The POUs execution time varies depending upon the
number of active steps in SFC Programs and on instructions such as Jump, IF and Return…

Wait

Programmed Cycle Time
376 DS800 Development Suite 2.1 - User Manual

Common Objects
These are main features and common objects of the programming data base. Such objects can
be used in any POU (Program Organization Unit: programs, functions or function blocks)
written with any of the SFC, FC, FBD, IL, ST, or LD languages.

Data Types
Any constant, expression, or variable used in a POU (written in any language) must be
characterized by a type. Type coherence must be followed in graphic operations and literal
statements.

Types are known by any resource of a Project; types have a common Scope. These types are:

Standard IEC 61131 Types

User Types (based on standard IEC 61131 types)

Standard IEC 61131 Types

You can program objects using 17 standard IEC 61131 types:

BOOL: logic (true or false) value

SINT: short integer continuous value (8 bit)

DINT: double integer continuous value (32 bit)

REAL: real (floating) continuous value (32 bit)

TIME: time values less than one day; these value types cannot store dates (32 bit)

STRING: character string having a defined size, representing the maximum number of
characters the string can contain. For example, to define MyString as a string containing
10 characters, enter MyString(10). For information on using string variables, see
page 391.
DS800 Development Suite 2.1 - Language Reference 377

Based on the above standard IEC 61131 types, you can define new user types. Furthermore,
you can define arrays or structures using standard IEC 61131 types, arrays, or other user types.

When creating a variable, a dimension can be given to define an array. The following example
shows the MyVar variable of type BOOL having a dimension defined as follows: [1..10]

FOR i = 1 TO 10 DO
MyVar[i] := FALSE;
END_FOR;
378 DS800 Development Suite 2.1 - User Manual

User Types: Arrays

You can define arrays of standard IEC 61131 types or user types. An array has one or more
dimension. When an array is defined, a variable can be created with this type and a structure
can have a field with this type. Array dimensions are positive DINT constant expressions and
array indexes are DINT constant expressions or variables.

Note: Arrays must be declared in the Dictionary View before using them in Functional Block
Diagrams (FBD).

Example

1. One-dimensional array:

MyArrayType is an array of 10 BOOL. Its dimension is defined as follows: [1..10].
MyVar is of type MyArrayType.
Ok := MyVar[4];

2. Two-dimensional array:

MyArrayType2 is an array of DINT. It has two dimensions defined as follows:
[1..10,1..3]
MyVar2 is of type MyArrayType2
MyVar2[1,2] := 100;

3. Array of an array:

MyVar3 is an array of MyArrayType; Its dimension is defined as follows [1..3]
FOR I := 1 TO 3 DO
FOR J := 1 TO 10 DO
MyVar3[I][J] := FALSE;
END_FOR;
END_FOR;
DS800 Development Suite 2.1 - Language Reference 379

User Types: Structures

Users can define structures using standard IEC 61131 types or user types. A structure is
composed of sub-entries called Fields. When a structure is defined, a variable can be created
with this type.

Example

MyStruct1 is composed of:

Field1 which is BOOL
Field2 which is DINT

MyStruct2 is composed of:

Field1 which is DINT
Field2 which is BOOL
Field3 which is an array of 10 DINT
Field4 which is of type MyStruct1

MyVar of type MyStruct2 can be used as follows:

Value1 := MyVar.Field1; (* Value1 is of type DINT *)
Ok1 := MyVar.Field2; (* Ok1 is of type BOOL *)
Tab[2] := MyVar.Field3[5]; (* Tab is an array of DINT *)
Value2 := MyVar.Filed3[8]; (* Value2 is of type DINT *)
Ok2 := MyVar.Field4.Field1; (* Ok2 is of type BOOL *)
380 DS800 Development Suite 2.1 - User Manual

Constant Expressions
Constant expressions are relative to one type. The same notation cannot be used to represent
constant expressions of different types.

Boolean Constant Expressions

There are only two Boolean constant expressions:

TRUE is equivalent to the integer value 1

FALSE is equivalent to the integer value 0

"True" and "False" keywords are not case-sensitive.

Short Integer Constant Expressions

Short integer constant expressions represent signed integer (8 bit) values:

from -128 to +127

Short integer constants may be expressed with one of the following Bases. Short integer
constants must begin with a Prefix that identifies the Bases used:

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance other than to improve constant expression readability.

Base Prefix Example

DECIMAL (none) 19
HEXADECIMAL "16#" 16#A1
OCTAL "8#" 8#28
BINARY "2#" 2#0101_0101
DS800 Development Suite 2.1 - Language Reference 381

Double Integer Constant Expressions

Double integer constant expressions represent signed double integer (32 bit) values:

from -2147483648 to +2147483647

Double integer constants may be expressed with one of the following Bases. Double integer
constants must begin with a Prefix that identifies the Bases used:

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance other than to improve constant expression readability.

Real Constant Expressions

Real constant expressions can be written with either Decimal or Scientific representation. The
decimal point ('.') separates the Integer and Decimal parts. The decimal point must be used to
differentiate a Real constant expression from an Integer one. The scientific representation uses
the letter 'E' to separate the mantissa part and the exponent. The exponent part of a real
scientific expression must be a signed integer value from -37 to +37. A real variable has six
significant digits.

Example

Base Prefix Example

DECIMAL (none) -908

HEXADECIMAL "16#" 16#1A2B3C4D

OCTAL "8#" 8#1756402

BINARY "2#" 2#1101_0001_0101_1101_0001_0010_1011_1001

3.14159 -1.0E+12
+1.0 1.0E-15
-789.56 +1.0E-37
382 DS800 Development Suite 2.1 - User Manual

The expression "123" does not represent a Real constant expression. Its correct real
representation is "123.0".

Timer Constant Expressions

Timer constant expressions represent time values from 0 to 1193h2m47s294ms. The lowest
allowed unit is a millisecond. Standard time units used in constant expressions are:

The time constant expression must begin with "T#" or "TIME#" prefix. Prefixes and unit
letters are not case sensitive. Some units may not appear.

Example

T#1H450MS 1 hour, 450 milliseconds
time#1H3M 1 hour, 3 minutes

The expression "0" does not represent a time value, but an Integer constant.

String Constant Expressions

String constant expressions represent character strings. Characters must be preceded by a quote
and followed by an apostrophe. For example:

'THIS IS A MESSAGE'

Warning: The apostrophe ''' character cannot be used within a string constant expression. A
string constant expression must be expressed on one line of the program source code. Its length
cannot exceed 255 characters, including spaces.

Hour The "h" letter must follow the number of hours
Minute The "m" letter must follow the number of minutes
Second The "s" letter must follow the number of seconds
Millisecond The "ms" letters must follow the number of milliseconds
DS800 Development Suite 2.1 - Language Reference 383

Empty string constant expression is represented by two apostrophes, with no space or tab
character between them:

'' (* this is an empty string *)

The dollar ('$') special character, followed by other special characters, can be used in a string
constant expression to represent a non-printable character:

(*) "hh" is the hexadecimal value of the ASCII code for the expressed character.

Sequence Meaning ASCII (hex) Example

$$ '$' character 16#24 'I paid $$5 for this'
$' apostrophe 16#27 'Enter $'Y$' for YES'
$L line feed 16#0a 'next $L line'
$R carriage return 16#0d ' llo $R He'
$N new line 16#0d0a 'This is a line$N'
$P new page 16#0c 'lastline $P first line'
$T tabulation 16#09 'name$Tsize$Tdate'
$hh (*) any character 16#hh 'ABCD = $41$42$43$44'
384 DS800 Development Suite 2.1 - User Manual

Variables
Variables can be LOCAL to one program or GLOBAL to a resource. Local variables can be
used by one program only. Global variables can be used in any program of the resource. Local
or Global information is called the Scope of the variable.

Variable names must conform to the following rules:

Names cannot exceed 128 characters

The first character must be a letter

The following characters can be letters, digits or the underscore character

Reserved Keywords

A list of the reserved keywords is shown below. Such Identifiers cannot be used to name a POU
or a variable:

A ABS, ACOS, ADD, ANA, AND, AND_MASK, ANDN, ARRAY, ASIN, AT,
ATAN,

B BCD_TO_BOOL, BCD_TO_INT, BCD_TO_REAL, BCD_TO_STRING,
BCD_TO_TIME, BOO, BOOL, BOOL_TO_BCD, BOOL_TO_INT,
BOOL_TO_REAL, BOOL_TO_STRING, BOOL_TO_TIME, BY, BYTE,

C CAL, CALC, CALCN, CALN, CALNC, CASE, CONCAT, CONSTANT, COS,

D DATE, DATE_AND_TIME, DELETE, DINT, DIV, DO, DT, DWORD,

E ELSE, ELSIF, EN, END_CASE, END_FOR, END_FUNCTION, END_IF,
END_PROGRAM, END_REPEAT, END_RESSOURCE, END_STRUCT,
END_TYPE, END_VAR, END_WHILE, ENO, EQ, EXIT, EXP, EXPT,

F FALSE, FIND, FOR, FUNCTION,

G GE, GFREEZE, GKILL, GRST, GSTART, GSTATUS, GT,

I IF, INSERT, INT, INT_TO_BCD, INT_TO_BOOL, INT_TO_REAL,
INT_TO_STRING, INT_TO_TIME,
DS800 Development Suite 2.1 - Language Reference 385

All keywords beginning with an underscore ('_') character are internal keywords and must not
be used in textual instructions.

J JMP, JMPC, JMPCN, JMPN, JMPNC,

L LD, LDN, LE, LEFT, LEN, LIMIT, LINT, LN, LOG, LREAL, LT, LWORD,

M MAX, MID, MIN, MOD, MOVE, MSG, MUL, MUX,

N NE, NOT,

O OF, ON, OR, OR_MASK, ORN,

P PROGRAM

R R, READ_ONLY, READ_WRITE, REAL, REAL_TO_BCD, REAL_TO_BOOL,
REAL_TO_INT, REAL_TO_STRING, REAL_TO_TIME, REPEAT, REPLACE,
RESSOURCE, RET, RETAIN, RETC, RETCN, RETN, RETNC, RETURN,
RIGHT, ROL, ROR,

S S, SEL, SHL, SHR, SIN, SINT, SQRT, ST, STN, STRING, STRING_TO_BCD,
STRING_TO_BOOL, STRING_TO_INT, STRING_TO_REAL,
STRING_TO_TIME, STRUCT, SUB, SUB_DATE_DATE, SYS_ERR_READ,
SYS_ERR_TEST, SYS_INITALL, SYS_INITANA, SYS_INITBOO,
SYS_INITTMR, SYS_RESTALL, SYS_RESTANA, SYS_RESTBOO,
SYS_RESTTMR, SYS_SAVALL, SYS_SAVANA, SYS_SAVBOO,
SYS_SAVTMR, SYS_TALLOWED, SYS_TCURRENT, SYS_TMAXIMUM,
SYS_TOVERFLOW, SYS_TRESET, SYS_TWRITE, SYSTEM,

T TAN, TASK, THEN, TIME, TIME_OF_DAY, TIME_TO_BCD,
TIME_TO_BOOL, TIME_TO_INT, TIME_TO_REAL, TIME_TO_STRING,
TMR, TO, TOD, TRUE, TYPE,

U UDINT, UINT, ULINT, UNTIL, USINT,

V VAR, VAR_ACCESS, VAR_EXTERNAL, VAR_GLOBAL, VAR_IN_OUT,
VAR_INPUT, ,VAR_OUTPUT

W WHILE, WITH, WORD

X XOR, XOR_MASK, XORN
386 DS800 Development Suite 2.1 - User Manual

Directly Represented Variables

The system enables the use of directly represented variables in the source of the programs to
represent a free Channel. Free Channels are the ones which are not linked to a declared I/O
variable. The identifier of a directly represented variable always begins with "%" character.

The naming conventions of a directly represented variable for a channel of a single I/O device.
"s" is the slot number of the I/O device. "c" is the number of the Channel:

The naming conventions of a directly represented variable for a Channel of a complex device.
"s" is the slot number of the device. "b" is the index of the single I/O device within the complex
device. "c" is the number of the Channel:

%IXs.c free Channel of a Boolean input I/O device

%IBs.c free Channel of a Short integer input I/O device

%IDs.c free Channel of a Double integer input I/O device

%IRs.c free Channel of a Real input I/O device

%ITs.c free Channel of a Time input I/O device

%ISs.c free Channel of a String input I/O device

%QXs.c free Channel of a Boolean output I/O device

%QBs.c free Channel of a Short Integer output I/O device

%QDs.c free Channel of a Double integer output I/O device

%QRs.c free Channel of a Real output I/O device

%QTs.c free Channel of a Time output I/O device

%QSs.c free Channel of a String output I/O device

%IXs.b.c free Channel of a Boolean input I/O device

%IBs.b.c free Channel of a Short Integer input I/O device

%IDs.b.c free Channel of a Double integer input I/O device

%IRs.b.c free Channel of an Real input I/O device
DS800 Development Suite 2.1 - Language Reference 387

Example

%QX1.6 6th channel of the I/O device #1 (boolean output)
%ID2.1.7 7th channel of the I/O device #1 in the device #2 (integer input)

%ITs.b.c free Channel of a Time input I/O device

%ISs.b.c free Channel of a String input I/O device

%QXs.b.c free Channel of a Boolean output I/O device

%QBs.b.c free Channel of a Short Integer output I/O device

%QDs.b.c free Channel of a Double integer output I/O device

%QRs.b.c free Channel of a Real output I/O device

%QTs.b.c free Channel of a Time output I/O device

%QSs.b.c free Channel of a String output I/O device
388 DS800 Development Suite 2.1 - User Manual

Information on Variables

All variables have an Attribute and a Direction.

Variables can have one of the following Attributes:

They also have a direction:

Note: Some variables cannot be input or output (Timers for example). Each restriction is
indicated in the corresponding section.

Variables of standard IEC 61131 types can be given an Initial Value. The default initial value
is 0 or FALSE. The initial value is the value of the variable when the Target starts the first
Cycle.

Free Variable which can be used for reading or writing, with an
initial value

Read Read-only variable with an initial value
Write Write-only variable with an initial value

Internal Internal variable updated by the programs
Input Variable connected to an input device (refreshed by the

system)
Output Variable connected to an output device
DS800 Development Suite 2.1 - Language Reference 389

Boolean Variables (BOOL)

Boolean means Logic. Such variables can take one of the Boolean values: TRUE or FALSE.
Boolean variables are typically used in Boolean expressions.

Short Integer Variables (SINT)

Short Integer variables are 8-bit signed integers from -128 to +127.

A bit of a short integer variable can be accessed using the following syntax:

MyVar.i

If MyVar is a short Integer.
MyVar.i is a Boolean. "i" must be a constant value from 0 to 7.

Double Integer Variables (DINT)

Double Integer variables are 32-bit signed integers from -2147483648 to +2147483647.

A bit of a double integer variable can be accessed using the following syntax:

MyVar.i

If MyVar is an Integer.
MyVar.i is a Boolean. "i" must be a constant value from 0 to 31.

Real Variables (REAL)

Real variables are standard IEEE 32-bit floating values (single precision).

1 sign bit + 23 mantissa bits + 8 exponent bits
390 DS800 Development Suite 2.1 - User Manual

The exponent value cannot be less than -37 or greater than +37. A real variable has six
significant digits.

Timer Variables (TIME)

Timer means clock or counter. Such variables have time values and are typically used in Time
expressions. A Timer value cannot exceed 1193h2m47s294ms and cannot be negative. Timer
variables are stored in 32 bit words. The internal representation is a positive number of
milliseconds.

String Variables (STRING)

String variables contain character strings. The length of the string can change during process
operations. The length of a string variable cannot exceed the capacity (maximum length)
specified when the variable is declared. String capacity is limited to 255 characters excluding
the terminating null character (0).

String variables can contain any character of the standard ASCII table (ASCII code from 0
to 255). The null character (0) can exist in a character string, however, it indicates the end of
the string.

Strings have a size representing the maximum number of characters that the string can contain.
For example, to define the MyString string containing 10 characters, you would write
MyString(10).
DS800 Development Suite 2.1 - Language Reference 391

Comments
Comments may be freely inserted in literal languages such as ST and IL. A comment must
begin with the special characters "(*" and terminate with the characters "*)". Comments can be
inserted anywhere in a ST program, and can be written on more than one line.

Example

counter := ivalue; (* assigns the main counter *)

(* this is a comment expressed

on two lines *)

c := counter (* you can put comments anywhere *) + base_value + 1;

Interleave comments cannot be used. This means that the "(*" characters cannot be used within
a comment.

Warning: The IL language only accepts comments as the last component of an instruction line.

Defined Words
The system allows the re-definition of constant expressions, true and false Boolean
expressions, keywords or complex ST expressions. To achieve this, an identifier name, called
a defined word, has to be given to the corresponding expression. Defined words have a
Common Scope: they can be used in any POU of any resource of the Project.

Example

YES is TRUE
PI is 3.14159
OK is (auto_mode AND NOT (alarm))

When such an equivalence is defined, its identifier can be used anywhere in an ST program to
replace the attached expression. This is an example of ST programming using defines:
392 DS800 Development Suite 2.1 - User Manual

If OK Then
angle := PI / 2.0;
isdone := YES;
End_if;

Warning: When the same identifier is defined twice with different ST equivalencies, the last
defined expression is used. For example:

Naming defined words must conform to following rules:

name cannot exceed 128 characters

first character must be a letter

following characters can be letters, digits or underscore ('_') character

Warning: A defined word can not use a defined word in its definition, for example, you can
not have:

PI is 3.14159
PI2 is PI*2

write the complete equivalence using constants or variables and operations:

PI2 is 6.28318

Define: OPEN is FALSE
OPEN is TRUE

means: OPEN is TRUE
DS800 Development Suite 2.1 - Language Reference 393

SFC Language
Sequential Function Chart (SFC) is a graphic language used to describe sequential
operations. The process is represented as a set of well defined Steps, linked by Transitions. A
Boolean Condition is attached to each Transition. A set of Actions are attached to each Step.
For programs, Conditions and Actions are detailed using three other languages: ST, IL, or LD.
For function blocks, Conditions and Actions are detailed using only two other languages: ST
or LD. From Conditions and Actions, any Function or Function Block in any language can be
called.

SFC Main Format
An SFC Program is a graphic set of Steps and Transitions, linked together by oriented Links.
Multiple connection Links are used to represent divergences and convergences. The basic
graphic rules of the SFC are:

SFC Programs must have at least one Initial Step

A Step cannot be followed by another Step

A Transition cannot be followed by another Transition
DS800 Development Suite 2.1 - Language Reference 395

SFC Basic Components
The basic components (graphic symbols) of the SFC language are: Steps and Initial Steps,
Transitions, Oriented Links, and Jumps to a Step.

Steps and Initial Steps

A step is represented by a single square. Each step is referenced by a name, written in the step
square symbol. The above information is called the level 1 of the step:

At run time, a token indicates that the step is active:

The initial situation of an SFC program is expressed with initial steps. An initial step has a
double bordered graphic symbol. A token is automatically placed in each initial step when the
program is started.

Reference Name

Active Step: Inactive Step:

Initial Step:
396 DS800 Development Suite 2.1 - User Manual

An SFC program must contain at least one initial step.

These are the attributes of a step. Such fields may be used in any of the other languages:

StepName.x activity of the Step (Boolean value)
StepName.t activation duration of the Step (time value)

(where StepName is the name of the step)

When reading a child active step or duration from a father:

ChildName.__S1.x activity of the Step (Boolean value)
ChildName.__S1.t activation duration of the Step (time value)

(where ChildName is the name of the child. Note that S1 is preceded by two underscore
(_)characters)

For details about ST extensions, see page 467.

Transitions

Transitions are represented by a small horizontal bar that crosses the connection link. Each
transition is referenced by a name, written next to the transition symbol. The above information
is called the level 1 of the transition:

Reference Name
DS800 Development Suite 2.1 - Language Reference 397

Oriented Links

Single lines are used to link steps and transitions. These are oriented links. When the
orientation is not explicitly given, the link is oriented from the top to the bottom.

Jump to a Step

Jump symbols may be used to indicate a connection link from a transition to a step, without
having to draw the connection line. The jump symbol must be referenced with the name of the
destination step:

A Jump symbol cannot be used to represent a Link from a Step to a Transition.

Explicit orientation from
Transistion GT11 to Step GS10

Implicit orientation from
Step GS10 to Transition
GT10

Jump to Step GS10
398 DS800 Development Suite 2.1 - User Manual

Example

The following charts are equivalent:
DS800 Development Suite 2.1 - Language Reference 399

Divergences and Convergences
Divergences are multiple connection links from one SFC symbol (step or transition) to many
other SFC symbols. Convergences are multiple connection links from more than one SFC
symbols to one other symbol. Divergences and convergences can be single or double.

Single Divergences (OR)

A single divergence is a multiple link from one step to many transitions. It allows the active
token to pass into one of a number of branches. A single convergence is a multiple link from
many transitions to the same step. A single convergence is generally used to group the SFC
branches which were started on a single divergence.

Single divergences and convergences are represented by single horizontal lines.

Warning: The conditions attached to the different Transitions at the beginning of a single
divergence are not implicitly exclusive. The exclusivity has to be explicitly detailed in the
conditions of transitions to ensure that only one Token progresses in one Branch of the
divergence at run time.

Single Divergence

Single Convergence
400 DS800 Development Suite 2.1 - User Manual

Example

(* SFC Program with single divergence and convergence *)

Normal OR divergence:
DS800 Development Suite 2.1 - Language Reference 401

Double Divergences (AND)

A double divergence is a multiple link from one transition to many steps. It corresponds to
parallel operations of the process. A double convergence is a multiple link from many steps to
the same transition. A double convergence is generally used to group the SFC branches started
on a double divergence.

Double divergences and convergences are represented by double horizontal lines.

Double Divergence

Double Convergence
402 DS800 Development Suite 2.1 - User Manual

Example

(* SFC program with double divergence and convergence *)
DS800 Development Suite 2.1 - Language Reference 403

Actions Within Steps
The level 2 of an SFC step is the detailed description of the actions executed during the step
activity. This description is made by using SFC literal features, and other languages such as
Structured Text (ST) or Ladder Diagram(LD). The basic types of Actions are:

Boolean actions with Set, Reset or Non-Stored Qualifier.

List of instructions programmed in ST, LD or IL with Pulse or Non-Stored Qualifier

SFC Actions (management of SFC children) with Set, Reset or Non-Stored Qualifier.

Several Actions (with same or different types) can be described in the same Step.

The special feature that enables the use of any of the other language is calling Functions and
Function blocks (written in ST, LD, and FBD)

Boolean Actions

Boolean Actions assign a Boolean Variable with the activity of the Step. The Boolean Variable
can be an output or a memory Variable. It is assigned each time the Step activity starts or stops.
This is the meaning of the basic Boolean Actions:

N on a Boolean Variable assigns the Step activity signal to the Variable

S on a Boolean Variable sets the Variable to TRUE when the Step activity signal
becomes TRUE

R on a Boolean Variable resets the Variable to FALSE when the Step activity signal
becomes TRUE
404 DS800 Development Suite 2.1 - User Manual

The Boolean Variable must be an OUTPUT or a MEMORY variable. The following SFC
programming leads to the indicated behavior:

Pulse Actions

A pulse action is a list of instructions, which are executed only once at the activation of the
Step: P1 Qualifier, or executed only once at the deactivation of the Step: P0 Qualifier.
Instructions are written using the ST, IL or LD syntax.

The following shows the results of a pulse Action with the P1 Qualifier:

Qualifier

Variable Name (S10.X is the activity of Step S10)

Step Activity

Execution
DS800 Development Suite 2.1 - Language Reference 405

Example

Non-stored Actions

A non-stored (normal) action is a list of ST, IL or LD instructions which are executed at each
cycle during the whole active period of the step. Instructions are written according to the used
language syntax. Non-stored actions have the "N" qualifier.

The following is the results of a non-stored Action:

Qualifier Action Name

Code

Step Activity

Execution
406 DS800 Development Suite 2.1 - User Manual

Example

SFC Actions

An SFC action is a child SFC sequence, started or killed according to the change of the step
activity signal. An SFC action can have the N (Non stored), S (Set), or R (Reset) Qualifier. This
is the meaning of the actions on SFC child:

Qualifier Action Name

Code

N on a child starts the child sequence when the Step becomes active, and kills the
child sequence when the Step becomes inactive

S on a child starts the child sequence when the Step becomes active. nothing is done
when the Step becomes inactive

R on a child kills the child sequence when the Step becomes active. nothing is done
when the Step becomes inactive
DS800 Development Suite 2.1 - Language Reference 407

The SFC sequence specified as an Action must be a child SFC Program of the program
currently being edited. Note that using the S (Set) or R (Reset) Qualifiers for an SFC Action
has exactly the same effect as using the GSTART and GKILL statements, programmed in an
ST pulse Action.

Example

(* SFC Program using SFC Actions *)

The main SFC Program is named Father. It has two SFC children, called SeqMlx and
SeqPump. The SFC programming of the father SFC Program is:

List of Instructions

Actions corresponding to several operations can be written as a program using ST, IL and LD
syntax. Such actions can have N, P0 or P1 qualifiers.

Qualifier Child SFC Name
408 DS800 Development Suite 2.1 - User Manual

Calling Functions and Function Blocks

Functions (written in ST, LD, or FBD) or Function Blocks (written in SFC, ST, LD, or FBD)
or "C" Functions and "C" Function Blocks, can be directly called from an SFC action block,
based on the syntax of the language used in the action block.

Detailed syntax can be found in the corresponding language section.

Example

(* SFC program with a Function call in an Action Block *)

Qualifier Action name

ST Code with Function Call
DS800 Development Suite 2.1 - Language Reference 409

Conditions Attached to Transitions
At each Transition, a Boolean expression is attached that conditions the clearing of the
Transition. The condition is usually expressed with ST or LD language. This is the Level 2 of
the Transition. Ways to program a condition:

Conditions programmed in ST or LD

Calling Function from a Transition

Warning: When no expression is attached to the Transition, the default condition is TRUE.

Condition Programmed in ST

The Structured Text (ST) language can be used to describe the condition attached to a
Transition. The complete expression must have Boolean type and may be terminated by a semi
colon, according to the following syntax:

< boolean_expression > ;

The expression may be a TRUE or FALSE constant expression, a single input or an internal
Boolean Variable, or a combination of Variables that leads to a Boolean value.

Example

(* SFC Program with ST programming for Transitions *)

Condition name

ST Code
410 DS800 Development Suite 2.1 - User Manual

Condition Programmed in LD

The Ladder Diagram (LD) language can be used to describe the condition attached to a
transition. The diagram is composed of only one rung with one coil. The coil value represents
the transition's value.

Example

(* SFC Program with LD programming for transitions *)

Condition Programmed in IL

Instruction List (IL) programming may be directly used to describe an SFC condition,
according to the following syntax:

<IL instruction>
<IL instruction>
....

The value contained by the current result (IL register) at the end of the IL sequence causes
the resulting of the condition to be attached to the Transition:

current result = 0 or FALSE -> condition is FALSE
current result <> 0 or TRUE -> condition is TRUE
DS800 Development Suite 2.1 - Language Reference 411

Example

(* SFC program with a condition programmed in IL *)

Calling Functions from a Transition

Any Function (written in ST, LD, or FBD), or a "C" Function can be called to evaluate the
condition attached to a Transition, according to the following syntax in ST:

< function > () ;

The value returned by the Function must be Boolean and yields the resulting condition:

Example

(* SFC program with function call for transitions *)

Condition name

IL Code

return value = FALSE -> condition is FALSE
return value = TRUE -> condition is TRUE

Condition name
412 DS800 Development Suite 2.1 - User Manual

Note: The syntax of Function call for LD and IL is given in the corresponding language
section.

Calling Function Blocks from a Transition

It is not recommended to call a Function Block in an SFC conditionfor the following reasons:

A Function Block should be called at each Cycle, typically in a cyclic Program. For
example, counting blocks make incremental operation at each Cycle, Trigger Blocks need
to store value of a Boolean at each Cycle to test rising or falling edges…

An SFC condition is evaluated only when all its preceding Steps are active (not at each
Cycle)

ST Code with Function call
DS800 Development Suite 2.1 - Language Reference 413

SFC Dynamic Behavior
The dynamic behaviors of the SFC language are:

Initial situation

The Initial Situation is characterized by the Initial Steps which are, by definition, in the active
state at the beginning of the operation. At least one Initial Step must be present in each SFC
Program.

Clearing of a transition

A Transition is either enabled or disabled. It is said to be enabled when all immediately
preceding Steps linked to its corresponding Transition symbol are active, otherwise it is
disabled. A Transition cannot be cleared unless:

it is enabled, and

the associated Transition condition is TRUE

Changing of state of Active Steps

The clearing of a Transition simultaneously leads to the active state of the immediately
following Steps and to the inactive state of the immediately preceding Steps.

Simultaneous clearing of Transitions

All Transitions (of all SFC Programs) that can be cleared (enabled and condition to true), are
cleared simultaneously.
414 DS800 Development Suite 2.1 - User Manual

SFC Program Hierarchy
The system enables the description of the vertical structure of SFC Programs. SFC Programs
are organized in a hierarchy tree. Each SFC Program can control (start, kill...) other SFC
Programs. Such Programs are called children of the SFC Program which controls them. SFC
Programs are linked together into a main hierarchy tree, using a "father - child" relationship:

The basic rules implied by the hierarchy structure are:

SFC Programs which have no father are called "main" SFC Programs

Main SFC Programs are activated by the system when the application starts

A Program can have several child Programs

A child of a Program cannot have more than one father

A child Program can only be controlled by its father

A Program cannot control the children of one of its own children

The basic actions that a father SFC Program can take to control its child Program are:

Father Program

Child Program

Start (GSTART)
Starts the child Program: activates each of its Initial Steps.
Children of this child Program are not automatically started.

Kill (GKILL)
Kills the child Program by deactivating each of its active Steps.
All the children of the child Program are also killed.

Freeze (GFREEZE)
Deactivates each of the active Steps of the Program, and
memorizes them so the program can be restarted. All the
children of the child Program are also frozen.
DS800 Development Suite 2.1 - Language Reference 415

Refer to "SFC Actions" or to the ST sub-sections "GSTART" "GKILL" "GFREEZE" "GRST"
and "GSTATUS" for more details.

Restart (GRST)
Restarts a frozen SFC Program by reactivating all the
suspended Steps. Children of the Program are not automatically
restarted.

Get status (GSTATUS)
Gets the current status (active, inactive or frozen) of a child
Program.
416 DS800 Development Suite 2.1 - User Manual

FC Language
Flow Chart (FC) is a graphic language used to describe sequential operations. A Flow Chart
diagram is composed of actions and tests.

Between actions and test are oriented links representing data flow.

Actions and tests can be described with ST, LD or IL languages. Functions and Function blocks
of any language (except SFC) can be called from actions and tests.

A Flow Chart program can call another Flow Chart program. The called FC program is a
sub-program of the calling FC program.

FC Basic Components
The basic components of the Flow Chart language are:

beginning of chart

ending of chart

actions

tests (conditions)

oriented links and connectors
DS800 Development Suite 2.1 - Language Reference 417

FC BEGIN

A "Begin" symbol must appear at the beginning of a Flow Chart program. It is unique and
cannot be omitted. It represents the initial state of the chart when it is activated. Below is the
drawing of a "Begin" symbol:

The "Begin" symbol always has a connection (on the bottom) to the other objects of the chart.
A flow chart is not valid if no connection is drawn from "Begin" to another object.

FC END

An "End" symbol must appear at the end of a Flow Chart program. It is unique and cannot be
omitted. It represents the final state of the chart, when its execution has been completed. Below
is the drawing of an "End" symbol:

The "End" symbol generally has a connection (on the top) to the other objects of the chart. A
flow chart may have no connection to the "End" object (always looping chart). The "End"
object is still visible at the bottom of the chart in this case.
418 DS800 Development Suite 2.1 - User Manual

FC Flow Links

A flow link is a line that represents a flow between two points of the diagram. A link is always
terminated by an arrow. Below is the drawing of a flow link:

Example

Two links cannot be connected to the same source connection point.
DS800 Development Suite 2.1 - Language Reference 419

FC Actions

An action symbol represents actions to be performed. An action is identified by a number and
a name. Below is the drawing of an "Action" symbol:

Two different objects of the same chart cannot have the same name or logical number.

Programming language for an action can be ST, LD or IL.

An action is always connected with links, one arriving to it, one starting from it.

FC Conditions

A Condition represents a Boolean test. A Condition is identified by a number and a name.
According to the evaluation of attached ST, LD or IL expression, the flow is directed to "YES"
or "NO" path. Below are the possible drawings for a Condition symbol:

Two different objects of the same chart cannot have the same name or logical number.
420 DS800 Development Suite 2.1 - User Manual

The programming of a test is either:

an expression in ST, or

a single rung in LD, with no symbol attached to the unique Coil, or

several instructions in IL. The IL register (or current result) is used to evaluate the
Condition.

When programmed in ST text, the expression may optionally be followed by a semi-colon.

When programmed in LD, the unique coil represents the condition value.

A condition equal to:

0 or FALSE directs the flow to NO

1 or TRUE directs the flow to YES

A test is always connected with an arriving link, and both forward connections must be defined.
DS800 Development Suite 2.1 - Language Reference 421

Other FC Components
In addition to basic components, more complex flow charts are built using FC sub-programs.

You can also use Connectors instead of flow links. This leads to more readable charts, when
too many flow links "cross" many elements.

FC Sub-Program

The system enables the description of the vertical structure of FC programs. FC programs are
organized in a hierarchy tree. Each FC program can call other FC programs. Such a program
is called a child program of the FC program which calls them. FC programs which call FC
sub-programs are called father programs. FC programs are linked together into a main
hierarchy tree, using a "Father - Child" relation:

A sub-program symbol in a Flow Chart represents a call to a Flow Chart sub-program.
Execution of the calling FC program is suspended till the sub-program execution is complete.
A Flow Chart sub-program is identified by a number and a name, as other programs, Functions
or Function Blocks. Below is the drawing of a "Sub-Program call" symbol:

Two different objects of the same chart cannot have the same logical number.

The basic rules implied by the FC hierarchy structure are:

FC programs which have no father are called main FC programs.

Main FC programs are activated by the system when the application starts

Father Program

Child Program
422 DS800 Development Suite 2.1 - User Manual

A program can have several child programs

A child of a program cannot have more than one father

A child program can be called only by its father

A program cannot call the children of one of its own children

The same sub-program may appear several times in the father chart.

A Flow Chart sub-program call represents the complete execution of the sub chart. The father
chart execution is suspended during the child chart is performed.

The sub-program calling Blocks must follow the same Connection rules as the ones defined for
an action.

FC I/O Specific Actions

An I/O specific action symbol represents actions to be performed. As other actions, an I/O
specific action is identified by a number and a name. The same semantic is used on standard
actions and I/O specific actions. The aim of I/O specific actions is only to make the chart more
readable and to give focus on non-portable parts of the chart. Using I/O specific actions is an
optional feature. The drawing of an "I/O Specific Action" symbol is:

I/O specific actions have exactly the same behavior as standard actions. This covers their
properties, ST, LD or IL programming, and connection rules.
DS800 Development Suite 2.1 - Language Reference 423

FC Connectors

Connectors are used to represent a link between two points of the diagram without drawing it.
A Connector is represented as a circle and is connected to the source of the flow. The drawing
of the Connector is completed, on the appropriate side (depending on the direction of the data
flow), by the identification of the target point (generally the name of the target symbol). Below
is the standard drawing of a connector:

A Connector always targets a defined Flow Chart symbol. The destination symbol is identified
by its logical number.

FC Comments

A Comment Block contains text that has no sense for the semantic of the chart. It can be
inserted anywhere on an unused space of the Flow Chart document window, and is used to
document the program. Below is the drawing of a "Comment" symbol:
424 DS800 Development Suite 2.1 - User Manual

FC Complex Structure Examples

This section shows Complex Structure examples that can be defined in a Flow Chart diagram.
Such Structures are combinations of basic objects linked together.

IF / THEN / ELSE

(1) place for "THEN" actions to be inserted
(2) place for "ELSE" actions to be inserted

REPEAT / UNTIL

(3) place for repeated actions to be inserted

WHILE / DO

(4) place for repeated actions to be inserted
DS800 Development Suite 2.1 - Language Reference 425

FC Dynamic Behavior
The execution of a Flow Chart diagram can be explained as follows:

The Begin symbol takes one Target Cycle

The End symbol takes one Target Cycle and ends the execution of the chart. After this
symbol is reached, no more actions of the chart are executed.

The flow is broken each time an item (action, decision) is encountered that has already
been reached in the same Cycle. In such a case the flow will continue on the next Cycle.

Note: Contrary to SFC, an action is not a stable state.

FC Checking
Apart from attached ST, LD, or IL programming, some other syntactic rules apply to Flow
Chart itself. The following are the main rules:

All "connection" points of all symbols must be wired (connection to "End" symbol may
be omitted)

All symbols must be linked together (no isolated part should appear)

All connectors should have valid destinations
426 DS800 Development Suite 2.1 - User Manual

FC Examples
Two examples of Flow Chart are provided.

A structured chart using IF/THEN/ELSE and REPEAT/UNTIL structures

This first example shows a structured chart using IF/THEN/ELSE and REPEAT/UNTIL
Structures:
DS800 Development Suite 2.1 - Language Reference 427

A non-structured chart using a Connector

This example shows a non-structured chart using a Connector. The use of Connectors in such
a case avoid the drawing of very long links that could be hard to follow in the case of a large
chart, when source and destination of a link cannot be visible together on the screen:
428 DS800 Development Suite 2.1 - User Manual

FBD Language
The Functional Block Diagram (FBD) is a graphic language. It allows the programmer to
build complex procedures by taking existing functions from the standard library or from the
function or function block section.

FBD Diagram Main Format
FBD diagram describes a function between input variables and output variables. A function
is described as a set of elementary blocks. Input and output variables are connected to blocks
by connection lines. An output of a block may also be connected to an input of another block.

An entire function operated by an FBD program is built with standard elementary blocks from
the standard library or from the function or function block section. Each block has a fixed
number of input connection points and a fixed number of output connection points. A block is
represented by a single rectangle. The inputs are connected on its left border. The outputs are
connected on its right border. An elementary block performs a single function between its
inputs and its outputs. The name of the function to be performed by the block is written in its
rectangle symbol. Each input or output of a block has a well defined type.

Function
Inputs Outputs

Function Name

Inputs Outputs
DS800 Development Suite 2.1 - Language Reference 429

Input variables of an FBD program must be connected to input connection points of blocks.
The type of each variable must be the same as the type expected for the associated input. An
input for FBD diagram can be a Constant Expression, any internal or input variable, or an
output variable. For information on constant expressions, see page 381.

Output variables of an FBD program must be connected to output connection points of blocks.
The type of each variable must be the same as the type expected for the associated block output.
An output for FBD diagram can be any internal or output variable, or the name of the Function
(for functions only). When an output is the name of the currently edited function, it represents
the assignment of the return value for the function (returned to the calling program).

Input and output variables, inputs and outputs of the blocks are wired together with connection
lines, or links. Single lines may be used to connect two logical points of the diagram:

An input variable and an input of a block

An output of a block and an input of another block

An output of a block and an output variable

For information on variables, see page 389.

The connection is oriented, meaning that the line carries associated data from the left end to the
right end. The left and right ends of the connection line must be of the same data type.

Multiple right connection, also called divergence can be used to broadcast an information from
its left end to each of its right ends. All the ends of the connection must be of the same data type.

For information on data types, see page 377.
430 DS800 Development Suite 2.1 - User Manual

RETURN Statement
The "<RETURN"> keyword may occur as a diagram output. It must be connected to a Boolean
output connection point of a block. The RETURN statement represents a Conditional End of
the program: if the output of the box connected to the statement has the Boolean value TRUE,
the end (remaining part) of the diagram is not executed.

Example

(* ST equivalence: *)

If auto_mode OR alarm Then
Return;
End_if;
bo67 := (bi10 AND bi23) OR x_cmd;

Jumps and Labels
Labels and jumps are used to control the execution of the diagram. No other object may be
connected on the right of a jump or label symbol. The following notation is used:

If the connection line on the left of the jump symbol has the Boolean state TRUE, the
execution of the program directly jumps to after the corresponding label symbol.

>>LAB Jump to a label (label name is "LAB")
LAB: Definition of a label (label name is "LAB")
DS800 Development Suite 2.1 - Language Reference 431

Example

(* IL Equivalence: *)

ld manual

and b1

jmpc NOMODIF

ld input1

or input2

st result

NOMODIF: ld result

or valid

st cmd10
432 DS800 Development Suite 2.1 - User Manual

Boolean Negation
A single connection line with its right end connected to an input of a block can be terminated
by a Boolean negation. The negation is represented by a small circle. When a Boolean
negation is used, the left and right ends of the connection line must have the BOOL type.

Example

Calling Functions and Function Blocks
The FBD language enables the calling of functions or function blocks. A Function or
Function Block is represented by a box. The name written in the box is the name of the function
or function blocks.

In the case of a function, the return value is the only output from the box. Function blocks can
have more than one output.

Example
DS800 Development Suite 2.1 - Language Reference 433

(* ST Equivalence – in ST, we have to define an intermediate variable: net_weight *)

net_weight := Weighing (mode, delta); (* call function *)
If (net_weight = 0) Then Return; End_if;
weight := net_weight + tare_weight;
434 DS800 Development Suite 2.1 - User Manual

LD Language
Ladder Diagram (LD) is a graphic representation of Boolean equations, combining Contacts
(input arguments) with Coils (output results). The LD language enables the description of tests
and modifications of Boolean data by placing graphic symbols into the program chart. LD
graphic symbols are organized within the chart exactly as an electric Contact diagram. LD
diagrams are connected on the left side and on the right side to vertical Power Rails. These are
the basic graphic components of an LD diagram:

Left vertical power rail

Right vertical power rail

Horizontal connection line

Vertical connection line

Multiple connection lines (all connected together)

Contact associated with a variable

Coil associated to an output or to an internal variable
DS800 Development Suite 2.1 - Language Reference 435

Power Rails and Connection Lines
An LD diagram is limited on the left and right side by vertical lines, named left power rail and
right power rail respectively.

LD diagram graphic symbols are connected to power rails or to other symbols by connection
lines, or links. Connection lines are horizontal or vertical.

Each line segment has a boolean state FALSE or TRUE. The Boolean state is the same for all
the segments directly linked together. Any horizontal line connected to the left vertical power
rail has the TRUE state.

left power rail

right power rail

horizontal connection lines

vertical connection lines vertical connection lines with OR meaning
436 DS800 Development Suite 2.1 - User Manual

Multiple Connections
The Boolean state given to a single horizontal connection line is the same on the left and on the
right ends of the line. Combining horizontal and vertical connection lines enables the building
of multiple connections. The Boolean state of the ends of a multiple connection follows logic
rules.

A multiple connection on the left combines more than one horizontal lines connected on the
left side of a vertical line, and one line connected on its right side. The Boolean state of the right
end is the LOGICAL OR between all the left extremities.

(* Example of multiple LEFT connection *)

(* right end state is (v1 OR v2 OR v3) *)

A multiple connection on the right combines one horizontal line connected on the left side of
a vertical line, and more than one line connected on its right side. The Boolean state of the left
end is propagated into each of the right ends.

(* Example of multiple RIGHT connection *)

(* ST equivalence: *)

output1 := input1;
output2 := input1;
DS800 Development Suite 2.1 - Language Reference 437

A multiple connection on the left and on the right combines more than one horizontal line
connected on the left side of a vertical line, and more than one line connected on its right side.
The Boolean state of each of the right ends is the LOGICAL OR between all the left ends.

(* Example of multiple LEFT and RIGHT connection *)

(* ST Equivalence: *)

output1 := input1 OR input2;
output2 := input1 OR input2;
output3 := input1 OR input2;
438 DS800 Development Suite 2.1 - User Manual

Basic LD Contacts and Coils
Several symbols are available for input contacts:

Direct Contact

Inverted Contact

Contact with Rising Edge Detection

Contact with Falling Edge Detection

Several symbols are available for output coils:

Direct Coil

Inverted Coil

SET Coil

RESET Coil

Coil with Rising Edge Detection

Coil with Falling Edge Detection

The name of the variable is written above any of these graphic symbols:

Name of the associated Boolean variable

Left Connection Right Connection
DS800 Development Suite 2.1 - Language Reference 439

Direct Contact

A Direct Contact enables a Boolean operation between a connection line state and a Boolean
variable.

The state of the connection line on the right of the Contact is the Logical AND between the
state of the left connection line and the value of the variable associated with the Contact.

Example

(* ST Equivalence: *)

output1 := input1 AND input2;

Inverted Contact

An Inverted Contact enables a Boolean operation between a connection line state and the
Boolean negation of a Boolean variable.

Left Connection Right Connection

Left Connection Right Connection
440 DS800 Development Suite 2.1 - User Manual

The state of the connection line on the right of the Contact is the Logical AND between the
state of the left connection line and the Boolean negation of the value of the variable associated
with the Contact.

Example

(* ST Equivalence: *)

output1 := NOT (input1) AND NOT (input2);

Contact with Rising Edge Detection

A Contact with rising edge detection (positive) enables a Boolean operation between a
connection line state and the rising edge of a Boolean variable.

The state of the connection line on the right of the contact is set to TRUE when the state of the
connection line on the left is TRUE, and the state of the associated variable rises from FALSE
to TRUE. It is reset to FALSE in all other cases.

Example

Left Connection Right Connection
DS800 Development Suite 2.1 - Language Reference 441

(* ST Equivalence: *)

output1 := input1 AND (input2 AND NOT (input2prev));

(* input2prev is the value of input2 at the previous cycle *)

Contact with Falling Edge Detection

A Contact with Falling Edge detection (negative) enables a Boolean operation between a
connection line state and the falling edge of a Boolean variable.

The state of the connection line on the right of the Contact is set to TRUE when the state of
the connection line on the left is TRUE, and the state of the associated variable falls from
TRUE to FALSE. It is reset to FALSE in all other cases.

Example

(* ST Equivalence: *)

output1 := input1 AND (NOT (input2) AND input2prev);

(* input2prev is the value of input2 at the previous cycle *)

Left Connection Right Connection
442 DS800 Development Suite 2.1 - User Manual

Direct Coil

Direct Coils enable a Boolean output of a connection line Boolean state.

The associated variable is assigned with the Boolean state of the left connection. The state of
the left connection is propagated into the right connection. The right connection may be
connected to the right vertical Power Rail. For information on variables, see page 389.

The associated Boolean variable must be OUTPUT or MEMORY.

The associated name can be the name of the proram (for Function only). This corresponds to
the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := input1;
output2 := input1;

Left Connection Right Connection
DS800 Development Suite 2.1 - Language Reference 443

Inverted Coil

Inverted Coils enable a Boolean output according to the Boolean negation of a connection line
state.

The associated variable is assigned with the Boolean negation of the state of the left
connection. The state of the left connection is propagated into the right connection. Right
connection may be connected to the right vertical power rail. For information on variables, see
page 389.

The associated Boolean variable must be OUTPUT or MEMORY.

The associated name can be the name of the program (for Function only). This corresponds to
the assignment of the return value of the function.

Example

(* ST Equivalence: *)

output1 := NOT (input1);
output2 := input1;

Left Connection Right Connection
444 DS800 Development Suite 2.1 - User Manual

SET Coil

"Set" Coils enable a Boolean output of a connection line Boolean state.

The associated variable is SET TO TRUE when the boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a
"RESET" coil. For information on variables, see page 389. The state of the left connection is
propagated into the right connection. Right connection may be connected to the right vertical
power rail.

The associated Boolean variable must be OUTPUT or MEMORY.

Example

(* ST Equivalence: *)

IF input1 THEN
output1 := TRUE;

END_IF;
IF input2 THEN
output1 := FALSE;

END_IF;

Left Connection Right Connection
DS800 Development Suite 2.1 - Language Reference 445

RESET Coil

"Reset" Coils enable Boolean output of a connection line Boolean state.

The associated variable is RESET TO FALSE when the Boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a "SET"
coil. For information on variables, see page 389. The state of the left connection is propagated
into the right connection. Right connection may be connected to the right vertical Power Rail.

The associated Boolean variable must be OUTPUT or MEMORY.

Example

(* ST Equivalence: *)

IF input1 THEN
output1 := TRUE;

END_IF;
IF input2 THEN
output1 := FALSE;

END_IF;

Left Connection Right Connection
446 DS800 Development Suite 2.1 - User Manual

Coil with Rising Edge Detection

Coils with rising edge detection or "Positive" coils enable Boolean output of a connection line
Boolean state.

The associated variable is set to TRUE when the Boolean state of the left connection rises from
FALSE to TRUE. The output variable resets to FALSE in all other cases. For information on
variables, see page 389. The state of the left connection is propagated into the right connection.
Right connection may be connected to the right vertical power rail.

The associated Boolean variable must be OUTPUT or MEMORY.

Example

(* ST Equivalence: *)

IF (input1 and NOT(input1prev)) THEN
output1 := TRUE;

ELSE
output1 := FALSE;

END_IF;

(* input1prev is the value of input1 at the previous cycle *)

Left Connection Right Connection
DS800 Development Suite 2.1 - Language Reference 447

Coil with Falling Edge Detection

Coils with falling edge detection or "Negative" coils enable Boolean output of a connection
line Boolean state.

The associated variable is set to TRUE when the Boolean state of the left connection falls from
TRUE to FALSE. The output variable resets to FALSE in all other cases. For information on
variables, see page 389. The state of the left connection is propagated into the right connection.
Right connection may be connected to the right vertical power rail.

The associated Boolean variable must be OUTPUT or MEMORY.

Example

(* ST Equivalence: *)

IF (NOT(input1) and input1prev) THEN
output1 := TRUE;

ELSE
output1 := FALSE;

END_IF;

(* input1prev is the value of input1 at the previous cycle *)

Left Connection Right Connection
448 DS800 Development Suite 2.1 - User Manual

RETURN Statement
The RETURN label can be used as an output to represent a conditional end of the program.
No connection can be put on the right of a RETURN symbol.

If the left connection line has the TRUE Boolean state, the program ends without executing the
equations entered on the following lines of the diagram.

When the LD program is a function, its name has to be associated with an output coil to set the
return value (returned to the calling program).

Example

(* ST Equivalence: *)

If Not (manual_mode) Then RETURN; End_if;
result := (input1 OR input3) AND input2;
DS800 Development Suite 2.1 - Language Reference 449

Jumps and Labels
Labels, conditional and unconditional jumps symbols, can be used to control the execution of
the diagram. No connection can be put on the right of the label and jump symbol. The following
notations are used:

If the connection on the left of the jump symbol has the TRUE Boolean state, the program
execution is driven after the label symbol.

Example

(* IL Equivalence: *)

>>LAB jump to label named "LAB"
LAB: definition of the label named "LAB"

ldn manual_mode

jmpc OTHER

ld input1

st result

jmp END

OTHER: ld input2

st result

END: (* end of program *)
450 DS800 Development Suite 2.1 - User Manual

BLOCKS in LD
Using the LD editor, you connect function boxes to Boolean lines. A function can actually be
an operator, a function block or a function. As all blocks do not have always a Boolean input
and/or a Boolean output, inserting blocks in an LD diagram leads to the addition of new
parameters EN, ENO to the block interface.

The "EN" input

On some operators, functions or function blocks, the first input does not have Boolean data
type. As the first input must always be connected to the rung, another input is automatically
inserted at the first position, called "EN". The block is executed only if the EN input is TRUE.
Below is the example of a comparison operator, and the equivalent code expressed in ST:

The "ENO" output

On some operators, functions or function blocks, the first output does not have Boolean data
type. As the first output must always be connected to the rung, another output is automatically
inserted at the first position, called "ENO". The ENO output always takes the same state as the
first input of the block. Below is an example with AVERAGE function block, and the
equivalent code expressed in ST:

IF rung_state THEN
q := (value1 > value 2);
ELSE
q := FALSE;
END_IF;

(* continue rung with q state *)

AVERAGE(rung_state, Signal, 100);
OutSignal := AVERAGE.XOUT;
eno := rung_state;

(* continue rung with eno state *)
DS800 Development Suite 2.1 - Language Reference 451

The "EN" and "ENO" parameters

On some cases, both EN and ENO are required. Below is an example with an arithmetic
operator, and the equivalent code expressed in ST:

IF rung_state THEN
result := (value1 + value2);
END_IF;
eno := rung_state;

(* continue rung with eno state *)
452 DS800 Development Suite 2.1 - User Manual

ST Language
ST (Structured Text) is a high level structured language designed for automation processes.
This language is mainly used to implement complex procedures that cannot be easily expressed
with graphic languages. ST language can be used for the description of the actions within the
Steps and conditions attached to the Transitions of the SFC or the Actions and Tests of the FC
Language.

ST Main Syntax
An ST program is a list of ST statements. Each statement ends with a semi-colon (";")
separator. Names used in the source code (variable identifiers, constants, language
keywords...) are separated with inactive separators (space character, end of line or tab stops)
or by active separators, which have a well defined significance (for example, the ">"
separator indicates a "greater than" comparison. Comments may be freely inserted into the
text. A comment must begin with "(*" and ends with "*)". These are basic types of ST
statements:

assignment statement (variable := expression;)

function call

 function block call

selection statements (IF, THEN, ELSE, CASE...)

iteration statements (FOR, WHILE, REPEAT...)

control statements (RETURN, EXIT...)

special statements for links with other languages such as SFC

When entering ST syntax, basic coding is black while other items are displayed using color:

Keywords are pink

Numbers are brown

Comments are green
DS800 Development Suite 2.1 - Language Reference 453

Inactive separators may be freely entered between active separators, constant expressions and
identifiers. ST inactive separators are: Space (blank) character, Tabs and End of line character.
Unlike line-formatted languages such as IL, end of lines may be entered anywhere in the
program. The rules shown below should be followed when using inactive separators to increase
ST program readability:

Do not write more than one statement on one line

Use tabs to indent complex statements

Insert comments to increase readability of lines or paragraphs

Example

Low Readability High Readability

imax := max_ite; cond := X12;
if not(cond (* alarm *)
then return; end_if;
for i (* index *) := 1 to max_ite
do if i <> 2 then Spcall();
end_if; end_for;

(* no effect if alarm *)

(* imax : number of iterations *)
(* i: FOR statement index *)
(* cond: process validity *)

imax := max_ite;
cond := X12;
if not (cond) then
return;
end_if;

(* process loop *)

for i := 1 to max_ite do
if i <> 2 then
Spcall ();
end_if;
end_for;
454 DS800 Development Suite 2.1 - User Manual

Expressions and Parentheses
ST expressions combine ST operators and variable or constant operands. For each single
expression (combining operands with one ST operator), the type of the operands must be the
same. This single expression has the same data type as its operands, and can be used in a more
complex expression. For example:

For information on data types, see page 377.

Parentheses are used to isolate sub parts of the expression, and to explicitly order the priority
of the operations. When no parentheses are given for a complex expression, the operation
sequence is implicitly given by the default priority between ST operators. For example:

(boo_var1 AND boo_var2) has BOOL type
not (boo_var1) has BOOL type
(sin (3.14) + 0.72) has REAL type
(t#1s23 + 1.78) is an invalid expression

2 + 3 * 6 equals 2+18=20 because multiplication operator has a higher priority
(2 + 3) * 6 equals 5*6=30 priority is given by parenthesis
DS800 Development Suite 2.1 - Language Reference 455

Functions or Function Block Calls
Standard ST function calls may be used for each of following objects:

Functions and function blocks written in IEC 61131 languages

"C" functions and function blocks

Calling Functions

Calling Functions from ST:

Function calls may be used in any expression.

Example

Example1: IEC 61131 function call

(* Main ST program *)
(* gets an integer value and converts it into a limited time value *)
ana_timeprog := SPlimit (tprog_cmd);
appl_timer := ANY_TO_TIME (ana_timeprog * 100);

Name: name of the called function written in IEC 61131 language or in "C"
Meaning: calls a ST, IL, LD or FBD Functions or a "C" function and gets its return

value
Syntax: <variable> := <funct> (<par1>, ... <parN>);
Operands: The type of return value and calling parameters must follow the interface

defined for the function.
Return value: value returned by the function
456 DS800 Development Suite 2.1 - User Manual

(* Called FBD function named 'SPlimit' *)

Example2: "C" function call – same syntax as for IEC 61131 function calls

(* Functions used in complex expressions: min, max, right, mlen and
left are standard "C" functions *)
limited_value := min (16, max (0, input_value));
rol_msg := right (message, mlen (message) - 1) + left (message, 1);

Calling Function Blocks

Calling Function Blocks from ST:

Consult the 'Standard Function Blocks' section to find the meaning and type of each function
block parameter. The function block instance (name of the copy) must be declared in the
dictionary

Name: name of the function block instance
Meaning: calls a function block from the standard library or from the user's library

and accesses its return parameters
Syntax: (* call of the function block *)

<blockname> (<p1>, <p2> ...);
(* gets its return parameters *)
<result> := <blockname>. <ret_param1>;
...
<result> := <blockname>. <ret_paramN>;

Operands: parameters are expressions which match the type of the parameters
specified for that function block

Return value: See Syntax to get the return parameters.
DS800 Development Suite 2.1 - Language Reference 457

Example

(* ST program calling a function block *)

(* declare the instance of the block in the dictionary: *)
(* trigb1 : block R_TRIG - rising edge detection *)

(* Function block activation from ST language *)
trigb1 (b1);
(* return parameters access *)
If (trigb1.Q) Then nb_edge := nb_edge + 1; End_if;
458 DS800 Development Suite 2.1 - User Manual

ST Operators
Standard operators such as AND, NOT, OR, XOR, etc. are described in the Standard Operators
section.

ST Basic Statements

Assignment

The expression can be a call to a function.

Example

(* ST program with assignments *)

(* variable <<= variable *)
bo23 := bo10;

(* Variable <<= expression *)

bo56 := bx34 OR alrm100 & (level >= over_value);
result := (100 * input_value) / scale;

(* assignment with function call *)
limited_value := min (16, max (0, input_value));

Name: :=
Meaning: Assigns a variable to an expression
Syntax: <variable> := <any_expression> ;
Operands: Variable must be an internal or output variable and the expression must have

the same type
DS800 Development Suite 2.1 - Language Reference 459

RETURN Statement

In an SFC action block, the RETURN statement indicates the end of the execution of that block
only.

Example

(* FBD specification of the program: programmable counter *)

(* ST implementation of the program, using RETURN statement *)

If NOT (CU) then
Q := false;
CV := 0;
RETURN; (* terminates the program *)

end_if;

if RESET then
CV := 0;

else
if (CV < PV) then

CV := CV + 1;
end_if;

end_if;
Q := (CV >= PV);

Name: RETURN
Meaning: terminates the execution of the current program
Syntax: RETURN ;
Operands: (none)
460 DS800 Development Suite 2.1 - User Manual

IF-THEN-ELSIF-ELSE Statement

The ELSE and ELSIF statements are optional. If the ELSE statement is not written, no
instruction is executed when the condition is FALSE. The ELSIF statement may be used more
than once. The ELSE statement, if used, must appear only once at the end of the ‘IF, ELSIF...’
sequence.

Example

(* ST program using IF statement *)

IF manual AND not (alarm) THEN
level := manual_level;
bx126 := bi12 OR bi45;

ELSIF over_mode THEN
level := max_level;

ELSE
level := (lv16 * 100) / scale;
END_IF;

Name: IF ... THEN ... ELSIF ... THEN ... ELSE ... END_IF
Meaning: executes one of several lists of ST statements

selection is made according to the value of a Boolean expression
Syntax: IF <Boolean_expression> THEN

<statement> ;
<statement> ;
...

ELSIF <Boolean_expression> THEN
<statement> ;
<statement> ;
...

ELSE
<statement> ;
<statement> ;
...

END_IF;
DS800 Development Suite 2.1 - Language Reference 461

(* IF structure without ELSE *)
If overflow THEN
alarm_level := true;

END_IF;

CASE Statement

Case values must be integer constant expressions. Several values, separated by commas, can
lead to the same list of statements. The ELSE statement is optional.

Example

(* ST program using CASE statement *)

CASE error_code OF
255: err_msg := 'Division by zero';

fatal_error := TRUE;
1: err_msg := 'Overflow';
2, 3: err_msg := 'Bad sign';

ELSE
err_msg := 'Unknown error';

END_CASE;

Name: CASE ... OF ... ELSE ... END_CASE
Meaning: executes one of several lists of ST statements

selection is made according to an integer expression
Syntax: CASE <integer_expression> OF

<value> : <statements> ;
<value> , <value> : <statements> ;
...

ELSE
<statements> ;

END_CASE;
462 DS800 Development Suite 2.1 - User Manual

WHILE Statement

Warning: Since the virtual machine is a synchronous system, input variables are not
refreshed during WHILE iterations. The change of state of an input variable cannot be used to
describe the condition of a WHILE statement.

Example

(* ST program using WHILE statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

string := ''; (* empty string *)
nbchar := 0;

WHILE ((nbchar < 16) & ComIsReady ()) DO
string := string + ComGetChar ();
nbchar := nbchar + 1;

END_WHILE;

Name: WHILE ... DO ... END_WHILE
Meaning: iteration structure for a group of ST statements

the "continue" condition is evaluated BEFORE any iteration
Syntax: WHILE <Boolean_expression> DO

<statement> ;
<statement> ;

...
END_WHILE ;
DS800 Development Suite 2.1 - Language Reference 463

REPEAT Statement

Warning: Because the virtual machine is a synchronous system, input variables are not
refreshed during REPEAT iterations. The change of state of an input variable cannot be used
to describe the ending condition of a REPEAT statement.

Example

(* ST program using REPEAT statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

string := ''; (* empty string *)
nbchar := 0;
IF ComIsReady () THEN
REPEAT

string := string + ComGetChar ();
nbchar := nbchar + 1;

UNTIL ((nbchar >= 16) OR NOT (ComIsReady ()))
END_REPEAT;

END_IF;

Name: REPEAT ... UNTIL ... END_REPEAT
Meaning: iteration structure for a group of ST statements

the "continue" condition is evaluated AFTER any iteration
Syntax: REPEAT

<statement> ;
<statement> ;

...
UNTIL <Boolean_condition>
END_REPEAT ;
464 DS800 Development Suite 2.1 - User Manual

FOR Statement

The [BY step] statement is optional. If not specified, the increment step is 1

Warning: Because the virtual machine is a synchronous system, input variables are not
refreshed during FOR iterations.

This is the "WHILE" equivalent of a FOR statement:

index := mini;
while (index <= maxi) do
<statement> ;
<statement> ;
index := index + step;

end_while;

Example

(* ST program using FOR statement *)
(* this program extracts the digit characters of a string *)

length := mlen (message);
target := ''; (* empty string *)
FOR index := 1 TO length BY 1 DO
code := ascii (message, index);
IF (code >= 48) & (code <= 57) THEN

target := target + char (code);
END_IF;

END_FOR;

Name: FOR ... TO ... BY ... DO ... END_FOR
Meaning: executes a limited number of iterations, using an integer index variable
Syntax: FOR <index> := <mini> TO <maxi> BY <step> DO

<statement> ;
<statement> ;

END_FOR;
Operands: index: internal integer variable increased at each loop

mini: initial value for index (before first loop)
maxi: maximum allowed value for index
step: index increment at each loop
DS800 Development Suite 2.1 - Language Reference 465

EXIT Statement

The EXIT is commonly used within an IF statement, inside a FOR, WHILE or REPEAT block.

Example

(* ST program using EXIT statement *)
(* this program searches for a character in a string *)

length := mlen (message);
found := NO;
FOR index := 1 TO length BY 1 DO
code := ascii (message, index);
IF (code = searched_char) THEN

found := YES;
EXIT;

END_IF;
END_FOR;

Name: EXIT
Meaning: exit from a FOR, WHILE or REPEAT iteration statement
Syntax: EXIT;
466 DS800 Development Suite 2.1 - User Manual

ST Extensions
The following statements and functions are available to control the execution of the SFC child
programs. They may be used inside action blocks written in ST in SFC steps.

Warning: These functions are not in the IEC 61131standard.

Easy equivalents can be found for GSTART and GKILL using the following syntax in the
SFC step:

child_name with the S qualifier (* equivalent to GSTART(child_name); *)

child_name with the R qualifier (* equivalent to GKILL(child_name); *)

The following fields can be used to access the status of an SFC step or child (from its father):

GSTART starts an SFC program or function block
GKILL kills an SFC program
GFREEZE freezes an SFC program
GRST restarts a frozen SFC program or function block
GSTATUS gets current status of an SFC program

StepName.x Boolean value that represents the activity of the Step
StepName.t time elapsed since the last activation of the step: activity duration

("StepName" represents the name of the SFC step)
ChildName.__S1.x Boolean value that represents the activity of the child
ChildName.__S1.t time elapsed since the last activation of the step: activity duration

("ChildName" represents the name of the SFC child)
DS800 Development Suite 2.1 - Language Reference 467

GSTART Statement in SFC Action

Children of the child program are not automatically started by the GSTART statement. For
details about SFC actions, see page 407.

Note: Since GSTART is not in the IEC 61131 standard, it is preferable to use the S qualifier
attached to the child name.

Name: GSTART
Meaning: Starts an SFC child program or function block by placing a token into

each of its initial Steps. The abbreviated syntax is equivalent to an
SFC Child action block having the S qualifier. The extended syntax
only applies to SFC child function blocks.

Syntax: GSTART (<child_name>);
or
GSTART (<child_name,step_name,input1,input2,...inputn>)
where
child_name represents the name of the SFC child POU
step_name represents the name of the active step. step_name must be
preceded by two underscore characters (e.g., __S1)
input1,input2,...inputn indicate the values of the input parameters of
the SFC child POU

Operands: the specified SFC program must be a child of the one in which the
statement is written

Return value: (none)
468 DS800 Development Suite 2.1 - User Manual

GKILL Statement in SFC Action

Children of the child program are automatically killed with the specified program. For details
on SFC actions, see page 407.

Note: Since GKILL is not in the IEC 61131 standard, it is preferable to use the R qualifier
attached to the child name.

Example

See GSTART

Name: GKILL
Meaning: Kills a child SFC program by removing the Tokens currently existing in its

Steps. The syntax is equivalent to an SFC Child action block having the
R qualifier.

Syntax: GKILL (<child_name>);
where
child_name represents the name of the SFC child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: (none)
DS800 Development Suite 2.1 - Language Reference 469

GFREEZE Statement in SFC Action

Children of the child program are automatically frozen along with the specified program.

Note: GFREEZE is not in the IEC 61131 standard.

Example

Name: GFREEZE
Meaning: freezes a child SFC (program or function block); suspends its execution. The

suspended SFC POU can then be restarted using the GRST statement.
Syntax: GFREEZE (<child_name>);

where
child_name represents the name of the SFC child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: (none)
470 DS800 Development Suite 2.1 - User Manual

GRST Statement in SFC Action

Children of the child program are automatically restarted by the GRST statement.

GRST is not in the IEC 61131 standard.

Name: GRST
Meaning: restarts a child SFC program frozen by the GFREEZE statement: all the

Tokens removed by GFREEZE are restored. The extended syntax only
applies to SFC child function blocks.

Syntax: GRST (<child_name>);
or
GRST (<child_name,input1,input2,...inputn>);
where
child_name represents the name of the SFC child POU
inputn indicates the value of the input parameter of the SFC child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: (none)
DS800 Development Suite 2.1 - Language Reference 471

GSTATUS Statement in SFC Action

Note: GSTATUS is not in the IEC 61131 standard.

Example

Name: GSTATUS
Meaning: returns the current status of an SFC program
Syntax: <var> := GSTATUS (<child_name>);

where
child_name represents the name of the SFC child POU

Operands: the specified SFC program must be a child of the one in which the statement
is written

Return value: 0 = Program is inactive (killed)
1 = Program is active (started)
2 = Program is frozen
472 DS800 Development Suite 2.1 - User Manual

IL Language
Instruction List, or IL is a low level language. Instructions always relate to the current result
(or IL register). The operator indicates the operation that must be made between the current
value and the operand. The result of the operation is stored again in the current result.

IL Main Syntax
An IL program is a list of instructions. Each instruction must begin on a new line, and must
contain an operator, completed with optional modifiers and, if necessary, for the specific
operation, one or more operands, separated with commas (','). A label followed by a colon
(':') may precede the instruction. If a comment is attached to the instruction, it must be the last
component of the line. Comments always begin with '(*' and ends with '*)'. Empty lines may
be entered between instructions. Comments may be placed on empty lines. Furthermore, when
entering IL syntax, basic coding is black while other items are displayed using color:

Keywords are pink

Numbers are brown

Comments are green

Example

Label Operator Operand Comments
Start: LD IX1 (* push button *)

ANDN MX5 (* command is not forbidden *)
ST QX2 (* start motor *)
DS800 Development Suite 2.1 - Language Reference 473

Labels

A label followed by a colon (':') may precede the instruction. A label can be put on an empty
line. Labels are used as operands for some operations such as jumps. Labels must conform to
the following naming rules:

name cannot exceed 16 characters

first character must be a letter

following characters must be letters, digits or '_' character

The same name cannot be used for more than one label in the same IL program. A label can
have the same name as a Variable.

Operator Modifiers

The available operator modifiers are shown below. The modifier character must complete the
name of the operator, with no blank characters between them:

The 'N' modifier indicates a Boolean negation of the operand. For example, the instruction
ORN IX12 is interpreted as: result := result OR NOT (IX12).

The parenthesis '(' modifier indicates that the evaluation of the instruction must be delayed
until the closing parenthesis ')' operator is encountered.

The 'C' modifier indicates that the attached instruction must be executed only if the current
result has the Boolean value TRUE (different than 0 for non-Boolean values). The 'C' modifier
can be combined with the 'N' modifier to indicate that the instruction must be executed only if
the current result has the Boolean value FALSE (or 0 for non-Boolean values).

N Boolean negation of the operand
(delayed operation
C conditional operation
474 DS800 Development Suite 2.1 - User Manual

Delayed Operations

Because there is only one IL register (current result), some operations may have to be
delayed, so that the execution order of the instructions can be changed. Parentheses are used
to indicate delayed operations:

The opening parenthesis '(' modifier indicates that the evaluation of the instruction must be
delayed until the closing parenthesis ')' operator is encountered.

Example

is interpreted as:

result := result AND (IX12 OR IX35)

'(' is a modifier indicates the operation to be delayed
')' is an operator executes the delayed operation

AND(IX12

OR IX35

)

DS800 Development Suite 2.1 - Language Reference 475

IL Operators
The following table summarizes the standard operators of the IL language:

Operator Modifier Operand Description

LD N Variable, constant Loads operand
ST N Variable Stores current result
S

R

BOOL variable

BOOL variable

Sets to TRUE

Resets to FALSE
AND

&

OR

XOR

N (

N (

N (

N (

BOOL

BOOL

BOOL

BOOL

Boolean AND

Boolean AND

Boolean OR

exclusive OR
ADD

SUB

MUL

DIV

(

(

(

(

Variable, constant

Variable, constant

Variable, constant

Variable, constant

Addition

Subtraction

Multiplication

Division
GT

GE

EQ

LE

LT

NE

(

(

(

(

(

(

Variable, constant

Variable, constant

Variable, constant

Variable, constant

Variable, constant

Variable, constant

Test: >

Test: >=

Test: =

Test <=

Test <

Test <>
CAL

JMP

RET

C N

C N

C N

Function block instance
name

Label

Calls a function block

Jumps to label

Returns from function
) Executes delayed operation
476 DS800 Development Suite 2.1 - User Manual

In the next section, only operators which are specific to the IL language are described, other
standard operators can be found in the section "standard operators, Function Blocks and
Functions".

LD Operator

Example

Operation: loads a value in the current result

Allowed modifiers: N

Operand: constant expression

internal, input or output Variable

LDex: LD false (* result := FALSE Boolean constant *)

LD true (* result := TRUE Boolean constant *)

LD 123 (* result := integer constant *)

LD 123.1 (* result := real constant *)

LD t#3ms (* result := time constant *)

LD boo_var1 (* result := Boolean Variable *)

LD ana_var1 (* result := integer Variable *)

LD tmr_var1 (* result := timer Variable *)

LDN boo_var2 (* result := NOT (Boolean Variable) *)
DS800 Development Suite 2.1 - Language Reference 477

ST Operator

Example

S Operator

Operation: stores the current result in a variable.
The current result is not modified by this operation.

Allowed
modifiers:

N

Operand: internal or output Variable

STboo: LD false

ST boo_var1 (* boo_var1 := FALSE *)

STN boo_var2 (* boo_var2 := TRUE *)

STana: LD 123

ST ana_var1 (* ana_var1 := 123 *)

STtmr: LD t#12s

ST tmr_var1 (* tmr_var1 := t#12s *)

Operation: stores the Boolean value TRUE in a Boolean Variable, if the current
result has the Boolean value TRUE. No operation is processed if
current result is FALSE. The current result is not modified by this
operation

Allowed
modifiers:

(none)

Operand: output or internal Boolean Variable
478 DS800 Development Suite 2.1 - User Manual

Example

R Operator

Example

SETex: LD true (* current result := TRUE *)

S boo_var1 (* boo_var1 := TRUE *)

(* current result is not modified *)

LD false (* current result := FALSE *)

S boo_var1 (* nothing done - boo_var1 unchanged *)

Operation: stores the Boolean value FALSE in a Boolean Variable, if the current
result has the Boolean value TRUE. No operation is processed if
current result is FALSE. The current result is not modified by this
operation

Allowed
modifiers:

(none)

Operand: output or internal Boolean Variable

RESETex: LD true (* current result := TRUE *)

R boo_var1 (* boo_var1 := FALSE *)t

(* current result is not modified *)

ST boo_var2 (* current result is not modified *)

LD false (* current result := FALSE *)

R boo_var1 (* nothing done - boo_var1 unchanged *)
DS800 Development Suite 2.1 - Language Reference 479

JMP Operator

Example

(* the following example tests the value of an integer selector (0 or 1 or 2) *)
(* to set one from 3 output Booleans. *)
(*Test "is equal to 0" is made with the JMPC operator *)

Operation: jumps to the specified label

Allowed
modifiers:

C N

Operand: label defined in the same IL program

JMPex: LD selector (* selector is 0 or 1 or 2 *)

ANY_TO_BOOL (* conversion to Boolean *)

JMPC test1 (* if selector = 0 then *)

LD true

ST bo0 (* bo0 := true *)

JMP JMPend (* end of the program *)

test1: LD selector

SUB 1 (* decrease selector: is now 0
or 1 *)

ANY_TO_BOOL (* conversion to Boolean *)

JMPC test2 (* if selector = 0 then *)

LD true

ST bo1 (* bo1 := true *)

JMP JMPend (* end of the program *)

test2: LD true (* last possibility *)

ST bo2 (* bo2 := true *)

JMPend: (* end of the IL program *)
480 DS800 Development Suite 2.1 - User Manual

RET Operator

Example

(* the following example tests the value of an integer selector (0 or 1 or 2) *)
(* to set one from 3 output Booleans. *)
(*Test "is equal to 0" is made with the JMPC operator *)

Operation: ends the current IL program. If the IL sequence is a
Function, the current result is returned to the calling
program

Allowed
modifiers:

C N

Operand: (none)

JMPex: LD selector (* selector is 0 or 1 or 2 *)

ANY_TO_BOOL (* conversion to Boolean *)

JMPC test1 (* if selector = 0 then *)

LD true

ST bo0 (* bo0 := true *)

RET (* end - return 0 *)

(* decrease selector *)

test1: LD selector

SUB 1 (* selector: is now 0 or 1 *)

ANY_TO_BOOL (* conversion to Boolean *)

JMPC test2 (* if selector = 0 then *)

LD true

ST bo1 (* bo1 := true *)

LD 1 (* load real selector value *)

RET (* end - return 1 *)

(* last possibility *)

test2: RETNC (*returns if the selector has *)
DS800 Development Suite 2.1 - Language Reference 481

) Operator

Example

(* The following program interleaves delayed operations: *)
(* res := a1 + (a2 * (a3 - a4) * a5) + a6; *)

ST bo2 (* bo2 := true *)

: LD 2 (* load real selector value *)

(* end - return 2 *)

Operation: executes a delayed operation. the delayed operation was notified by "("

Allowed
modifiers:

(none)

Operand: (none)

Delayed: LD a1 (* result := a1; *)

ADD(a2 (* delayed ADD - result := a2; *)

MUL(a3 (* delayed MUL - result := a3; *)

SUB a4 (* result := a3 - a4; *)

) (* execute delayed MUL - result := a2 *
(a3-a4); *)

MUL a5 (* result := a2 * (a3 - a4) * a5; *)

) (* execute delayed ADD *)

(* result := a1 + (a2 * (a3 - a4) * a5); *)

ADD a6 (* result := a1 + (a2 * (a3 - a4) * a5) + a6;
*)

ST res (* store current result in variable res *)
482 DS800 Development Suite 2.1 - User Manual

Calling Functions

A Function call from IL (written in any of the ST, LD, FBD, or "C" language), uses its name
as an operator.

Example

(* Calling Function : converts an integer value into a time value *)

(* Called Function named MYFUNC : evaluates the integer value *)
(* given as a binary value on three Boolean inputs: in0, in1, in2 are the three Boolean input
parameters of the Function *)

Operation: executes a Function - the value returned by the function is stored into the IL
current result

Allowed
modifiers:

(none)

Operand: The first calling parameter must be stored in the current result before the
call. The following ones are expressed in the operand field, separated by
commas.

Main: LD bi0

MYFUNC bi1,bi2 (* call function to get integer value
*)

ST result (* result := value returned by
function *)

GT vmax (* test value overflow *)

RETC (* return if overflow *)

LD result

MUL 1000 (* converts seconds in milliseconds
*)

ANY_TO_TIME (* converts to a timer *)

ST tmval (* stores converted value in a timer
*)
DS800 Development Suite 2.1 - Language Reference 483

LD in2

ANY_TO_DINT (* result = ANY_TO_DINT (in2); *)

MUL 2 (* result := 2*ANY_TO_DINT (in2); *)

ST temporary (* temporary := result *)

LD in1

ANY_TO_DINT

ADD temporary (* result := 2*ANY_TO_DINT (in2) +
ANY_TO_DINT (in1); *)

MUL 2 (* result := 4*ANY_TO_DINT (in2) +
2*ANY_TO_DINT (in1); *)

ST temporary (* temporary := result *)

LD in0

ANY_TO_DINT

ADD temporary (* result := 4*ANY_TO_DINT (in2) +
2*ANY_TO_DINT (in1)+ANY_TO_DINT (in0); *)
484 DS800 Development Suite 2.1 - User Manual

Calling Function Blocks: CAL Operator

The input parameters of the blocks must be assigned before the call using LD/ST operations
sequence.

Output parameters are known if used.

Example

(* Calling function block SR : SR1 is an instance of SR *)

(* FBD equivalent : *)

(*We suppose R_TRIG1 is an instance of R_TRIG block and CTU1 is an instance of CTU
block*)

Operation: calls a function block

Allowed
modifiers:

C N

Operand: Name of the function block instance.

LD auto_mode

AND start_cmd

ST SR1.set1

LD stop_cmd

ST SR1.reset

CAL SR1

LD SR1.Q1

ST command
DS800 Development Suite 2.1 - Language Reference 485

(* FBD equivalent: *)

LD command

ST R_TRIG1.clk

CAL R_TRIG1

LD R_TRIG1.Q

ST CTU1.cu

LDN auto_mode

ST CTU1.reset

LD 100

ST CTU1.pv

CAL CTU1

LD CTU1.Q

ST overflow

LD CTU1.cv

ST result
486 DS800 Development Suite 2.1 - User Manual

Standard Operators
The following are Standard Operators of the IEC languages:

Arithmetic operations Addition Adds two or more variables
Division Divides two variables
Multiplication Multiplies two or more variables
Subtraction Subtracts a variable from another
1 GAIN Assigns one variable into another
NEG Integer negation

Boolean operations AND Boolean AND
OR Boolean OR
XOR Boolean exclusive OR
NOT Boolean negation

Comparator Less Than Tests if one value is less than another
Less Than or Equal Tests if one value is less than or equal to

another
Greater Than Tests if one value is greater than another
Greater Than or Equal Tests if one value is greater than or equal

to another
Equal Tests if one value is equal to another
Not Equal Tests if one value is not equal to another

Data conversion ANY_TO_BOOL Converts to Boolean

ANY_TO_SINT Converts to Short integer
ANY_TO_DINT Converts to Double integer
ANY_TO_REAL Converts to Real
ANY_TO_TIME Converts to Time
ANY_TO_STRING Converts to String
DS800 Development Suite 2.1 - Language Reference 487

*

Note: For this operator, the number of inputs can be extended to more than two.

Arguments:

Description:

Multiplication of two or more integer or real variables.

Example

(* FBD example with Multiplication Operators *)

(* ST equivalence *)

ao10 := ai101 * ai102;

ao5 := (ai51 * ai52) * ai53;

(inputs) SINT - DINT - REAL can be INTEGER or REAL
(all inputs must have the same format)

output SINT - DINT - REAL multiplication of the input terms
488 DS800 Development Suite 2.1 - User Manual

(* IL equivalence: *)

+

Note: For this Operator, the number of inputs can be extended to more than two.

Arguments:

Description:

Addition of two or more integer, real, TIME, or STRING variables.

LD ai101

MUL ai102

ST ao10

LD ai51

MUL ai52

MUL ai53

ST ao5

(inputs) SINT - DINT - REAL - TIME -
STRING

can be of any integer, real, TIME, or
STRING format
(all inputs must have the same format)

output SINT - DINT - REAL - TIME -
STRING

addition of the input terms
DS800 Development Suite 2.1 - Language Reference 489

Example

(* FBD example with Addition Operators *)

(* ST equivalence: *)

ao10 := ai101 + ai102;

ao5 := (ai51 + ai52) + ai53;

(* IL equivalence: *)

LD ai101

ADD ai102

ST ao10

LD ai51

ADD ai52

ADD ai53

ST ao5
490 DS800 Development Suite 2.1 - User Manual

-

Arguments:

Description:

Subtraction of two integer, real, or TIME variables (first - second).

Example

(* FBD example with Subtraction Operators *)

(* ST equivalence: *)

ao10 := ai101 - ai102;

ao5 := (ai51 - 1) - ai53;

IN1 SINT - DINT - REAL - TIME can be of any integer, real, or TIME
format

IN2 SINT - DINT - REAL - TIME (IN1 and IN2 must have the same
format)

Q SINT - DINT - REAL - TIME subtraction (first - second)
DS800 Development Suite 2.1 - Language Reference 491

(* IL equivalence: *)

/

Arguments:

Description:
Division of two integer or real variables (the first divided by the second).

LD ai101

SUB ai102

ST ao10

LD ai51

SUB 1

SUB ai53

ST ao5

IN1 SINT - DINT - REAL can be of any integer or real format
(operand)

IN2 SINT - DINT - REAL non-zero integer or real value
(divisor)
(IN1 and IN2 must have the same
format)

Q SINT - DINT - REAL integer or real division of IN1 by
IN2
492 DS800 Development Suite 2.1 - User Manual

Example

(* FBD example with Division Operators *)

(* ST Equivalence: *)

ao10 := ai101 / ai102;

ao5 := (ai5 / 2) / ai53;

(* IL equivalence: *)

LD ai101

DIV ai102

ST ao10

LD ai51

DIV 2

DIV ai53

ST ao5
DS800 Development Suite 2.1 - Language Reference 493

1 GAIN

Arguments:

Description:

assignment of one variable into another one

This Block is very useful to directly link a diagram input and a diagram output. It can also be
used (with a Boolean negation line) to invert the state of a line connected to a diagram output.

Example

(* FBD example with assignment Operators *)

(* ST equivalence: *)

ao23 := ai10;

bo100 := NOT (bi1 AND bi2);

(* IL equivalence: *)

IN SINT - DINT - REAL - TIME - STRING
Q SINT - DINT - REAL - TIME - STRING IN and Q must have the same format

LD ai10

ST ao23

LD bi1
494 DS800 Development Suite 2.1 - User Manual

AND

Note: For this Operator, the number of inputs can be extended to more than two.

Arguments:

Description:

Boolean AND between two or more terms.

Example

(* FBD example with "AND" Operators *)

(* ST equivalence: *)

bo10 := bi101 AND NOT (bi102);

bo5 := (bi51 AND bi52) AND bi53;

AND bi2

STN bo100

(inputs) BOOL
output BOOL Boolean AND of the input terms
DS800 Development Suite 2.1 - Language Reference 495

(* IL equivalence *)

ANY_TO_BOOL

Arguments:

Description:

Converts any variable to a Boolean variable

LD bi101 (* current result := bi101 *)

ANDN bi102 (* current result := bi101 AND not(bi102) *)

ST bo10 (* bo10 := current result *)

LD bi51 (* current result := bi51; *)

& bi52 (* current result := bi51 AND bi52 *)

& bi53 (* current result := (bi51 AND bi52) AND bi53 *)

ST bo5 (* bo5 := current result *)

IN SINT - DINT - REAL - TIME - STRING any non-Boolean value
Q BOOL TRUE for non-zero numerical value

FALSE for zero numerical value
TRUE for 'TRUE' string
FALSE for 'FALSE' string
496 DS800 Development Suite 2.1 - User Manual

Example

(* FBD example with "Convert to Boolean" Operators *)

(* ST Equivalence: *)

(* IL equivalence: *)

ares := ANY_TO_BOOL (10); (* ares is TRUE *)

tres := ANY_TO_BOOL (t#0s); (* tres is FALSE *)

mres := ANY_TO_BOOL ('FALSE'); (* mres is FALSE *)

LD 10

ANY_TO_BOOL

ST ares

LD t#0s

ANY_TO_BOOL

ST tres

LD 'FALSE'

ANY_TO_BOOL

ST mres
DS800 Development Suite 2.1 - Language Reference 497

ANY_TO_SINT

Arguments:

Description:

Converts any variable to a Short integer variable (8-bit)

Example

(* FBD example with "Convert to Short Integer" Operators *)

(* ST Equivalence: *)

IN BOOL - DINT - REAL - TIME - STRING any value other than a short integer
Q SINT 0 if IN is FALSE / 1 if IN is TRUE

number of milliseconds for a timer
integer part for real
decimal number represented by a string

bres := ANY_TO_SINT (true); (* bres is 1 *)

tres := ANY_TO_SINT (t#0s46ms); (* tres is 46 *)

mres := ANY_TO_SINT ('0198'); (* mres is 198 *)
498 DS800 Development Suite 2.1 - User Manual

(* IL equivalence: *)

ANY_TO_DINT

Arguments:

Description:

Converts any variable to a double integer variable (32-bit)

LD true

ANY_TO_SINT

ST bres

LD t#1s46ms

ANY_TO_SINT

ST tres

LD '0198'

ANY_TO_SINT

ST mres

IN BOOL - SINT - REAL - TIME - STRING any value other than a double integer
Q DINT 0 if IN is FALSE / 1 if IN is TRUE

number of milliseconds for a timer
integer part for real
decimal number represented by a string
DS800 Development Suite 2.1 - Language Reference 499

Example

(* FBD example with "Convert to Double Integer" Operators *)

(* ST Equivalence: *)

(* IL equivalence: *)

bres := ANY_TO_DINT (true); (* bres is 1 *)

tres := ANY_TO_DINT (t#1s46ms); (* tres is 1046 *)

mres := ANY_TO_DINT ('0198'); (* mres is 198 *)

LD true

ANY_TO_DINT

ST bres

LD t#1s46ms

ANY_TO_DINT

ST tres

LD '0198'

ANY_TO_DINT

ST mres
500 DS800 Development Suite 2.1 - User Manual

ANY_TO_REAL

Arguments:

Description:

Converts any variable to a real variable

Example

(* FBD example with "Convert to Real" Operators *)

(* ST Equivalence: *)

IN BOOL - SINT - DINT - TIME - STRING any value other than a real
Q REAL 0.0 if IN is FALSE / 1.0 if IN is TRUE

number of milliseconds for a timer
equivalent number for integer

bres := ANY_TO_REAL (true); (* bres is 1.0 *)

tres := ANY_TO_REAL (t#1s46ms); (* tres is 1046.0 *)

ares := ANY_TO_REAL (198); (* ares is 198.0 *)
DS800 Development Suite 2.1 - Language Reference 501

(* IL equivalence: *)

ANY_TO_TIME

Arguments:

Description:

Converts any variable other than a time or date type to a timer variable. The
SUB_DATE_DATE function enables the conversion of a date type to a time format. For details
on the SUB_DATE_DATE function, see page 567.

LD true

ANY_TO_REAL

ST bres

LD t#1s46ms

ANY_TO_REAL

ST tres

LD 198

ANY_TO_REAL

ST ares

IN BOOL - SINT - DINT - REAL -
STRING

any positive value other than a time and date format
IN (or integer part of IN if it is real) is the number of
milliseconds
STRING (number of milliseconds, for example, a
value of 300032 represents 5 minutes and 32
milliseconds)

Q TIME time value represented by IN. A value of
1193h2m47s295ms indicates an invalid time.
502 DS800 Development Suite 2.1 - User Manual

Example

(* FBD example with "Convert to Timer" Operators *)

(* ST Equivalence: *)

(* IL equivalence: *)

ares := ANY_TO_TIME (1256); (* ares := t#1s256ms *)

rres := ANY_TO_TIME (1256.3); (*rres := t#1s256ms *)

LD 1256

ANY_TO_TIME

ST ares

LD 1256.3

ANY_TO_TIME

ST rres
DS800 Development Suite 2.1 - Language Reference 503

ANY_TO_STRING

Arguments:

Description:

Converts any variable to a string variable

Example

(* FBD example with "Convert to string" Operators *)

(* ST Equivalence: *)

IN BOOL - SINT - DINT - REAL -
TIME

any non-string value

Q STRING If IN is a Boolean, 'FALSE' or 'TRUE'
If IN is an integer or a real, decimal representation
If IN is a TIME:
TIME time1
STRING s1
time1 :=13 ms;
s1 :=ANY_TO_STRING(time1);
(* s1 = '0s13' *)

bres := ANY_TO_STRING (TRUE); (* bres is 'TRUE' *)

ares := ANY_TO_STRING (125); (* ares is '125' *)
504 DS800 Development Suite 2.1 - User Manual

(* IL equivalence: *)

Equal

Arguments:

Description

Test if one value is EQUAL TO another one (on integer, real, time, date, and string variables)

Note: The equality test on a TIME variable is not recommended for testing output of TIME
blocks such as TON, TP, TOF, BLINK and for testing StepName.t in SFC chart.

LD true

ANY_TO_STRING

ST bres

LD 125

ANY_TO_STRING

ST ares

IN1 BOOL - SINT - DINT - REAL - TIME -
STRING

Both inputs must have the same format.
The TIME input only applies to the ST
and IL languages. The BOOL input is
not accepted in the IL language.

IN2 BOOL - SINT - DINT - REAL - TIME -
STRING

Q BOOL TRUE if IN1 = IN2
DS800 Development Suite 2.1 - Language Reference 505

Example

(* FBD example with "Is Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 = 25); (* aresult is FALSE *)

mresult := ('ab' = 'ab'); (* mresult is TRUE *)

(* IL equivalence: *)

LD 10

EQ 25

ST aresult

LD 'ab'

EQ 'ab'

ST mresult
506 DS800 Development Suite 2.1 - User Manual

Greater Than or Equal

Arguments:

Description:

Test if one value is GREATER THAN or EQUAL TO another one (on integers, reals, times,
dates, or strings)

Note: The equality test on a TIME variable is not recommended for testing output of TIME
blocks such as TON, TP, TOF, BLINK and for testing StepName.t in SFC chart.

Example

(* FBD example with "Greater or Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 >= 25); (* aresult is FALSE *)

mresult := ('ab' >= 'ab'); (* mresult is TRUE *)

IN1 SINT - DINT - REAL - TIME - STRING Both inputs must have the same type.
The TIME input only applies to the ST
and IL languages.

IN2 SINT - DINT - REAL - TIME - STRING

Q BOOL TRUE if IN1 >= IN2
DS800 Development Suite 2.1 - Language Reference 507

(* IL equivalence: *)

Greater Than

Arguments:

Description:

Test if one value is GREATER THAN another one (on integers, reals, times, dates, or strings)

LD 10

GE 25

ST aresult

LD 'ab'

GE 'ab'

ST mresult

IN1 SINT - DINT - REAL - TIME - STRING Both inputs must have the same type
IN2 SINT - DINT - REAL - TIME - STRING
Q BOOL TRUE if IN1 > IN2
508 DS800 Development Suite 2.1 - User Manual

Example

(* FBD example with "Greater than" Operators *)

(* ST Equivalence: *)

aresult := (10 > 25); (* aresult is FALSE *)

mresult := ('ab' > 'a'); (* mresult is TRUE *)

(* IL equivalence: *)

LD 10

GT 25

ST aresult

LD 'ab'

GT 'a'

ST mresult
DS800 Development Suite 2.1 - Language Reference 509

Less Than or Equal

Arguments:

Description:

Tests if one value is LESS THAN or EQUAL TO another one (on integers, reals, times, dates,
or strings)

Note: The equality test on a TIME variable is not recommended for testing output of TIME
blocks such as TON, TP, TOF, BLINK and for testing StepName.t in SFC chart.

Example

(* FBD example with "Less or equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 <= 25); (* aresult is TRUE *)

mresult := ('ab' <= 'ab'); (* mresult is TRUE *)

IN1 SINT - DINT - REAL - TIME - STRING Both inputs must have the same type.
The TIME input only applies to the ST
and IL languages.

IN2 SINT - DINT - REAL - TIME - STRING

Q BOOL TRUE if IN1 <= IN2
510 DS800 Development Suite 2.1 - User Manual

(* IL equivalence: *)

Less Than

Arguments:

Description:

Test if one value is LESS THAN another one (on integers, reals, times, dates, or strings)

LD 10

LE 25

ST aresult

LD 'ab'

LE 'ab'

ST mresult

IN1 SINT - DINT - REAL - TIME - STRING Both inputs must have the same type
IN2 SINT - DINT - REAL - TIME - STRING
Q BOOL TRUE if IN1 < IN2
DS800 Development Suite 2.1 - Language Reference 511

Example

(* FBD example with "Less than" Operators *)

(* ST Equivalence: *)

aresult := (10 < 25); (* aresult is TRUE *)

mresult := ('z' < 'B'); (* mresult is FALSE *)

(* IL equivalence: *)

NEG

Arguments:

LD 10

LT 25

ST aresult

LD 'z'

LT 'B'

ST mresult

IN SINT - DINT - REAL Input and output must have the same
format

Q SINT - DINT - REAL
512 DS800 Development Suite 2.1 - User Manual

Description:

Assignment of the negation of a variable.

Example

(* FBD example with Negation Operators *)

(* ST equivalence: *)

ao23 := - (ai10);

ro100 := - (ri1 + ri2);

(* IL equivalence: *)

LD ai10

MUL -1

ST ao23

LD ri1

ADD ri2

MUL -1.0

ST ro100
DS800 Development Suite 2.1 - Language Reference 513

NOT

Arguments:

Description:

Returns the negation of a complete Boolean expression.

Example

(* FBD example with "NOT" Operator *)

(* ST equivalence: *)

bo10 := bi101 XOR NOT (bi102);

(* IL equivalence: *)

IN: Any Boolean variable or complex expression
Q: TRUE when IN is FALSE

FALSE when IN is TRUE

LD bi101

XORN bi102

ST bo10
514 DS800 Development Suite 2.1 - User Manual

Not Equal

Arguments:

Description:

Test if one value is NOT EQUAL TO another one (on integer, real, time, date, and string
variables)

Example

(* FBD example with "Is Not Equal to" Operators *)

(* ST Equivalence: *)

aresult := (10 <> 25); (* aresult is TRUE *)

mresult := ('ab' <> 'ab'); (* mresult is FALSE *)

(* IL equivalence: *)

IN1 BOOL - DINT - REAL - TIME - STRING both inputs must have the same type
IN2 BOOL - DINT - REAL - TIME - STRING
Q BOOL TRUE if first <> second

LD 10

NE 25
DS800 Development Suite 2.1 - Language Reference 515

OR

Note: For this Operator, the number of inputs can be extended to more than two.

Arguments:

Description:

Boolean OR of two or more terms.

Example

(* FBD example with "OR" Operators *)

ST aresult

LD 'ab'

NE 'ab'

ST mresult

(inputs) BOOL
output BOOL Boolean OR of the input terms
516 DS800 Development Suite 2.1 - User Manual

(* ST equivalence: *)

bo10 := bi101 OR NOT (bi102);

bo5 := (bi51 OR bi52) OR bi53;

(* IL equivalence: *)

TMR

Arguments:

Description:

Converts an integer or real variable to a time one.

LD bi101

ORN bi102

ST bo10

LD bi51

OR bi52

OR bi53

ST bo5

IN DINT A non-TIME value
IN (or integer part of IN if it is real)
is the number of milliseconds

Q TIME Time value represented by IN
DS800 Development Suite 2.1 - Language Reference 517

Example

(* FBD example with "Convert to Timer" Operators *)

(* ST Equivalence: *)

(* IL equivalence: *)

XOR

Arguments:

ares := TMR (1256); (* ares := t#1s256ms *)

rres := TMR (1256.3); (*rres := t#1s256ms *)

LD 1256

TMR

ST ares

LD 1256.3

TMR

ST rres

IN1 BOOL
IN2 BOOL
Q BOOL Boolean exclusive OR of the two input terms
518 DS800 Development Suite 2.1 - User Manual

Description:

Boolean exclusive OR between two terms.

Example

(* FBD example with "XOR" operators *)

(* ST equivalence: *)

bo10 := bi101 XOR NOT (bi102);

bo5 := (bi51 XOR bi52) XOR bi53;

(* IL equivalence: *)

LD bi101

XORN bi102

ST bo10

LD bi51

XOR bi52

XOR bi53

ST bo5
DS800 Development Suite 2.1 - Language Reference 519

Standard Functions
The following are the standard functions supported by the system:

Arithmetic
Operations

ABS Absolute value of a real value
EXPT, POW Exponent, power calculation of real values
LOG Logarithm of a real value
MOD Modulo
SQRT Square root of a real value
RAND Random value
TRUNC Truncate decimal part of a real value
ACOS, ASIN, ATAN Arc cosine, Arc sine, Arc tangent of a real

value
COS, SIN, TAN Cosine, Sine, Tangent of a real value

Binary operations AND_MASK Integer bit-to-bit AND mask
OR_MASK Integer bit-to-bit OR mask
XOR_MASK Integer bit-to-bit Exclusive OR mask
NOT_MASK Integer bit-to-bit negation
ROL, ROR Rotate Left, Rotate Right an integer value
SHL, SHR Shift Left, Shift Right an integer value

Boolean operations ODD Odd parity

Data manipulation MIN, MAX, LIMIT Minimum, Maximum, Limit
MUX4, MUX8 Multiplexer (4 or 8 entries)
SEL Binary selector

String manipulation ASCII Character -> ASCII code
CHAR ASCII code -> Character
MLEN Get string length
DELETE, INSERT Delete sub-string, Insert string
FIND, REPLACE Find sub-string, Replace sub-string
LEFT, MID, RIGHT Extract left, middle or right of a string
DS800 Development Suite 2.1 - Language Reference 521

ABS

Arguments:

Description:

Gives the absolute (positive) value of a real value.

Example

(* FBD Program using "ABS" Function *)

(* ST Equivalence: *)

over := (ABS (delta) > range);

(* IL Equivalence: *)

Time operations CURRENT_ISA_DATE Gets the current date
SUB_DATE_DATE Compares two dates and gives the

difference in TIME format

IN REAL Any signed real value
Q REAL Absolute value (always positive)

LD delta

ABS
522 DS800 Development Suite 2.1 - User Manual

ACOS

Arguments:

Description:

Calculates the Arc cosine of a real value.

Example

(* FBD Program using "COS" and "ACOS" Functions *)

(* ST Equivalence: *)

cosine := COS (angle);

result := ACOS (cosine); (* result is equal to angle *)

GT range

ST over

IN REAL Must be in set [-1.0 .. +1.0]
Q REAL Arc-cosine of the input value (in set [0.0 .. PI])

= 0.0 for invalid input
DS800 Development Suite 2.1 - Language Reference 523

(* IL Equivalence: *)

AND_MASK

Arguments:

Description:

Integer AND bit-to-bit mask.

Example

(* FBD example with AND_MASK Operators *)

LD angle

COS

ST cosine

ACOS

ST result

IN DINT Must have integer format
MSK DINT Must have integer format
Q DINT Bit-to-bit logical AND between IN and MSK
524 DS800 Development Suite 2.1 - User Manual

(* ST Equivalence: *)

parity := AND_MASK (xvalue, 1); (* 1 if xvalue is odd *)

result := AND_MASK (16#abc, 16#f0f); (* equals 16#a0c *)

(* IL equivalence: *)

ASCII

Arguments:

Description:

Gives the ASCII code of one character in a string.

Example

(* FBD Program using "ASCII" Function *)

LD xvalue

AND_MASK 1

ST parity

LD 16#abc

AND_MASK 16#f0f

ST result

IN STRING Any non-empty string
Pos DINT Position of the selected character in set [1.. len] (len is the length of the

IN string)
Code DINT Code of the selected character (in set [0 .. 255])

returns 0 is Pos is out of the string
DS800 Development Suite 2.1 - Language Reference 525

(* ST Equivalence: *)

FirstChr := ASCII (message, 1);

(* FirstChr is the ASCII code of the first character of the string *)

(* IL Equivalence: *)

ASIN

Arguments:

Description:

Calculates the Arc sine of a real value.

Example

(* FBD Program using "SIN" and "ASIN" Functions *)

LD message

ASCII 1

ST FirstChr

IN REAL Must be in set [-1.0 .. +1.0]
Q REAL Arc-sine of the input value (in set [-PI/2 .. +PI/2])

= 0.0 for invalid input
526 DS800 Development Suite 2.1 - User Manual

(* ST Equivalence: *)

sine := SIN (angle);
result := ASIN (sine); (* result is equal to angle *)

(* IL Equivalence: *)

ATAN

Arguments:

Description:

Calculates the arc tangent of a real value.

LD angle

SIN

ST sine

ASIN

ST result

IN REAL Any real value
Q REAL Arc-tangent of the input value (in set [-PI/2 .. +PI/2])

= 0.0 for invalid input
DS800 Development Suite 2.1 - Language Reference 527

Example

(* FBD Program using "TAN" and "ATAN" Function *)

(* ST Equivalence: *)

tangent := TAN (angle);

result := ATAN (tangent); (* result is equal to angle*)

(* IL Equivalence: *)

CHAR

Arguments:

LD angle

TAN

ST tangent

ATAN

ST result

Code DINT Code in set [0 .. 255]
Q STRING One character string

the character has the ASCII code given in input Code
(ASCII code is used modulo 256)
528 DS800 Development Suite 2.1 - User Manual

Description:

Gives a one character string from a given ASCII code.

Example

(* FBD Program using "CHAR" Function *)

(* ST Equivalence: *)

Display := CHAR (value + 48);

(* value is in set [0..9] *)

(* 48 is the ascii code of '0' *)

(* result is one character string from '0' to '9' *)

(* IL Equivalence: *)

LD value

ADD 48

CHAR

ST Display
DS800 Development Suite 2.1 - Language Reference 529

COS

Arguments:

Description:

Calculates the cosine of a real value.

Example

(* FBD Program using "COS" and "ACOS" Functions *)

(* ST Equivalence: *)

cosine := COS (angle);

result := ACOS (cosine); (* result is equal to angle *)

(* IL Equivalence: *)

IN REAL Any REAL value
Q REAL Cosine of the input value (in set [-1.0 .. +1.0])

LD angle

COS

ST cosine

ACOS

ST result
530 DS800 Development Suite 2.1 - User Manual

CURRENT_ISA_DATE

Arguments:

Description:

Gets the current date. The ANY_TO_DINT function enables the conversion of DATE to the
number of seconds since 1970/01/01 00:00:00:000 GMT (Greenwich Mean Time).

Example

(* FBD Program using "CURRENT_ISA_DATE" Function *)

(* ST Equivalence: *)

datResult := CURRENT_ISA_DATE();

(* IL Equivalence: *)

DATE DATE The current date

CURRENT_ISA_DATE
ST datResult
DS800 Development Suite 2.1 - Language Reference 531

DELETE

Arguments:

Description:

Deletes a part of a string.

Example

(* FBD Program using "DELETE" Function *)

IN STRING Any non-empty string
NbC DINT Number of characters to be deleted
Pos DINT Position of the first deleted character

(first character of the string has position 1)
Q STRING modified string

empty string if Pos < 1
initial string if Pos > IN string length
initial string if NbC <= 0
532 DS800 Development Suite 2.1 - User Manual

(* ST Equivalence: *)

complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH' *)

sub_string := DELETE (complete_string, 4, 3); (* sub_string is 'ABGH'*)

(* IL Equivalence: *)

EXPT

Arguments:

Description:

Gives the real result of the operation: (base exponent) 'base' being the first argument and
'exponent' the second one.

LD 'ABCD'

ADD 'EFGH'

ST complete_string

DELETE 4,3

ST sub_string

IN REAL Any signed real value
EXP DINT Integer exponent
Q REAL (IN EXP)
DS800 Development Suite 2.1 - Language Reference 533

Example

(* FBD Program using "EXPT" Function *)

(* ST Equivalence: *)

tb_size := ANY_TO_DINT (EXPT (2.0, range));

(* IL Equivalence: *)

FIND

Arguments:

LD 2.0

EXPT range

ANY_TO_DINT

ST tb_size

In STRING Any string
Pat STRING Any non-empty string (Pattern)
Pos DINT = 0 if sub string Pat not found

= position of the first character of the first occurrence of the sub-string
Pat
(first position is 1)
this function is case sensitive
534 DS800 Development Suite 2.1 - User Manual

Description:

Finds a sub-string in a string. Gives the position in the string of the sub-string.

Example

(* FBD Program using "FIND" Function *)

(* ST Equivalence: *)

complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH' *)

found := FIND (complete_string, 'CDEF'); (* found is 3 *)

(* IL Equivalence: *)

LD 'ABCD'

ADD 'EFGH'

ST complete_string

FIND 'CDEF'

ST found
DS800 Development Suite 2.1 - Language Reference 535

INSERT

Arguments:

Description:

Inserts a sub-string in a string at a given position.

Example

(* FBD Program using "INSERT" Function *)

IN STRING Initial string
Str STRING String to be inserted
Pos DINT Position of the insertion

the insertion is done before the position
(first valid position is 1)

Q STRING Modified string
empty string if Pos <= 0
concatenation of both strings if Pos is greater than the length of the IN
string
536 DS800 Development Suite 2.1 - User Manual

(* ST Equivalence: *)

MyName := INSERT ('Mr JONES', 'Frank ', 4);

(* MyName is 'Mr Frank JONES' *)

(* IL Equivalence: *)

LEFT

Arguments:

Description:

Extracts the left part of a string. The number of characters to be extracted is given.

LD 'Mr JONES'
INSERT 'Frank ',4
ST MyName

IN STRING Any non-empty string
NbC DINT Number of characters to be extracted. This number cannot be greater

than the length of the IN string.
Q STRING Left part of the IN string (its length = NbC)

empty string if NbC <= 0
complete IN string if NbC >= IN string length
DS800 Development Suite 2.1 - Language Reference 537

Example

(* FBD Program using "LEFT" and "RIGHT" Functions *)

(* ST Equivalence: *)

complete_string := RIGHT ('12345678', 4) + LEFT ('12345678', 4);

(* complete_string is '56781234'

the value issued from RIGHT call is '5678'

the value issued from LEFT call is '1234'

*)

(* IL Equivalence: First done is call to LEFT *)

LD '12345678'

LEFT 4

ST sub_string (* intermediate result *)

LD '12345678'

RIGHT 4

ADD sub_string

ST complete_string
538 DS800 Development Suite 2.1 - User Manual

LIMIT

Arguments:

Description:

Limits an integer value into a given interval. Whether it keeps its value if it is between
minimum and maximum, or it is changed to maximum if it is above, or it is changed to
minimum if it is below.

Example

(* FBD Program using "LIMIT" Function *)

(* ST Equivalence: *)

new_value := LIMIT (min_value, value, max_value);

(* bounds the value to the [min_value..max_value] set *)

MIN DINT Minimum allowed value
IN DINT Any signed integer value
MAX DINT Maximum allowed value
Q DINT Input value bounded to allowed range
DS800 Development Suite 2.1 - Language Reference 539

(* IL Equivalence: *)

LOG

Arguments:

Description:

Calculates the logarithm (base 10) of a real value.

Example

(* FBD Program using "LOG" Function *)

(* ST Equivalence: *)

xpos := ABS (xval);

xlog := LOG (xpos);

LD min_value

LIMIT value, max_value

ST new_value

IN REAL Must be greater than zero
Q REAL Logarithm (base 10) of the input value
540 DS800 Development Suite 2.1 - User Manual

(* IL Equivalence: *)

MAX

Arguments:

Description:

Gives the maximum of two integer values.

Example

(* FBD Program using "MIN" and "MAX" Function *
)

LD xval

ABS

ST xpos

LOG

ST xlog

IN1 DINT Any signed integer value
IN2 DINT (cannot be REAL)
Q DINT Maximum of both input values
DS800 Development Suite 2.1 - Language Reference 541

(* ST Equivalence: *)

new_value := MAX (MIN (max_value, value), min_value);

(* bounds the value to the [min_value..max_value] set *)

(* IL Equivalence: *)

MID

Arguments:

Description:

Extracts a part of a string. The number of characters to be extracted and the position of the first
character are given.

LD max_value

MIN value

MAX min_value

ST new_value

IN STRING Any non-empty string
NbC DINT Number of characters to be extracted cannot be greater than the length of

the IN string
Pos DINT Position of the sub-string

the sub-string first character will be the one pointed to by Pos
(first valid position is 1)

Q STRING Middle part of the string (its length = NbC)
empty string if parameters are not valid
542 DS800 Development Suite 2.1 - User Manual

Example

(* FBD Program using "MID" Function *)

(* ST Equivalence: *)

sub_string := MID ('abcdefgh', 2, 4);

(* sub_string is 'de' *)

(* IL Equivalence: *)

MIN

Arguments:

Description:

Gives the minimum of two integer values.

LD 'abcdefgh'

MID 2,4

ST sub_string

IN1 DINT Any signed integer value
IN2 DINT (cannot be REAL)
Q DINT Minimum of both input values
DS800 Development Suite 2.1 - Language Reference 543

Example

(* FBD Program using "MIN" and "MAX" Function *)

(* ST Equivalence: *)

new_value := MAX (MIN (max_value, value), min_value);

(* bounds the value to the [min_value..max_value] set *)

(* IL Equivalence: *)

MLEN

Arguments:

Description:

Calculates the length of a string.

LD max_value

MIN value

MAX min_value

ST new_value

IN STRING Any string
NbC DINT Number of characters in the IN string
544 DS800 Development Suite 2.1 - User Manual

Example

(* FBD Program using "MLEN" Function *)

(* ST Equivalence: *)

nbchar := MLEN (complete_string);

If (nbchar < 3) Then Return; End_if;

prefix := LEFT (complete_string, 3);

(* this program extracts the 3 characters on the left of the string and put the result in the prefix
string variable

nothing is done if the string length is less than 3 characters *)

(* IL Equivalence: *)

LD complete_string

MLEN

ST nbchar

LT 3

RETC

LD complete_string

LEFT 3

ST prefix
DS800 Development Suite 2.1 - Language Reference 545

MOD

Arguments:

Description:

Calculates the modulo of an integer value.

Example

(* FBD Program using "MOD" Function *)

(* ST Equivalence: *)

division_result := (value / divider); (* integer division *)

rest_of_division := MOD (value, divider); (* rest of the division *)

IN DINT Any signed INTEGER value
Base DINT Must be greater than zero
Q DINT Modulo calculation (input MOD base)

returns -1 if Base <= 0
546 DS800 Development Suite 2.1 - User Manual

(* IL Equivalence: *)

MUX4

Arguments:

Description:

Multiplexer with four entries: selects a value between four integer values.

LD value

DIV divider

ST division_result

LD value

MOD divider

ST rest_of_division

SEL DINT Selector integer value (must be in set [0..3])
IN1..IN4 DINT Any integer values
Q DINT = value1 if SEL = 0

= value2 if SEL = 1
= value3 if SEL = 2
= value4 if SEL = 3
= 0 for all other values of the selector
DS800 Development Suite 2.1 - Language Reference 547

Example

(* FBD Program using "MUX4" Function *)

(* ST Equivalence: *)

range := MUX4 (choice, 1, 10, 100, 1000);

(* select from 4 predefined ranges, for example, if choice is 1, range will be 10 *)

(* IL Equivalence: *)

LD choice

MUX4 1,10,100,1000

ST range
548 DS800 Development Suite 2.1 - User Manual

MUX8

Arguments:

Description:

Multiplexer with eight entries: selects a value between eight integer values.

SEL DINT Selector integer value (must be in set [0..7])
IN1..IN8 DINT Any integer values
Q DINT = value1 if selector = 0

= value2 if selector = 1
...
= value8 if selector = 7
= 0 for all other values of the selector
DS800 Development Suite 2.1 - Language Reference 549

Example

(* FBD Program using "MUX8" Function *)

(* ST Equivalence: *)

range := MUX8 (choice, 1, 5, 10, 50, 100, 500, 1000, 5000);

(* select from 8 predefined ranges, for example, if choice is 3, range will be 50 *)

(* IL Equivalence: *)

NOT_MASK

Arguments:

LD choice

MUX8 1,5,10,50,100,500,1000,5000

ST range

IN DINT Must have integer format
Q DINT Bit-to-bit negation on 32 bits of IN
550 DS800 Development Suite 2.1 - User Manual

Description:

Integer bit-to-bit negation mask.

Example

(* FBD example with NOT_MASK Operators *)

(*ST equivalence: *)

result := NOT_MASK (16#1234);

(* result is 16#FFFF_EDCB *)

(* IL equivalence: *)

ODD

Arguments:

Description:

Tests the parity of an integer: result is odd or even.

LD 16#1234

NOT_MASK

ST result

IN DINT Any signed integer value
Q BOOL TRUE if input value is odd

FALSE if input value is even
DS800 Development Suite 2.1 - Language Reference 551

Example

(* FBD Program using "ODD" Function *)

(* ST Equivalence: *)

If Not (ODD (value)) Then Return; End_if;

value := value + 1;

(* makes value always even *)

(* IL Equivalence: *)

LD value

ODD

RETNC

LD value

ADD 1

ST value
552 DS800 Development Suite 2.1 - User Manual

OR_MASK

Arguments:

Description:

Integer OR bit-to-bit mask.

Example

(* FBD example with OR_MASK Operators *)

(* ST Equivalence: *)

parity := OR_MASK (xvalue, 1); (* makes value always odd *)

result := OR_MASK (16#abc, 16#f0f); (* equals 16#fbf *)

(* IL equivalence: *)

IN DINT Must have integer format
MSK DINT Must have integer format
Q DINT Bit-to-bit logical OR between IN and MSK

LD xvalue

OR_MASK 1

ST parity
DS800 Development Suite 2.1 - Language Reference 553

POW

Arguments:

Description:

Gives the real result of the operation: (base exponent) 'base' being the first argument and
'exponent' the second one. The exponent is a real value.

Example

(* FBD Program using "POW" Function *)

LD 16#abc

OR_MASK 16#f0f

ST result

IN REAL Real number to be raised
EXP REAL Power (exponent)
Q REAL (IN EXP)

1.0 if IN is not 0.0 and EXP is 0.0
0.0 if IN is 0.0 and EXP is negative
0.0 if both IN and EXP are 0.0
0.0 if IN is negative and EXP does not correspond to an integer
554 DS800 Development Suite 2.1 - User Manual

(* ST Equivalence: *)

result := POW (xval, power);

(* IL Equivalence: *)

RAND

Arguments:

Description:

Gives a random integer value in a given range.

Example

(* FBD Program using "RAND" function *)

LD xval

POW power

ST result

base DINT Defines the allowed set of number
Q DINT Random value in set [0..base-1]
DS800 Development Suite 2.1 - Language Reference 555

(* ST Equivalence: *)

selected := MUX4 (RAND (4), 1, 4, 8, 16);

(*
random selection of 1 of 4 pre-defined values

the value issued of RAND call is in set [0..3],

so 'selected' issued from MUX4, will get 'randomly' the value

1 if 0 is issued from RAND,

or 4 if 1 is issued from RAND,

or 8 if 2 is issued from RAND,

or 16 if 3 is issued from RAND,

*)

REPLACE

Arguments:

IN STRING Any string
Str STRING String to be inserted (to replace NbC chars)
NbC DINT Number of characters to be deleted
556 DS800 Development Suite 2.1 - User Manual

Description:

Replaces a part of a string by a new set of characters.

Example

Replaces a part of a string by a new set of characters.

(* ST Equivalence: *)

MyName := REPLACE ('Mr X JONES, 'Frank', 1, 4);

(* MyName is 'Mr Frank JONES' *)

(* IL Equivalence: *)

Pos DINT Position of the first modified character
(first valid position is 1)

Q STRING Modified string:
- NbC characters are deleted at position Pos
- then substring Str is inserted at this position
returns empty string if Pos <= 0
returns strings concatenation (IN+Str) if Pos is greater than the length of
the IN string
returns initial string IN if NbC <= 0

LD 'Mr X JONES'

REPLACE 'Frank',1,4

ST MyName
DS800 Development Suite 2.1 - Language Reference 557

RIGHT

Arguments:

Description:

Extracts the right part of a string. The number of characters to be extracted is given.

Example

(* FBD Program using "LEFT" and "RIGHT" Functions *)(* ST Equivalence: *)

complete_string := RIGHT ('12345678', 4) + LEFT ('12345678', 4);

(* complete_string is '56781234'

the value issued from RIGHT call is '5678'

the value issued from LEFT call is '1234'

*)

IN STRING Any non-empty string
NbC DINT Number of characters to be extracted. This number cannot be greater

than the length of the IN string.
Q STRING Right part of the string (length = NbC)

empty string if NbC <= 0
complete string if NbC >= string length
558 DS800 Development Suite 2.1 - User Manual

(* IL Equivalence: First done is call to LEFT *)

ROL

Arguments:

Description:

Make the bits of an integer rotate to the left. Rotation is made on 32 bits:

LD '12345678'

LEFT 4

ST sub_string (* intermediate result *)

LD '12345678'

RIGHT 4

ADD sub_string

ST complete_string

IN DINT Any integer value
NbR DINT Number of 1 bit rotations (in set [1..31])
Q DINT Left rotated value

no effect if NbR <= 0
DS800 Development Suite 2.1 - Language Reference 559

Example

(* FBD Program using "ROL" Function *)

(* ST Equivalence: *)

result := ROL (register, 1);

(* register = 2#0100_1101_0011_0101*)

(* result = 2#1001_1010_0110_1010*)

(* IL Equivalence: *)

ROR

Arguments:

Description:

Make the bits of an integer rotate to the right. Rotation is made on 32 bits:

LD register

ROL 1

ST result

IN DINT Any integer value
NbR DINT Number of 1 bit rotations (in set [1..31])
Q DINT Right rotated value

no effect if NbR <= 0
560 DS800 Development Suite 2.1 - User Manual

Example

(* FBD Program using "ROR" Function *)

(* ST Equivalence: *)

result := ROR (register, 1);

(* register = 2#0100_1101_0011_0101 *)

(* result = 2#1010_0110_1001_1010 *)

(* IL Equivalence: *)

LD register

ROR 1

ST result
DS800 Development Suite 2.1 - Language Reference 561

SEL

Arguments:

Description:

Binary selector: selects a value between two integer values.

Example

(* FBD Program using "SEL" Function *)

(* ST Equivalence: *)

ProCmd := SEL (AutoMode, ManuCmd, InpCmd);

(* process command selection *)

(* IL Equivalence: *)

SEL BOOL Indicates the chosen value
IN1, IN2 DINT Any integer values
Q DINT = IN1 if SEL is FALSE

= IN2 if SEL is TRUE

LD AutoMode

SEL ManuCmd,InpCmd

ST ProCmd
562 DS800 Development Suite 2.1 - User Manual

SHL

Arguments:

Description:

Make the bits of an integer shift to the left. Shift is made on 32 bits:

Example

(* FBD Program using "SHL" Function *)

(* ST Equivalence: *)

result := SHL (register,1);

(* register = 2#0100_1101_0011_0101 *)

(* result = 2#1001_1010_0110_1010 *)

IN DINT Any integer value
NbS DINT Number of 1 bit shifts (in set [1..31])
Q DINT Left shifted value

no effect if NbS <= 0
0 is used to replace lowest bit
DS800 Development Suite 2.1 - Language Reference 563

(* IL Equivalence: *)

SHR

Arguments:

Description:

Make the bits of an integer shift to the right. Shift is made on 32 bits:

LD register

SHL 1

ST result

IN DINT Any integer value
NbS DINT Number of 1 bit shifts (in set [1..31])
Q DINT Right shifted value

no effect if NbS <= 0
highest bit is copied at each shift
564 DS800 Development Suite 2.1 - User Manual

Example

(* FBD Program using "SHR"Function *)

(* ST Equivalence: *)

result := SHR (register,1);

(* register = 2#1100_1101_0011_0101 *)

(* result = 2#1110_0110_1001_1010 *)

(* IL Equivalence: *)

SIN

Arguments:

Description:

Calculates the Sine of a real value.

LD register

SHR 1

ST result

IN REAL Any REAL value
Q REAL Sine of the input value (in set [-1.0 .. +1.0])
DS800 Development Suite 2.1 - Language Reference 565

Example

(* FBD Program using "SIN" and "ASIN" Functions *)

(* ST Equivalence: *)

sine := SIN (angle);

result := ASIN (sine); (* result is equal to angle *)

(* IL Equivalence: *)

SQRT

Arguments:

Description:

Calculates the square root of a real value.

LD angle

SIN

ST sine

ASIN

ST result

IN REAL Must be greater than or equal to zero
Q REAL Square root of the input value
566 DS800 Development Suite 2.1 - User Manual

Example

(* FBD Program using "SQRT" Function *)

(* ST Equivalence: *)

xpos := ABS (xval);
xroot := SQRT (xpos);

(* IL Equivalence: *)

SUB_DATE_DATE

Arguments:

LD xval

ABS

ST xpos

SQRT

ST xrout

DAT1 DATE First date in a comparison
DS800 Development Suite 2.1 - Language Reference 567

Description:

Compares two dates and gives the difference in TIME format.

Example

(* FBD Program using "SUB_DATE_DATE" Function *)

(* ST Equivalence: *)

timResult := SUB_DATE_DATE (datVal1, datVal2);

(* IL Equivalence: *)

DAT2 DATE Second date in a comparison
TIME TIME Difference in TIME format between DAT1 and DAT2. The possible date

difference values range from t#0h to t#1193h2m47s294ms inclusively.
A value of 1193h2m47s295ms indicates an error for either of the
following conditions:
- DAT1 is less than DAT2
- The difference between DAT1 and DAT2 is greater than
1193h2m47s294ms

LD datVal1
SUB_DATE_DATE datVal2
ST timResult
568 DS800 Development Suite 2.1 - User Manual

TAN

Arguments:

Description:

Calculates the Tangent of a real value.

Example

(* FBD Program using "TAN" and "ATAN" Functions *)

(* ST Equivalence: *)

tangent := TAN (angle);

result := ATAN (tangent); (* result is equal to angle*)

(* IL Equivalence: *)

IN REAL Cannot be equal to PI/2 modulo PI
Q REAL Tangent of the input value

= 1E+38 for invalid input

LD angle

TAN

ST tangent

ATAN

ST result
DS800 Development Suite 2.1 - Language Reference 569

TRUNC

Arguments:

Description:

Truncates a real value to have just the integer part.

Example

(* FBD Program using "TRUNC" Function *)

(* ST Equivalence: *)

result := TRUNC (+2.67) + TRUNC (-2.0891);

(* means: result := 2.0 + (-2.0) := 0.0; *)

(* IL Equivalence: *)

IN REAL Any REAL value
Q REAL If IN>0, biggest integer less or equal to the input

If IN<0, least integer greater or equal to the input

LD 2.67

TRUNC

ST temporary (* temporary result of first TRUNC *)

LD -2.0891

TRUNC
570 DS800 Development Suite 2.1 - User Manual

XOR_MASK

Arguments:

Description:

Integer exclusive OR bit-to-bit mask

Example

(* FBD example with XOR_MASK Operators *)

(* ST Equivalence: *)

crc32 := XOR_MASK (prevcrc, nextc);

result := XOR_MASK (16#012, 16#011); (* equals 16#003 *)

ADD temporary

ST result

IN DINT Must have integer format
MSK DINT Must have integer format
Q DINT Bit-to-bit logical Exclusive OR between IN and MSK
DS800 Development Suite 2.1 - Language Reference 571

(* IL equivalence: *)

LD prevcrc

XOR_MASK nextc

ST crc32

LD 16#012

XOR_MASK 16#011

ST result
572 DS800 Development Suite 2.1 - User Manual

Standard Function Blocks
DS800 Development Suite supports the following standard function blocks:

Alarm and event
operations
Warning: These
function blocks are
available only on
ROC800-Series
devices.

ALARM Places a time-stamped alarm in the alarm log
of a device.

EVENT Places a time-stamped event in the event log
of a device.

Boolean operations SR Set dominant bistable
RS Reset dominant bistable
R_TRIG Rising edge detection
F_TRIG Falling edge detection

Communications CONNECT Connection to a resource
USEND_S Sending of a message to a resource
URCV_S Reception of a message from a resource

Comparator CMP Full comparison Function Block

Counters CTU Up counter
CTD Down counter
CTUD Up-down counter

Database commands
Warning: These
function blocks are
available only on
ROC800-Series
devices.

DBG_CLR_GET_ERR Clears error set by TLP_GET_xxx functions
DBG_CLR_SET_ERR Clears error set by TLP_SET_xxx functions
DBG_GET_ERR Indicates error with TLP_GET_xxx

functions
DBG_SET_ERR Indicates error with TLP_SET_xxx

functions
SOFT_POINT_READ Reads entire contents of a soft point and

writes the data to an output value
SOFT_POINT_WRITE Writes data to a specified soft point
TLP_GET_DINT Returns TLP data as a DINT
DS800 Development Suite 2.1 - Language Reference 573

Note: When new function blocks are created, these can be called from any language.

TLP_GET_REAL Returns TLP data as a REAL

TLP_GET_SINT Returns TLP data as an SINT

TLP_GET_STRING Returns TLP data as a STRING

TLP_GET_TLP Reads the TLP from a specified TLP

TLP_SET_DINT Writes a DINT to a TLP

TLP_SET_REAL Writes a REAL to a TLP

TLP_SET_SINT Writes a SINT to a TLP

TLP_SET_STRING Writes a STRING to a TLP

Data manipulation AVERAGE Running average over N samples

License request and
operating system
priority
Warning: These
function blocks are
available only on
ROC800-Series
devices.

REQUEST_LICENSE Requests a license from the license server.
SET_PRIORITY Sets the priority of the operating system.

Process control DERIVATE Differentiation according to time
HYSTER Boolean hysteresis on difference of reals
INTEGRAL Integration over time
STACKINT Stack of integer

Signal generation BLINK Blinking Boolean signal
SIG_GEN Signal generator
TON On-delay timing
TOF Off-delay timing
TP Pulse timing
574 DS800 Development Suite 2.1 - User Manual

ALARM

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

The ALARM function places a time stamped alarm in the alarm log of the device. Setting the
SET input to TRUE logs an “alarm set”, whereas, setting this input to false logs an “alarm
clear”. The SRBX input allows for the device to contact a host to report an alarm condition.
Further setup is required in ROCLINK if this input is set to TRUE.

AVERAGE

Arguments:

TAG STRING A brief textual description of the alarm
SET BOOL TRUE enables alarm, FALSE disables alarm
VAL REAL Numerical value associated with the alarm
SRBX BOOL Alarm is a spontaneous report by exception alarm

RUN BOOL TRUE=run / FALSE=reset
XIN REAL Any real Variable
N DINT Application defined number of samples
DS800 Development Suite 2.1 - Language Reference 575

Description:

Stores a value at each cycle and calculates the average value of all already stored values. Only
the N last values are stored.

The number of samples N cannot exceed 128.

If the "RUN" command is FALSE (reset mode), the output value is equal to the input value.

When the maximum N of stored values is reached, the first stored value is erased by the last
one.

Example

(* FBD Program using "AVERAGE" Block: *)

(* ST Equivalence: AVERAGE1 instance of AVERAGE block *)

AVERAGE1((auto_mode & store_cmd), sensor_value, 100);

ave_value := AVERAGE1.XOUT;

XOUT REAL Running average of XIN value
Note: When setting or changing the value for N, you need to set RUN to FALSE, then set it
back to TRUE.
576 DS800 Development Suite 2.1 - User Manual

BLINK

Arguments:

Description:

Generates a blinking signal.

Timing diagram:

RUN BOOL Mode: TRUE=blinking / FALSE=reset the output to false
CYCLE TIME Blinking period. Possible values range from 0ms to 23h59m59s999ms.
Q BOOL Output blinking signal
DS800 Development Suite 2.1 - Language Reference 577

CMP

Arguments:

Description:

Compare two values: tell if they are equal, or if the first is less or greater than the second one.

Example

(* FBD Program using "CMP" Block *)

(* ST Equivalence: We suppose CMP1 is an instance of CMP block *)

CMP1(level, max_level);

pump_cmd := CMP1.LT OR CMP1.EQ;

alarm := CMP1.GT AND NOT(manual_mode);

VAL1 DINT Any signed integer value
VAL2 DINT Any signed integer value
LT BOOL TRUE if val1 is Less Than val2
EQ BOOL TRUE if val1 is Equal to val2
GT BOOL TRUE if val1 is Greater Than val2
578 DS800 Development Suite 2.1 - User Manual

CONNECT

Arguments:

Description:

Creates a connection with a remote or local Resource (of current Project or another Project)
and manages the exchanges (for blocks USEND_S and URCV_S). For details on the
USEND_S block, see page 613. For details on the URCV_S block, see page 612.

It creates a communication channel identifier (ID).

This identifier is required in all others communication function blocks (URCV_S or
USEND_S).

PARTNER parameter is a string with the following format:

'ResourceNumber@Address'

Example

'1@123.45.67.89'

Connection with the ETCP driver to Resource 1 at address 123.45.67.89.

EN_C BOOL Enable connection.
PARTNER STRING Name of the remote communication partner.
VALID BOOL If TRUE, connection ID is valid.
ERROR BOOL If TRUE, new non-zero status received.
STATUS DINT Last detected status.
ID DINT Identification of the communication Channel.
DS800 Development Suite 2.1 - Language Reference 579

If the Resource is on the same Configuration, its number is enough to identify it (e.g. '1').

On a rising edge of EN_C parameter, the CONNECT Block establishes the communication
with the remote partner.

The VALID parameter is set to TRUE until the communication is available.

Every time the status changes, the output parameter ERROR is set to TRUE during one cycle
and the new status is set in the STATUS parameter.

STATUS can take following values:

If the connection failed, a new connection is not automatically done, a rising edge must be
detected on EN_C parameter.

Example

The following is a program of Resource 3 that sends a string to Resource 4 on the same
Configuration:

STATUS Description

0 Connection successfully completed.
1 Waiting for reply
2 Too many CFB connect
3 Not ready for a new connection
4 Connect failed
5 Bad partner
580 DS800 Development Suite 2.1 - User Manual

The following is the corresponding program in Resource 4 that receives the string:

CTD

Arguments:

Warning: The CTD Block does not detect the rising or falling edges of the counting input
(CD). It must be associated with an "R_TRIG" or "F_TRIG" block to create a pulse counter.

Description:

Count (integer) from a given value down to 0 1 by 1

CD BOOL Counting input
(down-counting when CD is TRUE)

LOAD BOOL Load command (dominant)
(CV = PV when LOAD is TRUE)

PV DINT Programmed initial value
Q BOOL Underflow: TRUE when CV <= 0
CV DINT Counter result
DS800 Development Suite 2.1 - Language Reference 581

Example

(* FBD Program using "CTD" Block *)

(* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block and CTD1 is an
instance of CTD block*)

F_TRIG1(command);

CTD1(F_TRIG1.Q,load_cmd,100);

underflow := CTD1.Q;

result := CTD1.CV;

CTU

Arguments:

Warning: The CTU Block does not detect the rising or falling edge of the counting input (CU).
It must be associated with an "R_TRIG" or "F_TRIG" block to create a pulse counter.

CU BOOL Counting input (counting when CU is TRUE)
RESET BOOL Reset command (dominant)
PV DINT Programmed maximum value
Q BOOL Overflow: TRUE when CV >= PV
CV DINT Counter result
582 DS800 Development Suite 2.1 - User Manual

Description:

Count (integer) from 0 up to a given value 1 by 1

Example

(* FBD Program using "CTU" Block *)

(* ST Equivalence: We suppose R_TRIG1 is an instance of R_TRIG block and CTU1 is an
instance of CTU block*)

R_TRIG1(command);

CTU1(R_TRIG1.Q,NOT(auto_mode),100);

overflow := CTU1.Q;

result := CTU1.CV;

CTUD

Arguments:

CU BOOL Up-counting (when CU is TRUE)
CD BOOL Down-counting (when CD is TRUE)
RESET BOOL Reset command (dominant)

(CV = 0 when RESET is TRUE)
LOAD BOOL Load command (CV = PV when LOAD is TRUE)
DS800 Development Suite 2.1 - Language Reference 583

Warning: The CTUD Block does not detect the rising or falling edge of the counting inputs
(CU and CD). It must be associated with an "R_TRIG" or "F_TRIG" Block to create a pulse
counter.

Description:

Count (integer) from 0 up to a given value 1 by 1 or from a given value down to 0 1 by 1

Example

(* FBD Program using "CTUD" Block *)

(* ST Equivalence: We suppose R_TRIG1 and R_TRIG2 are two instances of R_TRIG Block
and CTUD1 is an instance of CTUD block*)

R_TRIG1(add_elt);

R_TRIG2(sub_elt);

CTUD1(R_TRIG1.Q, R_TRIG2.Q, reset_cmd, load_cmd,100);

full := CTUD1.QU;

empty := CTUD1.QD;

nb_elt := CTUD1.CV;

PV DINT Programmed maximum value
QU BOOL Overflow: TRUE when CV >= PV
QD BOOL Underflow: TRUE when CV <= 0
CV DINT Counter result
584 DS800 Development Suite 2.1 - User Manual

DBG_CLR_GET_ERR

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

This function clears the errors that were encountered with any of the TLP_GET_xxx functions.

DBG_CLR_SET_ERR

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

This function clears the errors that were encountered with any of the TLP_SET_xxx functions.

This function has no arguments.

This function has no arguments.
DS800 Development Suite 2.1 - Language Reference 585

DBG_GET_ERR

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

This function is intended as an aid for debugging your DS800 application. Returns TRUE if an
error has been encountered with any of the TLP_GET_xxx functions. Errors occur if the TLP
does not exist, or if the TLP references a data type that is incompatable with the return type of
the function. The error remains set until DBG_CLR_GET_ERR is called.

DBG_SET_ERR

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

This function is intended as an aid for debugging your DS800 application. Returns TRUE if an
error has been encountered with any of the TLP_SET_xxx functions. Errors occur if the TLP
does not exist, or if the TLP references a data type that is incompatable with the data type of
the value it is being set to. The error remains set until DBG_CLR_SET_ERR is called.

status (stat) BOOL TRUE=error/FALSE=no error

status (stat) BOOL TRUE=error/FALSE=no error
586 DS800 Development Suite 2.1 - User Manual

DERIVATE

Arguments:

Description:

Differentiation of a real value.

If the "CYCLE" parameter value is less than the cycle timing of the execution of the resource
in the target, the sampling period is forced to this cycle timing.

Example

(* FBD Program using "DERIVATE" Block: *)

(* ST Equivalence: DERIVATE1 instance of DERIVATE block *)

DERIVATE1(manual_mode, sensor_value, t#100ms);

derivated_value := DERIVATE1.XOUT;

RUN BOOL Mode: TRUE=normal / FALSE=reset
XIN REAL Input: any real value
CYCLE TIME Sampling period. Possible values range from 0ms to

23h59m59s999ms.
XOUT REAL Differentiated output
DS800 Development Suite 2.1 - Language Reference 587

EVENT

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

The EVENT function places a time-stamped user event in the event log of the device.

F_TRIG

Arguments:

Description:

Detects a falling edge of a Boolean Variable

TAG STRING A brief textual description of the event

CLK BOOL Any Boolean Variable
Q BOOL TRUE when CLK changes from TRUE to FALSE

FALSE if all other cases
588 DS800 Development Suite 2.1 - User Manual

Example

(* FBD Program using "F_TRIG" Block *)

(* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block *)

F_TRIG1(cmd);

nb_edge := ANY_TO_DINT(F_TRIG1.Q) + nb_edge;

HYSTER

Arguments:

Description:

Hysteresis on a real value for a high limit.

XIN1 REAL Any real value
XIN2 REAL To test if XIN1 has overpassed XIN2+EPS
EPS REAL Hysteresis value (must be greater than zero)
Q BOOL TRUE if XIN1 has overpassed XIN2+EPS and is not yet below

XIN2-EPS
DS800 Development Suite 2.1 - Language Reference 589

Example

Example of a timing diagram:

INTEGRAL

Arguments:

RUN BOOL Mode: TRUE=integrate / FALSE=hold
R1 BOOL Overriding reset
XIN REAL Input: any real value
X0 REAL Initial value
CYCLE TIME Sampling period. Possible values range from 0ms to

23h59m59s999ms.
Q BOOL Not R1
XOUT REAL Integrated output
590 DS800 Development Suite 2.1 - User Manual

Description:

Integration of a real value.

If the "CYCLE" parameter value is less than the cycle timing of the execution of the resource
in the target, the sampling period is forced to this cycle timing.

Example

(* FBD Program using "INTEGRAL" Block: *)

(* ST Equivalence: INTEGRAL1 instance of INTEGRAL block *)

INTEGRAL1(manual_mode, NOT(manual_mode), sensor_value, init_value,
t#100ms);

controlled_value := INTEGRAL1.XOUT;

R_TRIG

Arguments:

Description:

Detects a Rising Edge of a Boolean Variable

CLK BOOL Any Boolean Variable
Q BOOL TRUE when CLK rises from FALSE to TRUE

FALSE in all other cases
DS800 Development Suite 2.1 - Language Reference 591

Example

(* FBD Program using "R_TRIG" Block *)

(* ST Equivalence: We suppose R_TRIG1 is an instance of R_TRIG Block *)

R_TRIG1(cmd);

nb_edge := ANY_TO_DINT(R_TRIG1.Q) + nb_edge;

REQUEST_LICENSE

Warning: This function block is available only on ROC800-Series devices.

Arguments:

name STRING Name of application to request license for
vid DINT Vendor ID
592 DS800 Development Suite 2.1 - User Manual

Description:

The REQUEST_LICENSE function requests a license from the license server.

RS

Arguments:

Description:

Reset dominant bistable:

cqry DINT Query options for application code
cd1 DINT Application code 1
cd2 DINT Application code 2
vqry DINT Query options for version
ver1 STRING Version 1
ver1 STRING Version 2
lic LicenseInfo Identifies license returned

SET BOOL If TRUE, sets Q1 to TRUE
RESET1 BOOL If TRUE, resets Q1 to FALSE (dominant)
Q1 BOOL Boolean memory state

Set Reset1 Q1 Result Q1

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
DS800 Development Suite 2.1 - Language Reference 593

Example

(* FBD Program using "RS" Block *)

(* ST Equivalence: We suppose RS1 is an instance of RS block *)

RS1(start_cmd, (stop_cmd OR alarm));

command := RS1.Q1;

SET_PRIORITY

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Sets the priority of the operating system.

1 0 1 1
1 1 0 0
1 1 1 0

pri DINT Priority of the operating system. Possible values range between 10
and 31.
594 DS800 Development Suite 2.1 - User Manual

SIG_GEN

Arguments:

Description:

Generates various signal: blink on a boolean, a integer counter-up, and real sine wave.

When counting reaches maximum value, it restarts from 0 (zero). So END keeps the TRUE
value only during 1 PERIOD.

RUN BOOL Mode: TRUE=running / FALSE=reset to false
PERIOD TIME Duration of one sample. Possible values range from 0ms to

23h59m59s999ms.
MAXIMUM DINT Maximum counting value
PULSE BOOL Inverted after each sample
UP DINT Up-counter, increased on each sample
END BOOL TRUE when up-counting ends
SINE REAL Sine signal (period = counting duration)
DS800 Development Suite 2.1 - Language Reference 595

Timing diagram:

SOFT_POINT_READ

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Reads entire contents of a soft point and writes the data to an output value.

log_num (log#) DINT Identifies the logical number of a soft point to read from.
data SoftPoint Stores contents of specified soft point
596 DS800 Development Suite 2.1 - User Manual

SOFT_POINT_WRITE

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Writes data to a specified soft point.

Hidden Parameters:

This function block has hidden parameters that correspond to each parameter in a soft point.
These hidden parameters can be used to control which parameters in the input data actually get
written to the soft point. The hidden parameters are of type BOOL. The default value for each
parameter is TRUE, changing this value to FALSE prevents the corresponding soft point
parameter from getting over-written with the input data.

log_num (log#) DINT Identifies the logical number of a soft point to write to.
data SoftPoint Contains data to be written to soft point.
DS800 Development Suite 2.1 - Language Reference 597

Double-clicking the function block in the Function Block Diagram opens up a dialog box from
which you access the hidden parameters. Click on the "Parameters" tab to display the hidden
parameters.

SR

Arguments:

Description:

Set dominant bistable:

SET1 BOOL If TRUE, sets Q1 to TRUE (dominant)
RESET BOOL If TRUE, resets Q1 to FALSE
Q1 BOOL Boolean memory state

Set1 Reset Q1 Result Q1

0 0 0 0
598 DS800 Development Suite 2.1 - User Manual

Example

(* FBD Program using "SR" Block *)

(* ST Equivalence: We suppose SR1 is an instance of SR block *)

SR1((auto_mode & start_cmd), stop_cmd);

command := SR1.Q1;

0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
DS800 Development Suite 2.1 - Language Reference 599

STACKINT

Arguments:

Description:

Manage a stack of integer values.

The "STACKINT" Function Block includes a rising edge detection for both PUSH and POP
commands. The maximum size of the stack is 128. The application defined stack size N cannot
be less than 1 or greater than 128.

Note: OFLO value is valid only after a reset (R1 has been set to TRUE at least once and back
to FALSE).

PUSH BOOL Push command (on Rising Edge only)
add the IN value on the top of the stack

POP BOOL Pop command (on rising edge only)
delete in the stack the last value pushed (top of the stack)

R1 BOOL Resets the stack to its empty state
IN DINT Pushed value
N DINT Application defined stack size
EMPTY BOOL TRUE if the stack is empty
OFLO BOOL Overflow: TRUE if the stack is full
OUT DINT Value at the top of the stack
600 DS800 Development Suite 2.1 - User Manual

Example

(* FBD Program using "STACKINT" Block: error management *)

(* ST Equivalence: We suppose STACKINT1 is an instance of STACKINT Block *)

STACKINT1(err_detect, acknoledge, manual_mode, err_code, max_err);

appli_alarm := auto_mode AND NOT(STACKINT1.EMPTY);

err_alarm := STACKINT1.OFLO;

last_error := STACKINT1.OUT;

TLP_GET_DINT

Warning: This function block is available only on ROC800-Series devices.

Arguments:

point_type (t) DINT Refers to point type that contains the parameter to be read
logical (l) DINT Instance of specified point type
parameter (p) DINT Parameter to get
vout DINT Value of specified TLP
DS800 Development Suite 2.1 - Language Reference 601

Description:

Gets parameter referenced by a TLP. The specified TLP may be any numerical data type.
Parameter is converted to a DINT before being written to the output value.

TLP_GET_REAL

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Gets parameter referenced by a TLP. The specified TLP may be any numerical data type.
Parameter is converted to a REAL before being written to the output value.

point_type (t) DINT Refers to point type that contains the parameter to be read
logical (l) DINT Instance of specified point type
parameter (p) DINT Parameter to get
vout REAL Value of specified TLP
602 DS800 Development Suite 2.1 - User Manual

TLP_GET_SINT

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Gets parameter referenced by a TLP. The specified TLP may be any numerical data type.
Parameter is converted to a SINT before being written to the output value.

point_type (t) DINT Refers to point type that contains the parameter to be read
logical (l) DINT Instance of specified point type
parameter (p) DINT Parameter to get
vout SINT Value of specified TLP
DS800 Development Suite 2.1 - Language Reference 603

TLP_GET_STRING

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Gets parameter referenced by a TLP. The specified TLP must be a string. The string is
truncated if it is too large to fit in the return value.

point_type (t) DINT Refers to point type that contains the parameter to be read
logical (l) DINT Instance of specified point type
parameter (p) DINT Parameter to get
vout STRING Value of specified TLP
604 DS800 Development Suite 2.1 - User Manual

TLP_GET_TLP

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Reads the TLP from a specified TLP.

point_type (t) DINT Refers to point type that contains the parameter to be read
logical (l) DINT Instance of specified point type
parameter (p) DINT Parameter to get
rpoint_type (t) DINT Specified point type
rlogical (l) DINT Specified instance of point type
rparameter (p) DINT Specified parameter
DS800 Development Suite 2.1 - Language Reference 605

TLP_SET_DINT

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Sets parameter referenced by a TLP. Any numerical data type can be set with this function. Vin
is converted to the data type of specified TLP before parameter is set.

point_type (t) DINT Refers to point type that contains the parameter to be set
logical (l) DINT Instance of specified point type
parameter (p) DINT Parameter to set
vin DINT New value for specified parameter
606 DS800 Development Suite 2.1 - User Manual

TLP_SET_REAL

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Sets parameter referenced by a TLP. Any numerical data type can be set with this function. Vin
is converted to the data type of specified TLP before parameter is set.

point_type (t) DINT Refers to point type that contains the parameter to be set
logical (l) DINT Instance of specified point type
parameter (p) DINT Parameter to set
vin REAL New value for specified parameter
DS800 Development Suite 2.1 - Language Reference 607

TLP_SET_SINT

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Sets parameter referenced by a TLP. Any numerical data type can be set with this function. Vin
is converted to the data type of specified TLP before parameter is set.

point_type (t) DINT Refers to point type that contains the parameter to be set
logical (l) DINT Instance of specified point type
parameter (p) DINT Parameter to set
vin SINT New value for specified parameter
608 DS800 Development Suite 2.1 - User Manual

TLP_SET_STRING

Warning: This function block is available only on ROC800-Series devices.

Arguments:

Description:

Sets parameter referenced by a TLP. Any string type can be set with this function. String will
be padded with spaces if vin is shorter than string being set. String will be truncated if vin is
longer than string being set.

TOF

Arguments:

point_type (t) DINT Refers to point type that contains the parameter to be set
logical (l) DINT Instance of specified point type
parameter (p) DINT Parameter to set
vin STRING New value for specified parameter

IN BOOL If Falling Edge, starts increasing internal timer
If Rising Edge, stops and resets internal timer

PT TIME Maximum programmed time
DS800 Development Suite 2.1 - Language Reference 609

Description:

Increase an internal timer up to a given value.

Timing diagram:

TON

Arguments:

Q BOOL If TRUE: total time is not elapsed
ET TIME Current elapsed time

IN BOOL If Rising Edge, starts increasing internal timer
If Falling Edge, stops and resets internal timer

PT TIME Maximum programmed time
Q BOOL If TRUE, programmed time is elapsed
ET TIME Current elapsed time. Possible values range from 0ms to 23h59m59s999ms.
610 DS800 Development Suite 2.1 - User Manual

Description:

Increase an internal timer up to a given value.

Timing diagram:

TP

Arguments:

Description:

Increase an internal timer up to a given value.

IN BOOL If Rising Edge, starts increasing internal timer (if not already increasing)
If FALSE and only if timer is elapsed, resets the internal timer
Any change on IN during counting has no effect.

PT TIME Maximum programmed time
Q BOOL If TRUE: timer is counting
ET TIME Current elapsed time. Possible values range from 0ms to 23h59m59s999ms.
DS800 Development Suite 2.1 - Language Reference 611

Timing diagram:

URCV_S

Arguments:

EN_R BOOL Enable to receive data
ID DINT Identification of the communication Channel
R_ID STRING Identification of the remote SFB inside the Channel
NDR BOOL If TRUE, new string received in RD
ERROR BOOL If TRUE, new non-zero STATUS received
STATUS DINT Last detected status
RD STRING Received string
612 DS800 Development Suite 2.1 - User Manual

Description:

Receive a string from a remote or local resource (of current Project or another Project).

Warning: Connect block must have been called in current cycle before the URCV_S call. This
CFB receives a string from one USEND_S instance. Previously received string is overwritten.
If string is successfully received then NDR is set to TRUE during one cycle. If an error occurs,
the ERROR output parameter is set to TRUE and the status is set in the STATUS parameter.

STATUS can have the following values:

See example in the description of the CONNECT Block.

USEND_S

Arguments:

STATUS Description

0 Receive successfully completed
1 Waiting for message
2 Invalid identifier
3 Not ready for receive
6 Waiting for message
7 Dialog has failed

REQ BOOL Send request on rising edge
ID DINT Identification of the communication channel
R_ID STRING Identification of the remote CFB inside the channel
DS800 Development Suite 2.1 - Language Reference 613

Description:

Send a string to a remote or local Resource (of current Project or another Project).

Warning: Connect block must have been called in current cycle before the USEND_S call.
This CFB sends a string to one URCV_S instance on rising edge of REQ. If string is
successfully sent then DONE is set. If an error occurs, the output parameter ERROR is set to
TRUE and the status is set in the STATUS parameter.

STATUS can have the following values:

If the send failed, a new send is not automatically done, a rising edge must be detected on REQ
parameter.

See example in the description of the CONNECT block.

SD STRING String to send
DONE BOOL If TRUE, function performed successfully
ERROR BOOL If TRUE, new non-zero STATUS received
STATUS DINT Last detected status

STATUS Description

0 Send successfully completed
1 Send in progress
2 Invalid identifier
3 Not ready to send
6 Dialog has failed
7 Send has failed
614 DS800 Development Suite 2.1 - User Manual

Glossary
The Glossary contains terms used in the Workbench and their definitions.

Access Control The use of password-protection to control access to projects,
resources, POUs, and targets. For projects, resources, and
POUs, access control can also limit access to read-only mode.

Access Method Methods to access the Virtual Machine database from a client
application (programmed in C): SMA, MIB, SID.

Action In SFC: an action can be on a Boolean variable or a child SFC,
or a collection of operations (written in ST, IL, LD) to perform
with an associated SFC step. The action is executed when the
Step (SFC) is active.
In FC: an action is a collection of operations (written in ST, IL,
LD) to perform.

Activity of a Step Attribute of a Step (SFC) which is activated by an SFC token.

Address Optional hexadecimal address freely defined for each variable.
This address can be used by an external application to access
the value of the variable when the resource is executed by the
Target.

Alias The property of a variable indicating a short name for a
variable. For FBD and LD diagrams, aliases indicate the
parameters in functions and function blocks.

Array Set of elements of the same type referenced by one or more
indexes enclosed in square brackets and separated by commas.
The index is an integer. Examples: tabi[2] or tabij[2,4].

Attribute The property of a variable indicating whether a variable is
read-only, write-only, or free (read and write).

Automatic Instance (of a
function block)

A function block having no assigned instances. Automatic
instances of function blocks cannot be added to a POU during
online changes.

See also Declared Instance (of a function block)
DS800 Development Suite 2.1 - Glossary 615

Binding Bindings are directional links, i.e., access paths, between
variables located in different resources. The Workbench
enables two types of bindings: internal bindings and external
bindings. Internal bindings are between resources within the
same project. External bindings are between resources
belonging to different projects.

Binding Error Variable Variables enabling the management of binding errors at the
consumer resource level.

Boolean (Bool) Basic type that can be used to define a variable, a Parameter
(POU) or a device. A Boolean can be TRUE (1) or FALSE (0).

Boolean Action SFC Action: a Boolean variable is assigned with the activity of
a Step (SFC).

Breakpoint SFC POU: Mark placed by the user at debug time, on an SFC
Step (SFC) or Transition. The Target system stops when an
SFC token is moved on a breakpoint.
Step-by-step mode: For ST and IL POUs, you set breakpoints
to specific lines of code. For LD POUs, you set breakpoints to
rungs. When running an application in Debug mode, the
application stops when it encounters a breakpoint.

C Function Function written with the "C" language, called from POUs, in
a synchronous manner.

C Language High level literal language used to access particularities of the
target system. C language can be used to program C functions,
function blocks and conversion functions.

Call Stack Information which tracks stepping between POUs and called
functions. Debug information includes call stack. You can only
generate debug information for resources producing TIC code.

Cell Elementary area of the graphic matrix for graphic languages
such as SFC, FBD or LD or for the Dictionary Grid View.

CFB Indicates a C function block

CFU Indicates a C function
616 DS800 Development Suite 2.1 - User Manual

Channel A channel of a device represents a hardware I/O point. It can
be an input or an output. A variable is generally connected to a
channel in order to be used in POUs. Directly represented
variables can also be used in POUs.

Check In Sending the contents of Workbench elements including
projects, configurations, resources, and POUs for storage in a
version source control database. Checked-in elements can be
recovered at a later time.

Child For SFC and FC, program which is activated by its father. The
child has only one father. Only its father can start or kill it. A
father can have more than one child.

Clearing a Transition The forcing of the clearing of a transition whether the latter is
valid or not (i.e all previous steps are active or not). Tokens are
moved and actions are executed as for a usual transition
clearing. All tokens existing in the preceding steps are
removed. A token is created in each of the following steps.

CMG Short name for the configuration manager

Coil Graphic component of an LD Program representing the
assignment of an output or an internal variable.

Common Scope Scope of a declaration applying to all POUs within a Project.
(Only defined words and types can have common scope).

Complex Equipment See I/O Complex Device.

Condition A Boolean expression attached to an SFC Transition or an FC
test. In case of an SFC transition, the transition cannot be
cleared when its condition is false.

Configuration A software object made up of one or more resources. A
configuration becomes a RAS device target when it is
downloaded onto a target.

Configuration Manager (ConfigurationManager.exe) The executable file providing
communication services between the Workbench and target.
Responsible for launching, killing, and giving the status of
running virtual machines.

Connection The link between networks and configurations, displayed in
the hardware architecture view.
DS800 Development Suite 2.1 - Glossary 617

Constant Expression Literal expression used to describe a constant value.

Consumer Group A group holding external producer variables having bindings
with consumer variables defined in the project.

Consumption Error
Behavior

Indication of the value to use when an error occurs for an
internal binding. Possible values are either the last value issued
from the binding or a specified default value.

Contact Graphic component of an FBD or LD diagram. Depending on
the type of contact, it represents the value or function of an
input or an internal variable.

Contextual Menu Menu that is displayed under the mouse cursor by
right-clicking the mouse.

Convergence Multiple connection link from multiple SFC symbols (steps or
transitions) to a single symbol. Convergences can be single or
double. A single convergence (OR) is a multiple link from
multiple transitions to the same step. A double convergence
(AND) is a multiple link from multiple steps to the same
transition.

Conversion Filter attached to an input or output variable. The conversion is
automatically applied each time the input variable is read or
the output variable is refreshed.

Conversion Function "C" written Function which describes a conversion. Such a
conversion can be attached to any input or output, integer or
real variable.

CRC Cyclic redundancy checking

Cross References
Browser

A tool that finds all references to variables, i.e., cross
references, defined in the POUs of a project. The browser
provides a total view of the declared variables in the programs
of the project and where these are used.

CSV File Format (Comma Separated Values) A delimited data format having
each piece of information separated by commas and each line
ending with a carriage return. The CSV file format can be used
for importing or exporting variables data.

Current Result (IL) Result of an instruction in an IL POU. The current result can be
modified by an instruction, or used to set a variable.
618 DS800 Development Suite 2.1 - User Manual

Cycle The Virtual Machine executes the programs of a resource as a
cycle. All programs of the resource are executed following the
order defined by the user, from the first program to the last and
again and again. Before the execution of the first program,
inputs are read. After the execution of the last program, the
outputs are refreshed.

Cycle Time The time between two input scans on the target. It represents
the time to execute one cycle. The cycle time can differ at each
cycle if none is programmed. When the cycle time is shorter,
the Virtual Machine waits until this time has elapsed. When the
cycle time is longer, the Virtual Machine immediately scans the
inputs but signals with the "overflow" that the programmed
time has been exceeded. When the cycle time is 0, the Virtual
Machine does not wait to start a new cycle.

Cycle-to-cycle Mode Execution mode: In this mode, cycles are executed one by one,
according to the orders given by the user of the debugger.

Database The collection of definitions making up a Workbench project.
The version source control feature stores checked-in
information in a separate database.

Data Link A directional link between resources across which variable
bindings data is conveyed.

Debug Information For use when debugging using the step-by-step mode with ST,
IL, and LD POUs (programs, functions, and function blocks).
Debug information includes call stack information which
tracks stepping between POUs and called functions. You can
only generate debug information for resources producing TIC
code.

Declared Instance (of a
function block)

A function block having assigned instances, i.e., declared in
the dictionary. Declared instances of function blocks can be
added to a POU during online changes.

See also Automatic Instance (of a function block)
Defined Word Word that is an expression. This word can be used in POUs. At

compiling time the word is replaced by the expression. A
defined word can not use a defined word.
DS800 Development Suite 2.1 - Glossary 619

Delayed Operation (IL) Operation of an IL Program, executed when the ")" instruction
occurs, later in the Program.

Dependency (on a
library)

The state where a project uses, i.e., depends, on functions or
function blocks defined in a library.

Device See I/O device.

Dictionary The view displaying the variables, function and function block
parameters, types, and defined words used in the programs of a
Project.

Dimension The size (number of elements) of an array. For example:
[1..3,1..10] - represents a two-dimensional array containing a
total of 30 elements.

Direction Variables and devices have a direction. For the property of a
variable, direction indicates whether a variable is an input,
output, or internal. The direction of a device can be input or
output.

Directly Represented
Variable

A variable is generally declared before its use in one POU.
Inputs and outputs can be used without any declaration
respecting a defined syntax. It corresponds to direct represented
variables. Example: %QX1.6, %ID8.2

Divergence Multiple connection link from a single SFC symbol (steps or
transitions) to multiple SFC symbols. Divergences can be
single or double. A single divergence (OR) is a multiple link
from one step to many transitions. A double divergence
(AND) is a multiple link from one transition to many steps.

Double Integer (DINT) Signed double integer 32-bit format. Basic type that can be
used to define a variable, a Parameter (POU) or a Device.

Driver See IO driver, Network Driver.

Edge See Falling Edge, Rising Edge.

ETCP (ETCP.exe) DS800 Development Suite network driver that
uses the TCP / IP stack.

Events Logger A logger that receives events from DS800 Development
Suite targets. You view these events using the Events Viewer.
Events are stored in a log file, in Unicode format. A new log
file is automatically created each day at 00:00:00 hours
620 DS800 Development Suite 2.1 - User Manual

Events Viewer A viewer that displays run-time system events logged with the
Events Logger.

Execution Mode The mode in which a resource is executed: real-time,
cycle-to-cycle, and step-by-step.

External Binding List The list of consumer groups, holding external producer
variables having bindings with consumer variables defined in
the project, and producer groups, holding outgoing producer
variables for consumption in external bindings defined in
another project.

Expression Set of operators and identifiers.

Falling Edge A falling edge of a Boolean variable corresponds to a change
from TRUE (1) to FALSE (0).

Father Program For SFC and FC, program which controls other programs,
called its children. See Child.

FBD Function Block Diagram. Programming language.

FC Flow Chart. Programming language.

Function POU which has input parameters and one output parameter. A
function can be called by a program, a function or a function
block. A function has no instance. It means that local data are
not stored, and are generally lost from one call to the other. A
function can be written in ST, IL, LD, FBD and "C".

Function Block POU which has input and output parameters and works on
internal data (parameters). A program can call an instance of a
function block. A function block instance can not be called by
a function (no internal data for a function). A function block
can call another function block (instantiation mechanism is
extended to the function blocks called). A function block can be
written in ST, IL, LD, FBD and "C".

Global Scope Scope of a declaration applying to all POUs of one resource.

Global Variable A variable whose scope is global.

Hardware Architecture The view graphically displaying the configurations of a project
and the network links between them.
DS800 Development Suite 2.1 - Glossary 621

Hidden Parameter Input parameters of a function block that are not displayed in
FBD diagrams. Hidden parameters are set in the Parameters tab
of the Select Block dialog.

Hierarchy Architecture of a Project, divided into several POUs. The
hierarchy tree represents the links between father programs and
children programs. See Father Program, Parent Program.

Identifier Unique word used to represent a variable or a constant
expression in the programming.

IFB Indicates an IEC 61131 function block

IFU Indicates an IEC 61131 function

IL Instruction List. Programming language.

Initial Situation Set of the initial steps of an SFC Program, which represents
the context of the program when it is started.

Initial Step Special Step (SFC) of an SFC Program, which is activated
when the program starts.

Initial Value Value which has a variable when the Virtual Machine starts the
execution of the resource. The initial value of a variable can be
the default value, a value given by the user when the variable is
defined or the value of the retain variable after the Virtual
Machine has stopped.

Input Direction of a variable or a Device. An input variable is
connected to an input channel of an input Device.

Input Parameter Input argument of a function or a function block. These
parameters can only be read by function or function block. A
parameter is characterized by a type.

Instance (of a Function
Block)

Copy of the internal data of a function block which persists
from one call to the other. This word is used, by extension, to
say that a program calls a function block instance and not the
function block itself.

Instruction Elementary operation of an IL program, entered on one line of
text.

Internal Attribute of a variable, which is not linked to an input or
output device. Such a variable is called an internal variable.
622 DS800 Development Suite 2.1 - User Manual

Internal Binding List The view displaying the resource links and internal variable
bindings defined for a project.

I/O Binding A virtual connection between two software elements.

I/O Channel See Channel.

I/O Complex Device Element grouping several "simple devices". This provides the
means for manufacturers to mix types and directions. The
implementation of the I/O Driver of a complex device
corresponds to the implementation of the drivers of all the
devices composing it. Parameters are also attached to a
complex device, OEM parameters.

I/O Simple Device Element grouping several channels of the same type and same
direction (INPUT, OUTPUT). An Array can be connected to a
device if all elements are connected to contiguous channels,
the type of the array must be the type of the Device. Variables
of the same type can also be connected to channels of a device.
A device corresponds to a hardware device and an I/O Driver
in (or linked to) the Virtual Machine. Parameters are also
attached to a device: the OEM parameters. I/O devices are
defined by the integrator.

I/O Driver "C" code which makes the interface between a Virtual
Machine and the hardware devices. The driver can be statically
linked to the Virtual Machine or in a separate DLL (such as for
the Windows NT target). Two types of drivers are available for
use in the Workbench: generic and advanced.

IO Variable Variable connected to an input or output device. An IO
variable must be connected on a channel of an IO device.

IO Wiring Definition of the links between the variables of the Project and
the channels of the devices existing on the Target system.

ISaRSI (IsaRSI.exe) Enhanced serial port driver. The network driver
that provides communication with the workbench on a serial
port. Similar to ETCP.

ITA Indicates an array

ITS Indicates a structure
DS800 Development Suite 2.1 - Glossary 623

IXLSma Server (IxlSmaServer.exe) Provides service for performing IXL read
operations, using the HSD driver with the SMA method. This
method is independent from the virtual machine cycle and is
thus faster.

Jump to a Step SFC graphic component representing a link from a Transition
to a Step (SFC). The graphic symbol of a jump is an arrow,
identified with the reference of the destination step.

Keyword Reserved identifier of the language.

Label For FBD, IL, or LD, identifier identifying an instruction.
Labels can also be used for jump operations.

LD Ladder Diagram. Programming language.

Level 1 of the FC Main description of an FC program. Level 1 groups the chart
(actions and tests), and the attached comments.

Level 1 of the SFC Main description of an SFC program. Level 1 groups the chart
(steps and transitions), and the attached comments.

Level 2 of the FC Detailed description of an FC program. It is the description of
the actions and tests. Level 2 programming for FC elements can
be developed with ST or LD.

Level 2 of the SFC Detailed description of an SFC program. It is the description of
the actions within the steps, and the Boolean conditions
attached to the transitions. Level 2 programming for SFC
elements can be developed with ST or LD or call an SFC child.

Library Special projects made up of configurations and resources in
which you define functions and function blocks for reuse
throughout DS800 Development Suite projects. Libraries
also enable you to modularize projects and to isolate functions
and function blocks so that these can be validated separately.

Link For FBD, SFC, or LD diagrams, a graphic component
connecting elements in a diagram.

Link Architecture The view graphically displaying the resources of a project and
the resource data links, used for internal bindings, between
them. This is the default view of the Workbench providing a
main entry point to all editors.

Literal A lexical unit that directly represents a value.
624 DS800 Development Suite 2.1 - User Manual

Local scope Scope of a declaration applying to only one POU.

Locked I/O Input or output variable, disconnected logically from the
corresponding I/O device, by a "Lock" command sent by the
user from the debugger.

Maximum time Time of the longest cycle since the Virtual Machine has started
the execution of the programs of a resource.

Memory for Retain Run-time setting for a resource indicating the location where
retained values are stored (the required syntax depends on the
implementation).

Message See STRING.

Method See Access Method.

Modifier (IL) Single character put at the end of an IL operation keyword,
which modifies the meaning of the operation.

Network The means of communication between configurations and
their clients.

Network Driver "C" code which makes the interface between the Target
network layer and the network.

Non-stored Action SFC Action: it is a list of statements, executed at each Target
cycle, when the corresponding Step (SFC) is active.

OEM Original Equipment Manufacturer

OEM Parameter Parameters attached to an IO device or an I/O Complex
Device. A parameter is characterized by a type. An OEM
parameter is defined by the designer of the Device. It can be a
constant, or a variable parameter entered by the user during the
I/O connection.

Operand (IL) Variable or constant expression processed by an elementary IL
instruction.

Operation (IL) Basic instruction of the IL language. An operation (or operator)
is generally associated to an operand in an instruction.

Operator Basic logical operation such as arithmetic, boolean,
comparator, and data conversion.

Output Direction of a variable or a device. An output variable is
connected to an output channel of an output Device.
DS800 Development Suite 2.1 - Glossary 625

Output Parameter Output argument of a function or function block. These
parameters can only be written by a function or function block.
A function has only one output parameter. A parameter is
characterized by a type.

Overflow Integer value which corresponds to the number of times the
cycle time has been exceeded. Always 0, if cycle time is 0.

Parameter (POU) See Input Parameter, Output Parameter, OEM Parameter, and
Hidden Parameter

Parent Program It can be a Father Program or an FC program that call an FC
Sub-program.

PLC Programmable Logic Controller

POU Program Organization Unit: set of instructions written in one of
the following languages: SFC, FC, IL, ST, FBD, LD. A POU
can be a program, a function or function block.

Power Rail Main left and right vertical rails at the extremities of a ladder
diagram.

Producer Group A group holding outgoing producer variables for consumption
in external bindings defined in another project.

Program See POU. A program belongs to a resource. It is executed by
the Virtual Machine, depending on its location (order) in the
resource.

Project Set of configurations and links between their resources.

Project Updater A program allowing to convert projects developed using
previous versions for use within the latest version. Each time
you upgrade to a newer version, you need to update projects.

PROPI PROPI is an interface enabling you to send commands directly
to the Workbench via a custom application. For instance, you
could use the PROPI interface when using the Workbench in
the background.

Pulse Action SFC Action: it is a list of statements executed only once when
the corresponding Step (SFC) is activated.

Qualifier Determines the way the action of a step is executed. The
qualifier can be N, S, R, P0 or P1.
626 DS800 Development Suite 2.1 - User Manual

Real Type of a variable, stored in a floating IEEE single precision
32-bit format. Basic type that can be used to define a variable,
a Parameter (POU) or a Device.

Real Device I/O Device physically connected to an I/O device on the target
machine. See Virtual Device.

Real Time Mode Run time normal execution mode: the Target cycles are
triggered by the programmed cycle timing.

Reference Name (SFC) Name which identifies an SFC Step (SFC) or Transition in an
SFC program.

Register (IL) Current result of an IL sequence.

Resource The POUs and definitions making up a Virtual Machine.

Resource Name The unique identifier of a resource within a configuration.

Retain Attribute of a variable. The value of a retain variable is saved
by the Virtual Machine at each cycle. The value stored is
restored if the Virtual Machine stops and restarts.

Return Graphic component of an LD program representing the
conditional end of a program.

Return Parameter See Output Parameter.

Rising Edge A rising edge of a Boolean variable corresponds to a change
from FALSE (0) to TRUE (1).

Rung Graphic component of an LD program representing a group of
circuit elements leading to the activation of a coil in an
LD diagram.

Run-time Error Application error detected by the Target system at run time.

Scope See Global Scope, Common Scope, Local scope.

Section Program, function and function block sections are where are
localized POU of a resource. POUs located in the Program
section are executed by the Virtual Machine.

Security State The indication of the level of access control that is applied to a
resource, a POU, or a target.
DS800 Development Suite 2.1 - Glossary 627

Selection List Also known as a 'combo-box'.

When a Selection List is provided for a particular cell, clicking
on its right part (down arrow), displays the available choices.
To make a selection, perform one of the following operations:
- click on the item (use the scroll bar first if the required choice
is not visible)
- move in the list using the cursor keys and press Enter
- type the first letter (if more than one item starts with this
letter, press the letter again to select the next occurance).

Separator Special character (or group of characters) used to separate the
identifiers in a literal language.

Sequential Attribute of a program. A sequential program gives an order to
operations of a process and conditions between operations.
Generally, it is programmed with SFC or FC.

Server Part of the target that receives requests from IXL to retrieve
information about the resource run by the Virtual Machine.

SFB Indicates a standard function block

SFC Sequential Function Chart. Programming language.

SFU Indicates a standard function

Short Integer (SINT) Signed integer 8-bit format. Basic type that can be used to
define a Variable, a Parameter (POU) or a Device.

Single Resource Mode The project editing mode limiting access for an individual user
to one resource and its POUs. Other users can access other
resources of the same project.

SIT Indicates a Standard IEC 61131 type.

ST Structured Text. Programming language.

Standard IEC 61131
Types

Boolean (Bool), Short Integer (SINT), Double Integer (DINT),
Real, Timer (TIME), STRING. See Type.

Statement Basic ST complete operation.
628 DS800 Development Suite 2.1 - User Manual

Step (SFC) Basic graphic component of the SFC language. A step
represents a steady situation of the process, and is drawn as a
square. A step is referenced by a name. The activity of a step is
used to control the execution of the corresponding actions.

Step (FC) The word step may be used for Flow Chart actions.

See Action.
Step-by-step Mode A mode used while debugging ST, IL, and LD POUs where you

set breakpoints at specific lines of code or rungs causing the
application to stop when reached.

STRING Character string. Basic type that can be used to define a
Variable, a Parameter (POU) or a Device.

Structure Corresponds to a type which has previously been specified to
be a data structure, i.e. a type consisting of a collection of
named elements (or fields). Each field can be a basic type, a
basic structured type, a structure or an array. A field of a
variable with a structure type can be accessed using the
following syntax: VarName.a, VarName.b[3], VarName.c.d

Sub-program Programs written in SFC or FC language and called by a father
program. A sub-program is also called a child program. To call
sub-programs written in another language, use a function. A
function can be called by any POU.

Symbol Table The file corresponding to the variables and function blocks
defined for a resource. This file is downloaded onto the target.
The symbol table is set to one of two formats: complete table
or reduced table. The complete table contains all defined
variables, whereas, the reduced symbol table only contains the
names of variables having a defined Address cell.

Symbols Monitoring
Information

When debugging or simulating, code required to enable
graphically displaying the output values of functions and
operators in FBD and LD diagrams.

System Events Events occurring on the development platform. Such events
can be logged using the Events Logger and viewed using the
Events Viewer.
DS800 Development Suite 2.1 - Glossary 629

System Variable System variables hold the current values of all system
variables for a resource. You can read from or write to system
variables. These variables are defined in the dsys0def.h file.
For example, the current cycle time is a system variable that
can only be read by a program.

Target The hardware platform on which Virtual Machines run
resources of a project. You download configurations
(Configs), onto a RAS device target.

Target Definition Builder The Target Definition Builder enables the description of
targets (main definition and options of the embedded
software), complex data types (such as defined in IEC
languages), "C" functions, function blocks and conversion
functions, I/O devices or network drivers for IXL
communication and/or data binding.

TIC Code Target Independent Code produced by the DS800
Development Suite compiler for execution on virtual
machines.

Timer (TIME) Unit of a timer is the millisecond. Basic type that can be used
to define a Variable, a Parameter (POU) or a Device.

Token (SFC) Graphical marker used to show the active steps of an SFC
program.

Top Level Program Program put at the top of the hierarchy tree. A top level
program is activated by the system. See also Parent Program,
Father Program.

Transition Basic graphic SFC component. A transition represents the
condition between different SFC steps. A transition is
referenced by a name. A Boolean Condition is attached to each
transition.

Type Data types are defined for many items in DS800
Development Suite projects:
- variables
-function or function block parameters
- devices
See Standard IEC 61131 Types, Basic Structured Types, User
Types.
630 DS800 Development Suite 2.1 - User Manual

User Data User Data are any data of any format (file, list of values) which
have to be merged with the generated code of the resource in
order to download them into the RAS device target. Such data
are not directly operated by the Virtual Machine and is
commonly dedicated to other software installed on the
target PLC.

User Types Types that the user can define using basic types or other user
types. User types can be arrays or structures.

Validity of a Transition Attribute of a Transition. A transition is validated (or enabled)
when all the preceding steps are active.

Variable Unique identifier of elementary data which is used in the
programs of a Project.

Variable Binding See Binding

Variable Group Grouping of variables enabling managing and logically sorting
these within a resource. Variable groups are displayed in the
dictionary’s variables tree.

Variable Name A unique identifier, defined in the Workbench, for a storage
location containing information used in exchanges between
resources.

Version Information The information indicating the compilation version number,
the compilation date, and the CRC of the data the resource
works on for three sources of resource code:
- the compiled code for the resource in the Workbench project
- the code for the resource running on the target
- the code for the resource stored on the target

Version Source Control A tool that manages the changing versions of Workbench
elements including projects, configurations, resources, and
POUs by saving them to a version source control database.
Saving these elements to a control database enables you to
retrieve older versions of the elements at a later time.

Virtual Device I/O Device which is not physically connected to an I/O device
of the Target machine. See Real Device.

Virtual Machine (IsaVM.exe) The instantiation of a resource on a Target.
DS800 Development Suite 2.1 - Glossary 631

Wiring The property of a variable indicating the I/O channel to which
the variable is wired.

Zip Source An exchange file (.PXF) holding all data from Workbench
elements. From the compilation options for a resource, you
can choose to embed a zip source file for resources,
configurations, or projects onto the target. This source file can
be uploaded from the target at a later time.
632 DS800 Development Suite 2.1 - User Manual

Index
Symbols
) operator for IL 482
* operator 488
+ operator 489
- operator 491
/ operator 492
< operator 511
<= operator 510
<> operator 515
= operator 505
> operator 508
>= operator 507
__SYSVA_KVBCERR, consumption error

variables 68
__SYSVA_KVBPERR, production error

variables 68

Numerics
1 gain operator 494

A
ABS function 522
access control

for configurations 118
for POUs 104
for projects 41
for resources 64

accessing
configuration properties 114
contextual menus 25
diagnostic information 307
events viewer, run-time system events 176
history details, previous versions of

Workbench elements 366
internal binding list, the 71
resource properties 54
the cross references browser 355
the Dictionary view 125
the external binding list 81

ACOS function 523
action blocks

adding in SFC charts 229
attaching to SFC steps 229
calling functions and function blocks from

409
DS800 Development Suite 2.1 - Index 633

deleting in SFC charts 233
moving in execution order 232

actions, Flow Chart
described 420
inserting 240

actions within steps
boolean 404
described 404
list of instructions for 408
non-stored 406
pulse 405
SFC 407

adding
action blocks in SFC charts 229
descriptions for configurations 119
descriptions for POUs 108
descriptions for resources 66
FC sub-programs 102
I/O devices for I/O wiring 169
POUs in resources 99
rows to the Dictionary grid 134
SFC child programs 102
variables to spy list 316

addition operator 489
addresses, renumbering in the Dictionary grid 140
adjusting zoom, workspace 23
alarm and event operations

ALARM function block 575
EVENT function block 588

ALARM function block 575
aligning coils on rungs (LD elements) 264
AND operator 495
AND_MASK function 524
ANY_TO_BOOL operator 496
ANY_TO_DINT operator 499
ANY_TO_REAL operator 501
ANY_TO_SINT operator 498
ANY_TO_STRING operator 504
ANY_TO_TIME operator 502
appearance

of I/O wiring view 156
of language editors 182

of simulator 322
of the Dictionary view 126

arithmetic operations
1gain operator 494
ABS function 522
ACOS function 523
addition operator 489
ASIN function 526
ATAN function 527
COS function 530
division operator 492
EXPT function 533
LOG function 540
MOD function 546
multiplication operator 488
NEG operator 512
POW function 554
RAND function 555
SIN function 565
SQRT function 566
subtraction operator 491
TAN function 569
TRUNC function 570

arrays
basic or user types, described 379
initializing elements in 150

ascending order, sorting for Dictionary grid 138
ASCII function 525
ASIN function 526
assignment, ST basic statement 459
ATAN function 527
attaching action blocks, SFC steps 229
attributes, variables 389
auto input of names, variables or blocks 265
automatic instances of function blocks, debugging

334
available programming languages

for function blocks 99
for functions 98
for programs 96

AVERAGE function block 575
634 DS800 Development Suite 2.1 - User Manual

B
background colors, customizing for views and

editors 26
begin, Flow Chart component 418
binary operations

NOT_MASK function 550
OR_MASK function 553
ROL function 559
ROR function 560
SHL function 563
SHR function 564
XOR_MASK function 571

bindings
between variables, described 67
error variables for 68
external, between projects 81
external, defining 88
internal, defining 78
internal, within a project 71

BLINK function block 577
blocks (functions and function blocks) in LD

on the left, inserting 262
on the right, inserting 262
usage of 451

boolean
actions within steps 404
constant expressions 381
negations in FBD, described 433
variables 390

boolean operations
AND operator 495
AND_MASK function 524
F_TRIG function block 588
NOT operator 514
ODD function 551
OR operator 516
R_TRIG function block 591
RS function block 593
SR function block 598
XOR operator 518

BREAK resource state 291
breakpoints

on step activation (SFC) 312
on step deactivation (SFC) 313
on transition (SFC) 314
removing, step-by-step mode 301
setting, step-by-step mode 301
setting/removing for steps and transitions

(SFC) 311
viewing (step-by-step mode) 307

browser
for cross references 355
manipulating in simulator 326

browsing POUs of a project 357
building code

for POUs 346
for projects 345
for resources/projects 347

builds, stopping (projects, resources, and POUs)
348

C
C source code, implications of generating 351
CAL operator for IL 485
calculating cross references 357
calling

function blocks from IL (CAL operator) 485
function blocks from transitions 413
function blocks in FBD 433
functions from IL 483
functions from transitions 412
functions in FBD 433

CASE, OF, ELSE, END_CASE, ST basic
statements 462

cell-level validation 153
changing, coils and contacts types (LD elements)

263
DS800 Development Suite 2.1 - Index 635

channels in I/O devices
freeing 174
mapping 172
wiring 172

CHAR function 528
checking in Workbench elements, version source

control 363
child SFC POUs, described 370
cleaning

code stored on targets 336
projects and resources 348

clearing
the contents of output window 24
transitions (SFC) 311
transitions, forcing of 315

clearing VSC status 359
closing projects 36
CMP function block 578
code

building/rebuilding for projects 345
cleaning from targets 336
downloading to targets for resources 293
generating for resources 55
sequences of, particular cases for online

changes 327
stopping builds of 348

coils (LD elements)
aligning on rungs 264
changing types of 263
inserting in FBD POUs 271
inserting in Ladder diagrams 262

collapsing grid components, Dictionary grid 135
command lines

opening projects 36
starting events logger 175

comments
displaying or hiding for variables 279
in FC charts, described 424
inserting in FBD 272
inserting in FC charts 245
inserting in literal languages 392

communications
CONNECT function block 579
URCV_S function block 612
USEND_S function block 613

comparison operations
CMP function block 578
equal operator 505
greater than operator 508
greater than or equal operator 507
less than operator 511
less than or equal operator 510
not equal operator 515

compilation
options for resources 55
stopping in progress 348

compiling
POUs 346
projects 345
resources/projects 347

complex structures (examples of), Flow Chart 425
computer allocated hidden variables, effect on

online changes 330
conditions

attached to transitions 410
for downloading resource code 293
in FC charts, described 420

configurations
accessing details for previous versions of

366
accessing the properties window for 114
checking in 363
comparing versions of 365
controlling development access for 118
controlling target access for 118
creating history reports for 366
creating in project 110
defining target properties for 117
deleting from a project 111
editing descriptions of 119
general properties for 115
getting previous versions of 365
identification of 115
636 DS800 Development Suite 2.1 - User Manual

inserting resources in 112
managing 110
moving in hardware architecture view 112
moving resources between 113
viewing the history of 364

CONNECT function block 579
connection lines in Ladder diagrams 436
connections (configurations to networks)

creating 123
deleting 124
described 123

connectors (Flow Chart)
described 424
linking elements 244

constant expressions
boolean 381
double integer 382
real 382
short integer 381
string 383
timer 383

consuming variables, viewing for internal
bindings 77

consumption error variables 68
contacts (LD elements)

changing types of 263
inserting in FBD POUs 270
on the left, inserting 261
on the right, inserting 261

contextual menus, accessing 25
convergences (SFC elements)

deleting branches from 220
double, described 402
inserting new branches in 219
linking and placing in chart 217
single, described 400

conversions, deleting from I/O wiring 171
copying

POUs 100
resources 51
variables (Dictionary grid elements) 136

corners, inserting (FBD elements) 267

COS function 530
counters

CTD function block 581
CTU function block 582
CTUD function block 583
DBG_CLR_GET_ERR function block 585
DBG_CLR_SET_ERR function block 585
DBG_GET_ERR function block 586
DBG_SET_ERR function block 586

cover page, adding as printing option 340
CRC (Cyclic Redundancy Checking), viewing for

resources 307
creating

configurations 110
connections between configurations and

networks 123
data links 74
FC sub-programs 102
history reports, version source control 366
libraries 281
networks 120
POUs in resources 99
projects 34
resources 50
SFC child programs 102
structures in the types tree 129
variable groups 91

cross references
browser for 355
browsing POUs of a project 357
calculating 357
defining search options for finding 358

csv files, importing variables data using 93
CTD function block 581
CTU function block 582
CTUD function block 583
current step, locating for step-by-step mode 302
CURRENT_ISA_DATE function 531
cursor coordinates, displaying in FBD and LD

editors 254
custom parameters, resources 63
customizing, colors/fonts of views and editors 26
DS800 Development Suite 2.1 - Index 637

cutting
POUs 100
variables (Dictionary grid elements) 136

cycle time
setting for resources, debug mode 303
setting for resources, edition mode 59

cycle-to-cycle execution mode, resources 299
cyclic and sequential operations 369

D
data conversion

ANY_TO_BOOL operator 496
ANY_TO_DINT operator 499
ANY_TO_REAL operator 501
ANY_TO_SINT operator 498
ANY_TO_STRING operator 504
ANY_TO_TIME operator 502
TMR operator 517

data links (internal bindings)
creating 74
deleting 76
hiding and showing 77

data manipulation
AVERAGE function block 575
LIMIT function 539
MAX function 541
MIN function 543
MUX4 function 547
MUX8 function 549
SEL function 562

database commands
DBG_CLR_GET_ERR 585
DBG_CLR_SET_ERR 585
DBG_GET_ERR 586
DBG_SET_ERR 586
SOFT_POINT_READ 596
SOFT_POINT_WRITE 597
TLP_GET_DINT 601
TLP_GET_REAL 602
TLP_GET_SINT 603

TLP_GET_STRING 604
TLP_GET_TLP 605
TLP_SET_DINT 606
TLP_SET_REAL 607
TLP_SET_SINT 608
TLP_SET_STRING 609

database-level validation 154
DBG_CLR_GET_ERR function block 585
DBG_CLR_SET_ERR function block 585
DBG_GET_ERR function block 586
DBG_SET_ERR function block 586
debug

information, generating at program level 107
information, generating at resource level 55
mode, starting for the project 295
toolbar in language editors 187
toolbar in main environment 17

debugging
instances of function blocks 334
modes for a project 289

declared
instances of function blocks, debugging 334
variables, modifying in online changes 329

defined words
described 392
grid for, Dictionary 145
parameters component for 90

defining
external bindings 88
internal bindings 78
printing options for project items 340
producer groups, external bindings 83
search options for finding cross references

358
TLP variables 146

delayed operations
described (IL elements) 475

DELETE function 532
deleting

action blocks from SFC charts 233
configurations from a project 111
638 DS800 Development Suite 2.1 - User Manual

connections between configurations and
networks 124

data links, internal bindings 76
external bindings 89
I/O devices and conversions from I/O wiring

171
internal bindings 80
POUs 100
producer groups, external bindings 85
resources 53
structures 130
variables (Dictionary grid elements) 136

demoting SFC child programs 103
dependencies, projects on libraries 282
DERIVATE function block 587
descending order, sorting for Dictionary grid 138
description languages, programs 375
descriptions

adding to projects 40
adding to resources 66
editing for configurations 119

diagnostic information, accessing 307
diagram format, FBD 429
Dictionary

accessing the 125
adding and inserting rows 134
appearance of the 126
cutting, copying, and deleting elements

(variables) in the 136
defined words grid, described 145
described 125
duplicating rows in the 139
editing contents of cells and rows in the 133
expanding/collapsing grid components in the

135
finding and replacing elements in the 137
moving rows in the 135
parameters grid, described 143
parameters tree, described 128
pasting elements (variables) in the 138
printing the grid of the 141
renumbering addresses in the 140

resizing columns and rows in the 132
selecting rows and elements in the 132
sorting the grid of the 138
types grid, described 144
types tree, described 129
variables grid, described 142
variables tree, described 127
working with the grids of the 131

direct
coils in Ladder diagrams, described 443
contacts in Ladder diagrams, described 440

direction, variables 389
directly represented variables 387
directory structure, installation 29
displaying

errors and information, output window 24
I/O device window headers 325
the status bar, the 25
tooltips for function blocks 267
tooltips for variables 266
variable comments 279

divergences (SFC elements)
deleting branches from 220
double, described 402
inserting new branches in 219
linking and placing 217
single, described 400

division operator 492
DO-WHILE structures, inserting (FC elements)

242
docking toolbars 14
double

convergences, described 402
divergences, described 402
integer constant expressions 382
integer variables 390

downloading resources code onto targets 293
duplicating rows, Dictionary grid 139
dynamic behavior

for Flow Chart diagrams 426
setting SFC limits 59
SFC charts, described 414
DS800 Development Suite 2.1 - Index 639

E
editing

descriptions for configurations 119
descriptions for POUs 108
descriptions for resources 66
external bindings 89
internal bindings 80
level 2 programming, SFC elements 228
links between resources, external bindings

87
producer groups, external bindings 85
resource properties 54
the contents of cells and rows, Dictionary

grid 133
transition code, SFC elements 231

editing modes
for projects, normal and single-resource 32
for the Dictionary, grid and line 131

elements
moving in FBD POUs 275
resizing in FBD POUs 274
Workbench, uploading from targets 46

end, Flow Chart component 418
equal operator 505
error detection 59
ERROR resource state 291
ETCP network parameter 62
EVENT function block 588
events logger, starting 175
execution

order, moving action blocks in (SFC POUs)
232

order, showing for FBD programs 265
rules for resource cycles 376
starting and stopping for resources 297

execution modes, resources
cycle-to-cycle 299
real-time 298
step-by-step 299

EXIT, ST basic statement 466

expanding grid components, Dictionary 135
exporting

variables data 93
Workbench elements between projects 43

expressions in ST programs 455
EXPT function 533
extended properties, resources 63
extensions, ST 467
external bindings

accessing the list of 81
defining 88
defining producer groups for 83
deleting 89
deleting producer groups for 85
editing 89
editing links between resources for 87
editing producer groups for 85
linking resources for 86
overview of 81

F
F_TRIG function block 588
falling edge detection

contacts, described 442
negative coils, described 448

FBD (Function Block Diagram)
boolean negation, described 433
displaying cursor coordinates 254
inserting comments 272
inserting corners 267
inserting function blocks 267
inserting jumps to labels 268
inserting labels 268
inserting links, connection 267
inserting returns 269
inserting variables 266
jumps and labels, described 431
main diagram format 429
managing guideline areas 254
monitoring output values 295
640 DS800 Development Suite 2.1 - User Manual

return statement, described 431
showing execution order 265
toolbar, language editor 195

FC (Flow Chart)
actions, described 420
begin component, described 418
comments, described 424
complex structures, examples of 425
conditions, described 420
connectors, described 424
creating sub-programs 102
dynamic behavior of 426
end component, described 418
execution of sub-programs 371
flow link, described 419
I/O specific actions, described 423
inserting actions 240
inserting comments 245
inserting connector links 244
inserting DO-WHILE structures 242
inserting flow links 243
inserting I/O specific actions 244
inserting IF-THEN-ELSE structures 241
inserting sub-programs 245
inserting tests 240
inserting WHILE-DO structures 242
language editor, menu bar options for 236
programs, hierarchy restrictions for 96
renumbering in charts 249
sub-programs, vertical structures of 422
syntax verification rules, main 426
toolbar, language editor 191
using goto symbols 249
viewing level 2 windows for 250
working with charts 239

filenames, projects 36
FIND function 534
finding

matching coils (LD POUs) 278
matching names (LD POUs) 278
variables (elements) in POUs 207
variables (elements) in the Dictionary 137

flow links
described 419
inserting 243

fonts
changing for printing options 340
customizing for views and editors 26

FOR, TO, BY, DO, END_FOR, ST basic
statement 465

forcing
transition clearing 315
values of variables in a spy list 319
values of variables in the Dictionary 304

foreground colors, customizing for views and
editors 26

freeing channels, I/O wiring 174
function blocks

ALARM 575
AVERAGE 575
BLINK 577
calling from action blocks 409
calling from IL (CAL operator) 485
calling from ST programs 457
calling from transitions 413
CMP 578
CONNECT 579
creating in resources 99
CTD 581
CTU 582
CTUD 583
DBG_CLR_GET_ERR 585
DBG_CLR_SET_ERR 585
DBG_GET_ERR 586
DBG_SET_ERR 586
debugging instances of 334
defining access control for 104
DERIVATE 587
described 373
displaying tooltips for 267
EVENT 588
F_TRIG 588
HYSTER 589
inserting in FBD diagrams 267
DS800 Development Suite 2.1 - Index 641

inserting in POUs 203
INTEGRAL 590
manipulating in resources 100
modifying instances of, in online changes

330
R_TRIG 591
REQUEST_LICENSE 592
reusing through libraries 281
RS 593
SET_PRIORITY 594
SIG_GEN 595
SOFT_POINT_READ 596
SOFT_POINT_WRITE 597
SR 598
STACKINT 600
summary of standard 573
TLP_GET_DINT 601
TLP_GET_REAL 602
TLP_GET_SINT 603
TLP_GET_STRING 604
TLP_GET_TLP 605
TLP_SET_DINT 606
TLP_SET_REAL 607
TLP_SET_SINT 608
TLP_SET_STRING 609
TOF 609
TON 610
TP 611
URCV_S 612
USEND_S 613
working with 99

functions
ABS 522
ACOS 523
AND_MASK 524
ASCII 525
ASIN 526
ATAN 527
calling from action blocks 409
calling from IL 483
calling from ST programs 456
calling from transitions 412

CHAR 528
COS 530
creating in resources 99
CURRENT_ISA_DATE 531
defining access control for 104
DELETE 532
described 371
EXPT 533
FIND 534
INSERT 536
inserting in POUs 203
LEFT 537
LIMIT 539
LOG 540
manipulating in resources 100
MAX 541
MID 542
MIN 543
MLEN 544
MOD 546
MUX4 547
MUX8 549
NOT_MASK 550
ODD 551
OR_MASK 553
POW 554
RAND 555
REPLACE 556
reusing through libraries 281
RIGHT 558
ROL 559
ROR 560
SEL 562
SHL 563
SHR 564
SIN 565
SQRT 566
standard, summary of 521
SUB_DATE_DATE 567
TAN 569
642 DS800 Development Suite 2.1 - User Manual

TRUNC 570
working with 98
XOR_MASK 571

G
general properties

for configurations 115
for resources 55

generating
C source code, implications of 351
debug information, program level 107
debug information, resource level 55
symbols monitoring information 107
TIC code 55

getting previous versions of Workbench elements
365

GFREEZE statement 470
GKILL statement 469
go to line, ST and IL POUs 279
goto

steps or transitions, SFC elements 227
symbols, FC elements 249

greater than operator 508
greater than or equal operator 507
grid

displaying for language editors 197
editing mode for the Dictionary 131
view for I/O Wiring 159

groups
creating for variables 91
managing for variables 91
of variables, opening 91

GRST statement 471
GSTART statement 468
GSTATUS statement 472
guideline areas

managing in FBD editor 254

H
hardware architecture view 109
headers/footers, including as printing option 340
hidden variables, computer allocated, effect on

online changes 330
hiding

resource links, internal bindings 77
the status bar, Workbench 25
toolbars, Workbench 14
variable comments in language editors 279

hierarchy
changing for SFC child programs 103
restrictions for SFC and FC programs 96

history reports, creating 366
HSD network parameter 62
HYSTER function block 589

I
I/O devices

adding for I/O wiring 169
deleting conversions 171
deleting from I/O wiring 171
freeing channels of 174
mapping channels of 172
modifying with online changes 331
opening for I/O wiring 170
setting the real or virtual attribute for 171
wiring channels of 172

I/O specific actions
described 423
inserting in charts 244

I/O variable comments, displaying or hiding 279
I/O wiring

adding I/O devices to 169
appearance of 156
deleting I/O devices and conversions from

171
freeing channels in devices 174
DS800 Development Suite 2.1 - Index 643

grid view of 159
mapping channels of devices 172
opening I/O devices in 170
overview of 155
parameters component for 90
setting the real or virtual attribute, devices

171
tool, working with the 160
toolbar, main environment 20
tree view, described 157
wiring channels of devices 172

I/Os, simulating a panel of 320
identification

configuration properties for 115
defining for resources 55

identifiers
inserting in POUs 201
using defined words as 392

IF, THEN, ELSE, ELSIF, END_IF, ST basic
statements 461

IF-THEN-ELSE structures, inserting (FC
elements) 241

IL (Instruction List)
) operator for 482
calling function blocks from (CAL operator)

485
calling functions from 483
delayed operations, described 475
go to line for POUs 279
JMP operator for 480
labels, described 474
LD operator for 477
operator modifiers, described 474
R operator for 479
RET operator for 481
S operator for 478
ST operator for 478
summary of operators 476
syntax of programs in 473
toolbar, language editor 193
working with POUs, multi-language editor

260

importing
variables data 93
Workbench elements between projects 43

initial
steps (SFC elements), described 396
steps (SFC elements), inserting 215
values for variables 150

initializing
array elements 150
structure fields 150

INSERT function 536
inserting

actions (FC elements) 240
blocks on the left (LD elements) 262
blocks on the right (LD elements) 262
coils (LD elements for FBD POUs) 271
coils (LD elements) 262
comments (FBD elements) 272
comments (FC elements) 245
connector links (FC elements) 244
contact on the left (LD elements) 261
contact on the right (LD elements) 261
contacts (LD elements for FBD POUs) 270
corners (FBD elements) 267
DO-WHILE structures (FC elements) 242
flow links (FC elements) 243
function blocks (FBD elements) 267
I/O specific actions (FC elements) 244
identifiers in POUs 201
IF-THEN-ELSE structures (FC elements)

241
initial steps (SFC elements) 215
jumps (SFC elements) 222
jumps to labels (FBD elements) 268
jumps to labels (LD elements) 262
labels (FBD elements) 268
labels (LD elements) 263
LD vertical connections (FBD POUs) 270
left power bars (LD elements for FBD

POUs) 270
links (LD elements) 264
links (SFC elements) 221
644 DS800 Development Suite 2.1 - User Manual

links, connection (FBD elements) 267
networks 120
operators, functions, and function blocks in

POUs 203
parallel blocks (LD elements) 262
parallel contacts (LD elements) 262
resources in configurations 112
resources in the link architecture view 50
returns (FBD elements) 269
returns (LD elements) 263
right power bars (LD elements for FBD

POUs) 271
rows in the Dictionary grid 134
rungs (LD elements) 264
steps (SFC elements) 216
sub-programs (FC elements) 245
tests (FC elements) 240
transitions (SFC elements) 216
variables (FBD elements) 266
WHILE-DO structures (FC elements) 242

installation, directory structure of 29
instance symbols extra bytes 107
INTEGRAL function block 590
internal bindings

accessing the list of 71
defining 78
deleting 80
deleting resource links for 76
described 71
editing the contents of 80
viewing for a resource 77

internal variable comments, displaying or hiding
279

inverted
coils, described 444
contacts, described 440

J
JMP operator for IL 480
jumps

described (FBD elements) 431
described (LD elements) 450
described (SFC elements) 398
inserting (FBD elements) 268
inserting (LD elements) 262
inserting (SFC elements) 222

K
keywords, list of reserved 385

L
labels

described (FBD elements) 431
described (IL elements) 474
described (LD elements) 450
inserting (FBD elements) 268
inserting (LD elements) 263

language editors
appearance of 182
debug toolbar in 187
FBD toolbar in 195
Flow Chart toolbar in 191
for SFC, described 209
IL toolbar in 193
LD toolbar in 194
managing the workspace of 197
multi-language, described 253
opening POUs from 206
options toolbar in 186
SFC breakpoints toolbar in 189
SFC toolbar in 189
DS800 Development Suite 2.1 - Index 645

ST toolbar in 192
standard toolbar in 185
toolbars, summary of available 184

layers toolbar, main environment 19
LD (Ladder Diagram)

aligning coils on rungs 264
applying paste special in POUs 277
changing coils and contacts types 263
connection lines, described 436
direct coils, described 443
direct contacts, described 440
displaying cursor coordinates 254
falling edge detection (negative) coils,

described 448
falling edge detection (negative) contacts,

described 442
finding matching coils in POUs 278
finding matching names in POUs 278
inserting block on the left 262
inserting block on the right 262
inserting coils 262
inserting contact on the left 261
inserting contact on the right 261
inserting jumps to labels 262
inserting labels 263
inserting links 264
inserting parallel blocks 262
inserting parallel contacts 262
inserting returns 263
inserting rungs 264
inverted coils, described 444
inverted contacts, described 440
jumps, described 450
labels, described 450
monitoring output values in POUs 295
multiple connections, described 437
power rails, described 436
reset coils, described 446
return statements, described 449
rising edge detection (positive) coils,

described 447

rising edge detection (positive) contacts,
described 441

set coils, described 445
toolbar, language editor 194
usage of blocks (functions and function

blocks), described 451
working with POUs, multi-language editor

261
LD elements (for FBD POUs)

inserting coils 271
inserting contacts 270
inserting LD vertical connections 270
inserting left power bar 270
inserting right power bar 271

LD operator for IL 477
LEFT function 537
left power bars (LD elements for FBD POUs),

inserting 270
less than operator 511
less than or equal operator 510
level 2 windows

editing, SFC elements 228
viewing, FC elements 250

levels of programming, SFC editor 214
libraries

creating 281
described 281
licensing third-party 282
using in projects 282

license request, REQUEST_LICENSE function
block 592

licensing third-party libraries 282
LIMIT function 539
line editing mode, Dictionary 131
link architecture view 48
linking

configurations and networks 123
resources for external bindings 86
resources for internal bindings 74
646 DS800 Development Suite 2.1 - User Manual

links
inserting, FBD elements 267
inserting, LD elements 264
inserting, SFC elements 221

list
of external bindings 81
of instructions for actions within steps 408
of internal bindings 71

locating current step, step-by-step mode 302
locked variables

locking 304
unlocking 307

LOG function 540
logging system events

opening log file 175
starting 175
viewing 176

M
magnification factor, adjusting in workspace 23
main format

of SFC programs 395
managing

configurations 110
external bindings 81
I/O wiring 160
internal bindings 71
POUs (Program Organization Unit) 96
projects 32
resources 48
the hardware architecture view of a project

109
the link architecture view of a project 48
the workspace for language editors 197

manipulating POUs in resources 100
manual input of names, variables or blocks 265
mapping channels, I/O wiring 172
margins, including as printing option 340
MAX function 541

memory
defining size for on-line changes 59
requirements for online changes 331

menu bar options
for FC editor 236
for main environment 5
for multi-language editor 256
for SFC editor 211
for simulator 323

MID function 542
MIN function 543
MLEN function 544
MOD function 546
modes

for debugging a project 289
for editing a project 32
for edition the Dictionary 131
for resources execution 298

monitoring
information, generating for symbols 107
output values of FBD/LD POUs 295

moving
action blocks in execution order (SFC

elements) 232
configurations 112
elements in FBD POUs 275
networks 121
POUs between sections and resources 100
resources between configurations 113
rows, Dictionary grid 135
toolbars 14

multi-language editor
described 253
menu bar options for 256
programming languages used with the 260
selecting elements in the 273
working with FBD POUs 265
working with LD POUs 261
working with ST/IL POUs 260

multiple connections in Ladder diagrams 437
multiplication operator 488
DS800 Development Suite 2.1 - Index 647

MUX4 function 547
MUX8 function 549

N
naming conventions

for defined words 392
for directly represented variables 387
for variables 385

NEG operator 512
networks

creating 120
described 120
moving 121
properties for resources 62

non-stored actions, within steps 406
not equal operator 515
NOT operator 514
NOT_MASK function 550

O
ODD function 551
OEM specific options 63
online changes

declared variables, options for modifying
using 329

function block instances, options for
modifying using 330

I/O devices, options for modifying using 331
memory requirements for 331
modifying running resources using 332
particular cases for 327
performing 327
types, bindings, and resource properties,

options for modifying using 331
variables, options for modifying using 329

online mode for debugging 289

opening
I/O devices in I/O wiring 170
level 2 windows (FC elements) 250
POUs in language editors 206
projects 36
spy lists 319
the I/O wiring tool 155
variable groups 91

operating system priority, SET_PRIORITY
function block 594

operative states of resources 48
operator modifiers (IL elements), described 474
operators

) for IL programs 482
1 gain 494
addition 489
AND 495
ANY_TO_BOOL 496
ANY_TO_DINT 499
ANY_TO_REAL 501
ANY_TO_SINT 498
ANY_TO_STRING 504
ANY_TO_TIME 502
CAL for IL 485
division 492
equal 505
greater than 508
greater than or equal 507
inserting in POUs 203
JMP for IL programs 480
LD for IL programs 477
less than 511
less than or equal 510
multiplication 488
NEG 512
NOT 514
not equal 515
OR 516
R for IL programs 479
RET for IL programs 481
S for IL programs 478
ST for IL programs 478
648 DS800 Development Suite 2.1 - User Manual

subtraction 491
summary of IL 476
summary of standard 487
TMR 517
XOR 518

options
for printing of project items 340
toolbar in language editors 186
toolbar in main environment 20

OR operator 516
OR_MASK function 553
oriented links, description of 398
output values, monitoring (FBD/LD POUs) 295
output window

clearing the contents of the 24
displaying errors and build information 24

P
page numbering, specifying in printing options

340
panel of I/Os, simulating a 320
parallel blocks, inserting (LD elements) 262
parallel contacts, inserting (LD elements) 262
parameters

grid, described 143
I/O wiring and defined words components of

90
network, for resources 62
tree, described 128

parentheses in ST programs 455
password protection

for configuration access control 118
for POU access control 104
for project access control 41
for resource access control 64

paste special, applying in LD POUs 277

pasting
elements (variables) in the Dictionary grid

138
POUs 100
resources 52

performing online changes 327
popup menus, accessing 25
POUs (Program Organization Unit)

accessing details for previous versions of
366

building/rebuilding code for 346
checking in 363
cleaning 348
comparing versions of 365
creating history reports for 366
creating in resources 99
defining access control for 104
editing descriptions of 108
finding and replacing elements in 207
getting previous versions of 365
inserting identifiers in 201
inserting operators, functions, and function

blocks in 203
managing 96
manipulating in resources 100
opening from language editors 206
stepping in 302
stopping builds 348
unlocking 104
viewing the history of 364

POW function 554
power rails for Ladder diagrams 436
preferences, setting for opening and exiting 26
previewing project printing 342
previous versions, accessing history details for

366
printing

defining options for 340
previewing project document 342
project items 337
projects 40
selecting project items for 338
DS800 Development Suite 2.1 - Index 649

specifying document range for 342
the Dictionary grid 141

process control
DERIVATE function block 587
HYSTER function block 589
INTEGRAL function block 590
STACKINT function block 600

producer groups, external bindings
defining 83
deleting 85
editing 85

producing variables, viewing for internal bindings
77

production error variables 68
programming languages

for use with function blocks 99
for use with functions 98
for use with programs 96
used with the multi-language editor 260

programming levels, SFC editor 214
programs

changing hierarchy level for SFC child 103
creating in resources 99
defining access control for 104
described 368
hierarchy in the SFC language 415
inserting comments in literal language 392
manipulating in resources 100
working with 96

project architecture
child SFC POUs 370
cyclic and sequential operations 369
description languages for programs 375
execution rules for cycles 376
FC sub-programs 371
function blocks 373
functions 371
overview of 368
programs 368

project tree view 353

projects
accessing details for previous versions of

366
adding descriptions to 40
browsing POUs of 357
building/rebuilding code for 345
checking in 363
cleaning 348
closing 36
comparing versions of 365
controlling access for 41
creating 34
creating history reports for 366
defining dependencies on libraries for 282
editing modes for 32
filenames for 36
getting previous versions of 365
hardware architecture view of 109
link architecture view of 48
managing 32
modes for testing 295
opening 36
opening with a command line 36
previewing printing documents for 342
printing 40
printing items in 337
renaming 39
saving changes to 39
security state of resources within 36
selecting items for printing 338
stopping builds 348
storage location of 29
templates for 34
using libraries in 282
viewing the history of 364

promoting SFC child programs 103
properties

for configuration identification 115
for resource custom parameters 63
for resource identification 55
650 DS800 Development Suite 2.1 - User Manual

for target access, configurations 118
for target definition, configurations 117

pulse actions, within steps 405

R
R operator for IL 479
R_TRIG function block 591
RAND function 555
real

attribute, setting for I/O devices 171
constant expressions 382
variables 390

real-time execution mode, resources 298
rearranging variables in spy list 318
rebuilding

code for projects 345
POUs 346

refresh rate, setting for resources 290
refreshing status of resources 290
reloading of last project when starting, setting 26
removing

breakpoints for steps and transitions (SFC)
311

breakpoints, step-by-step mode 301
code stored on targets 336
variables from spy list 318

renaming
projects 39
resources 51
SFC elements 224
structures 130

renumbering
addresses in the Dictionary grid 140
elements in FC charts 249
elements in SFC charts 233

REPEAT, UNTIL, END_REPEAT, ST basic
statements 464

REPLACE function 556
replacing elements, Dictionary grid 137
repository path for version source control 359

REQUEST_LICENSE function block 592
reserved keywords, list of 385
reset coils, described 446
resizing

columns and rows in the Dictionary 132
elements in FBD POUs 274

resource links (internal bindings)
deleting 76
hiding and showing 77

resources
accessing details for previous versions of

366
adding descriptions to 66
appearance of 48
building code for 347
checking in 363
cleaning 348
comparing versions of 365
compilation options for 55
copying 51
creating 50
creating history reports for 366
cycle-to-cycle execution mode for 299
defining access control for 64
defining custom parameters for 63
defining the identification (general)

properties of 55
defining the network parameters for 62
deleting 53
deleting data links between (internal

bindings) 76
downloading code to targets for 293
editing links for external bindings 87
editing the properties of 54
executing in step-by-step mode 299
execution modes for 298
getting previous versions of 365
inserting in configurations 112
inserting in the link architecture view 50
linking for external bindings 86
linking for internal bindings 74
managing 48
DS800 Development Suite 2.1 - Index 651

moving between configurations 113
operative states of 48
pasting 52
properties, options for modifying using

online changes 331
real-time execution mode for 298
renaming 51
run-time settings for 59
running, modifying using online changes

332
setting cycle time, debug mode 303
setting cycle time, edition mode 59
starting and stopping execution of resources

297
status information for 290
stopping builds 348
unlocking 64
viewing the history of 364
window workspace of, described 49

RET operator for IL 481
return statements

for FBD 431
for LD 449
for ST 460

return symbols
inserting, FBD elements 269
inserting, LD elements 263

reusing functions and function blocks 281
RIGHT function 558
right power bars (LD elements for FBD POUs),

inserting 271
rising edge detection (positive)

coils, described 447
contacts, described 441

ROL function 559
ROR function 560
row-level validation 153
rows, duplicating in the Dictionary grid 139
RS function block 593
rules for variables 385
RUN resource state 291

run-time
logging of system events 175
settings for resources 59
viewing of system events 176

rungs, inserting (LD elements) 264

S
S operator for IL 478
saving

before exiting, setting to prompt 26
changes to projects 39
changes to spy lists 318

search options, defining for finding cross
references 358

security
for configurations 118
for POUs 104
for projects 41
for resources 64
state of resources within projects 36

SEL function 562
selecting

elements in the multi-language editor 273
project items for printing 338
rows and elements in the Dictionary 132
variables in a spy list 317

semaphore manipulation, SOFT_POINT_READ
function block 596

semaphore manipulation, SOFT_POINT_WRITE
function block 597

sequential operations 369
set coils, Ladder diagrams 445
SET_PRIORITY function block 594
setting

access control for resources 64
breakpoints for steps and transitions (SFC)

311
breakpoints, step-by-step mode 301
cycle time of resources, debug mode 303
prompting to save before exiting 26
652 DS800 Development Suite 2.1 - User Manual

real or virtual attributes for I/O devices 171
refresh rate for resources 290
reloading of last project when starting 26

SFC (Sequential Function Chart)
actions within steps, described 407
adding action blocks to level 2 programming

229
breakpoints on step activation 312
breakpoints on step deactivation 313
breakpoints on transition 314
breakpoints toolbar in language editors 189
changing hierarchy level of child programs

103
creating child programs 102
deleting action blocks from level 2

programming 233
deleting branches from

convergences/divergences 220
dynamic behavior, described 414
editing code for transitions 231
editing level 2 programming 228
editor, described 209
GFREEZE statement in actions 470
GKILL statement in actions 469
goto steps or transitions 227
GRST statement in actions 471
GSTART statement in actions 468
GSTATUS statement in actions 472
hierarchy of programs 415
hierarchy restrictions for programs 96
inserting initial steps 215
inserting jumps 222
inserting links 221
inserting new branches in

convergences/divergences 219
inserting steps 216
inserting transitions 216
linking and placing

convergences/divergences 217
main format of programs 395
menu bar options for editor 211
programming levels of editor 214

renaming elements 224
renumbering elements in charts 233
setting/removing breakpoints for steps and

transitions 311
toolbar for language editors 189

SHL function 563
short integer

constant expressions 381
variables 390

showing
resource links, internal bindings 77
toolbars in the main environment 14

SHR function 564
SIG_GEN function block 595
signal generation

BLINK function block 577
SIG_GEN function block 595

simulating a panel of I/Os 320
simulation mode

for debugging a project 289
starting for a project 295

simulator
appearance of 322
displaying I/O device window headers in the

325
manipulating the browser of the 326
menu bar options for the 323
toolbar options for the 324

SIN function 565
single convergences, described 400
single divergences, described 400
single-resource editing mode 32
SOFT_POINT_READ function block 596
SOFT_POINT_WRITE function block 597
sorting

run-time system events 176
the Dictionary grid 138

source control, for versions of Workbench
elements 359

splitting workspace of language editors 197
spreadsheets, importing variables data using 93
DS800 Development Suite 2.1 - Index 653

spy lists
accessing variables list for 316
adding variables to 316
forcing values of variables in 319
opening 319
rearranging variables in 318
removing variables from 318
saving 318
selecting variables in 317

SQRT function 566
SR function block 598
ST (Structured Text)

assignment basic statements for 459
calling function blocks from 457
calling functions from 456
CASE, OF, ELSE, END_CASE basic

statements for 462
EXIT basic statements for 466
expressions and parentheses in 455
extensions for SFC child execution 467
FOR, TO, BY, DO, END_FOR basic

statements for 465
go to line for POUs 279
IF, THEN, ELSE, ELSIF, END_IF basic

statements for 461
main syntax of programs in 453
REPEAT, UNTIL, END_REPEAT basic

statements for 464
return basic statements for 460
toolbar in the language editors 192
WHILE, DO, END_WHILE basic

statements for 463
working with POUs in the multi-language

editor 260
ST operator for IL 478
STACKINT function block 600
standard function blocks

ALARM 575
AVERAGE 575
BLINK 577
CMP 578
CONNECT 579

CTD 581
CTU 582
CTUD 583
DBG_CLR_GET_ERR 585
DBG_CLR_SET_ERR 585
DBG_GET_ERR 586
DBG_SET_ERR 586
DERIVATE 587
EVENT 588
F_TRIG 588
HYSTER 589
INTEGRAL 590
R_TRIG 591
REQUEST_LICENSE 592
RS 593
SET_PRIORITY 594
SIG_GEN 595
SOFT_POINT_READ 596
SOFT_POINT_WRITE 597
SR 598
STACKINT 600
TLP_GET_DINT 601
TLP_GET_REAL 602
TLP_GET_SINT 603
TLP_GET_STRING 604
TLP_GET_TLP 605
TLP_SET_DINT 606
TLP_SET_REAL 607
TLP_SET_SINT 608
TLP_SET_STRING 609
TOF 609
TON 610
TP 611
URCV_S 612
USEND_S 613

standard function blocks, summary of 573
standard functions

ABS 522
ACOS 523
AND_MASK 524
ASCII 525
ASIN 526
654 DS800 Development Suite 2.1 - User Manual

ATAN 527
CHAR 528
COS 530
CURRENT_ISA_DATE 531
DELETE 532
EXPT 533
FIND 534
INSERT 536
LEFT 537
LIMIT 539
LOG 540
MAX 541
MID 542
MIN 543
MLEN 544
MOD 546
MUX4 547
MUX8 549
NOT_MASK 550
ODD 551
OR_MASK 553
POW 554
RAND 555
REPLACE 556
RIGHT 558
ROL 559
ROR 560
SEL 562
SHL 563
SHR 564
SIN 565
SQRT 566
SUB_DATE_DATE 567
summary of 521
TAN 569
TRUNC 570
XOR_MASK 571

standard IEC 61131 types, available for
programming 377

standard operators
1 gain 494
addition 489

AND 495
ANY_TO_BOOL 496
ANY_TO_DINT 499
ANY_TO_REAL 501
ANY_TO_SINT 498
ANY_TO_STRING 504
ANY_TO_TIME 502
division 492
equal 505
greater than 508
greater than or equal 507
less than 511
less than or equal 510
multiplication 488
NEG 512
NOT 514
not equal 515
OR 516
subtraction 491
summary of 487
TMR 517
XOR 518

standard toolbar
in language editors 185
in main environment 15

starting
events logger for run-time system events 175
execution of resources 297

status
bar, displaying and hiding 25
information, displaying for resources 290
of elements for version control 359

step-by-step mode
executing resources in 299
locating current step of 302
removing breakpoints for 301
setting breakpoints for 301
stepping in POUs for 302

STEPPING resource state 291
STEPPING_ERROR resource state 291
DS800 Development Suite 2.1 - Index 655

steps (SFC elements)
actions within, described 404
attaching action blocks to 229
described 396
inserting 216

STOP resource state 291
stopping

builds of projects, resources, and POUs 348
execution of resources 297

storage location of projects 29
string

constant expressions 383
variables 391

string manipulation
ASCII function 525
CHAR function 528
DELETE function 532
FIND function 534
INSERT function 536
LEFT function 537
MID function 542
MLEN function 544
REPLACE function 556
RIGHT function 558

structures
basic or user types, described 380
initializing fields of 150

sub-programs (Flow Chart)
described 422
inserting 245

SUB_DATE_DATE function 567
subtraction operator 491
switching

to the Dictionary view 125
to the hardware architecture view 109
to the link architecture view 48

symbols
downloading complete or reduced table of

55
generating monitoring information for 107

syntax
of IL programs 473
of ST programs 453
verification rules for Flow Chart 426

system
accessing variables for 307
events, logging of run-time 175
events, viewing of run-time 176

T
TAN function 569
targets

cleaning code stored on 336
defining compilation options for 55
defining control access for 118
specifying for configurations 117

templates, for libraries 281
templates, specifying for projects 34
testing projects 295
tests, inserting (FC elements) 240
third-party libraries, licensing 282
TIC code, generating 55
time operations

CURRENT_ISA_DATE function 531
SUB_DATE_DATE function 567
TOF function block 609
TON function block 610
TP function block 611

timer
constant expressions 383
variables 391

timing information, accessing 307
title bar of main environment 4
TLP variables

defining 146
TLP_GET_DINT function block 601
TLP_GET_REAL function block 602
TLP_GET_SINT function block 603
TLP_GET_STRING function block 604
TLP_GET_TLP function block 605
656 DS800 Development Suite 2.1 - User Manual

TLP_SET_DINT function block 606
TLP_SET_REAL function block 607
TLP_SET_SINT function block 608
TLP_SET_STRING function block 609
TMR operator 517
TOF function block 609
TON function block 610
toolbars

available in language editors 184
debugging, main environment 17
docking, moving, and showing 14
I/O wiring, main environment 20
layers view, main environment 19
options, main environment 20
simulator 324
standard, main environment 15
version source control, main environment 20
window buttons, main environment 19

tooltips
displaying for function blocks 267
displaying for variables 266

TP function block 611
transitions

clearing in SFC 311
conditions attached to (ST or LD), described

410
editing code for (SFC elements) 231
forcing clearing of in SFC 315
in SFC, described 397
inserting in SFC 216
programming for conditions in IL 411
programming for conditions in LD 411
programming for conditions in ST 410

tree view
for a project 353
for I/O wiring 157

TRUNC function 570
types

arrays, described 379
available standard IEC 61131 types 377
grid in the Dictionary 144
modifying for online changes 331

structures, described 380
tree, creating structures in 129
tree, deleting structures from 130
tree, described 129
tree, renaming structures in 130

U
unlocking

POUs with access control 104
resources with access control 64
variables 304

unwiring channels in I/O devices 174
uploading Workbench elements from targets 46
URCV_S function block 612
USEND_S function block 613
user types

arrays, described 379
structures, described 380

using libraries in projects 282

V
validation

at cell level 153
at database level 154
at row level 153

values, forcing for variables 304
variable bindings

defining for external bindings 88
defining for internal bindings 78
deleting for external bindings 89
deleting for internal bindings 80
described 67
editing for external bindings 89
editing for internal bindings 80
external, described 81
internal, described 71
linking resources for internal bindings 74
modifying for online changes 331
DS800 Development Suite 2.1 - Index 657

variable groups
creating 91
managing 91
opening 91
producing for external bindings 83

variables
accessing spy list for 316
adding to spy list for 316
attributes and directions for 389
Boolean 390
computer allocated hidden, effect on online

changes 330
declared, modifying in online changes 329
directly represented 387
displaying comments for 279
displaying tooltips for 266
double integer 390
for binding errors 68
forcing the values of 304
forcing values of, spy list 319
grid, described 142
importing and exporting 93
initial values for 150
inserting, FBD elements 266
inserting in POUs 201
locking and unlocking 304
modification of during online changes 329
opening a spy list with 319
real 390
rearranging in spy list 318
removing from spy list 318
rules for 385
saving spy list with 318
selecting in spy list 317
short integer 390
string 391
system, accessing 307
timer 391
tree, described 127

variables, defining TLP 146
version information, viewing 307

version source control
accessing history details for previous

versions 366
checking in Workbench elements for 363
clearing the status of 359
creating history reports 366
described 359
getting previous versions of Workbench

elements 365
repository path for 359
toolbar in main environment 20
viewing history of Workbench elements 364

view
for variable bindings 67
of the Dictionary 125
of the hardware architecture 109
of the I/O wiring 155
of the link architecture 48

viewing
breakpoints (step-by-step mode) 307
history of Workbench elements from version

source control 364
internal bindings 77
level 2 windows of FC chart elements 250
run-time system events 176
the lock status of variables 304
the project tree 353
version information 307

virtual attribute, setting for I/O devices 171

W
WHILE, DO, END_WHILE, ST basic statements

463
WHILE-DO structures, inserting (FC charts) 242
window

buttons toolbar in main environment 19
headers, displaying for I/O devices 325

wiring
channels in I/O wiring 172
tool, opening 155
658 DS800 Development Suite 2.1 - User Manual

Workbench elements
exporting between projects 43
importing between projects 43
uploading from targets 46

Workbench, overview of 1
working with

function blocks 99
functions 98
programs 96

workspace
adjusting zoom in 23
managing for language editors 197
of a resource window 49

X
X-Y ratio, setting for language editors 197
XOR operator 518
XOR_MASK function 571
DS800 Development Suite 2.1 - Index 659

Copyright
Information in these pages is subject to change without notice and does not represent a
commitment on the part of Emerson Process Management. No part of these pages may be
reproduced in any form or by any means, electronic or mechanical, for any purpose without the
express written permission of Emerson Process Management.

© 2002-2008 Remote Automation Solutions, division of Emerson Process Management. All
rights reserved.

Product or company names included in these pages are trademarks or registered trademarks of
their respective holders.

All logos and links used in this guide are, to the best of our knowledge, included with the
permission of the owner - if this is not the case, please let us know immediately.

Any changes made to documentation issued by Emerson Process Management without prior
permission of Emerson Process Management (in writing) will void any responsibilities and
liabilities normally associated with its contents.

21080227ENGFM70WWP70HC13
DS800 Development Suite 2.1 - Copyright 661

	DS800 Development Suite Software
	Table of Contents
	Workbench
	Appearance
	Title Bar
	Menu Bar
	Toolbars
	Standard Toolbar
	Debug Toolbar
	Window Buttons Toolbar
	Layers Toolbar
	Version Source Control Toolbar
	Options Toolbar
	I/O Wiring Toolbar

	Workspace
	Zoom

	Output Window
	Contextual Menus
	Status Bar

	Customization
	Directory Structure
	Working with Projects
	Creating Projects
	Opening and Closing Projects
	Saving Projects
	Renaming Projects
	Adding a Project Description
	Printing Projects

	Project Access Control
	Importing and Exporting Workbench Elements
	Uploading Workbench Elements from Targets
	Link Architecture View
	Resources
	Resource Window Workspace
	Creating Resources
	Renaming Resources
	Copying Resources
	Pasting Resources
	Deleting Resources

	Editing Resource Properties
	Resource Identification
	Compilation Options
	Run-time Settings
	Resource Network Parameters
	Custom Resource Parameters
	Resource Access Control
	Resource Description

	Variable Bindings
	Internal Bindings
	Linking Resources
	Deleting Resource Links
	Viewing the Internal Bindings Defined for Resources
	Hiding and Showing Resource Links
	Defining Internal Variable Bindings
	Editing Internal Variable Bindings
	Deleting Internal Variable Bindings

	External Bindings
	Defining Producer Variable Groups
	Editing Producer Variable Groups
	Deleting Producer Variable Groups
	Linking Resources for External Bindings
	Editing External Resource Links
	Defining External Variable Bindings
	Editing External Variable Bindings
	Deleting External Variable Bindings

	Parameters
	Variable Groups
	Creating Variable Groups
	Opening Variable Groups

	Importing or Exporting Variables
	POUs (Program Organization Units)
	Programs
	Functions
	Function Blocks
	Creating POUs
	Manipulating POUs
	Creating FC Sub-programs
	Creating SFC Child POUs
	Changing Hierarchy Level
	Controlling Access to POUs
	Generating Debug and Monitoring Information
	Editing a POU Description

	Hardware Architecture View
	Configurations
	Creating Configurations
	Deleting Configurations
	Moving Configurations
	Inserting Resources
	Moving Resources Between Configurations

	Configuration Properties
	Configuration Link to ROCLINK Configuration File
	Configuration Target Definitions
	Target Access Control
	Configuration Description

	Networks
	Creating Networks
	Moving Networks

	Connections
	Creating Connections
	Deleting Connections

	Dictionary View
	Appearance
	Variables Tree
	Parameters Tree
	Types Tree
	Creating Structures
	Renaming Structures
	Deleting Structures

	Defined Words Tree
	Working with the Grids
	Resizing Columns
	Selecting Rows and Elements
	Editing the Contents of the Grid
	Adding or Inserting Rows
	Moving Rows
	Expanding or Collapsing Grid Components
	Cutting, Copying, and Deleting Elements
	Finding and Replacing Elements
	Pasting Elements
	Sorting the Grid
	Duplicating Rows
	Renumbering Addresses
	Printing a Grid

	Variables Grid
	Parameters Grid
	Types Grid
	Defined Words Grid
	Defining TLP Variables
	Initial Values
	Validation
	Cell-level Validation
	Row-level Validation
	Database-level Validation

	I/O Wiring View
	Appearance
	I/O Wiring Tree View
	I/O Wiring Grid View
	Working with the I/O Wiring Tool
	TLP Devices (Automatic Wiring)
	Analog Input - 4 Point
	Analog Output - 4 Point
	Discrete Input - 8 Point
	Discrete Output - 5 Point
	Multi-Variable Sensor Input - 6 Point
	Pulse Input - 2 Point
	RTD Input - 2 Point
	System Analog Input - 5 Point
	Thermocouple Input - 5 Point
	Adding I/O Devices
	Opening Devices
	Deleting Devices and Conversions
	Setting the Real or Virtual Attribute
	Wiring Channels
	Mapping Channels
	Freeing Channels

	Run-time System Events
	Logging Events
	Viewing Events

	Language Editors
	Common Editor Features
	Appearance
	Menu Bar
	Toolbars
	Standard Toolbar
	Options Toolbar
	Debug Toolbar
	SFC Breakpoints Toolbar
	SFC Tools
	Flow Chart Tools
	ST Tools
	IL Tools
	LD Tools
	FBD Tools

	Workspace
	Contextual Menus
	Output Window
	Status Bar

	Inserting Identifiers
	Inserting Blocks
	Printing POUs
	Opening the Dictionary
	Opening Another POU
	Finding and Replacing in POUs

	SFC Editor
	Appearance
	Menu Bar
	Working with the Editor
	SFC Elements
	Initial Step
	Step
	Transition
	Divergence/Convergence
	Creating New Branches
	Deleting Branches

	Link
	Jump

	Managing Elements
	Select
	Rename
	Move
	Cut
	Copy
	Paste
	Delete
	Goto

	Level 2
	Coding Action Blocks for Steps
	Coding Conditions for Transitions
	Moving Action Blocks Up or Down
	Deleting an Action Block

	Renumbering Charts

	FC Editor
	Appearance
	Menu Bar
	Working with Flow Charts
	Flow Chart Elements
	Action
	Test
	IF-THEN-ELSE
	DO-WHILE
	WHILE-DO
	Flow
	Connector
	I/O Specific
	Comment
	Sub-Program

	Managing Elements
	Select
	Cut
	Copy
	Paste
	Delete
	Move
	GoTo
	Renumber

	Level 2
	Level 2 Window
	Edit the Level 2

	Multi-language Editor
	Appearance
	Menu Bar
	Multi-Language Elements
	ST/IL Elements
	LD Elements
	Contact on the Left
	Contact on the Right
	Parallel Contact
	Coil
	Block on the Left
	Block on the Right
	Parallel Block
	Jump
	Label
	Return
	Change Coil/Contact Type
	Insert New Rung
	Other Operations

	FBD Elements
	Variable
	Function Block
	Link
	Corner
	Jump
	Label
	Return
	LD Elements
	Left Power Bar
	Contacts
	LD Vertical "OR" Connection
	Coils
	Right Power Bar

	Comment

	Managing Elements
	Select
	Resize
	Undo/Redo
	Move
	Cut
	Copy
	Paste
	Paste Special
	Delete
	Select All
	Find Matching Name
	Find Matching Coil
	Go to Line
	Display/Hide Comments

	Libraries
	Creating Libraries
	Using Libraries in a Project

	Debug
	Status Information
	Download
	Debug/Simulate
	Start / Stop a Resource
	Resource Execution Mode
	Real-time Mode
	Cycle-to-cycle Mode
	Step-by-step Mode
	Setting Breakpoints
	Removing Breakpoints
	Stepping in POUs

	Set Cycle Time
	Write / Lock / Unlock
	Diagnosis
	SFC Breakpoints
	Breakpoint on Step Activation
	Breakpoint on Step Deactivation
	Breakpoint on Transition
	Transition Clearing Forcing

	Spying Variables
	Adding Variables to the Spy List
	Selecting Variables in the Spy List
	Removing Variables from the Spy List
	Rearranging the Spy List
	Saving a Spy List
	Opening an Existing Spy List
	Forcing the Value of a Spy List Variable

	Simulate a Panel of I/Os
	Appearance
	Menu Bar
	Toolbar
	Contextual Menu
	Displaying I/O Device Window Headers
	Moving or Hiding the Browser

	Online Changes
	Code Sequences
	Variables
	Declared Variables
	Function Block Instances
	Compiler Allocated Hidden Variables

	I/O Devices
	Memory Requirements
	Miscellaneous Limitations
	Operations

	Debug Function Block Instances
	Clean Stored Code

	Document Generator
	Table of Items
	Printing Options
	Preview

	Code Generator
	Build
	Build a POU
	Building Resources / Projects
	Stopping Builds
	Cleaning Projects

	Compiler Options
	C Source Code

	Project Tree View
	Cross References Browser
	Calculating Cross References
	Browsing the POUs of a Project
	Defining Search Options

	Version Source Control
	Performing a Check in of a Workbench Element
	Viewing the History of Workbench Elements
	Getting a Previous Version
	Comparing Current and Previous Versions
	Ac cessing Details for a Previous Version
	Creating a History Report

	Language Reference
	Project Architecture
	Programs
	Cyclic and Sequential Operations
	Child SFC POUs
	FC Sub-Programs
	Functions
	Function Blocks
	Description Language
	Execution Rules

	Common Objects
	Data Types
	Standard IEC 61131 Types
	User Types: Arrays
	User Types: Structures

	Constant Expressions
	Boolean Constant Expressions
	Short Integer Constant Expressions
	Double Integer Constant Expressions
	Real Constant Expressions
	Timer Constant Expressions
	String Constant Expressions

	Variables
	Reserved Keywords
	Directly Represented Variables
	Information on Variables
	Boolean Variables (BOOL)
	Short Integer Variables (SINT)
	Double Integer Variables (DINT)
	Real Variables (REAL)
	Timer Variables (TIME)
	String Variables (STRING)

	Comments
	Defined Words

	SFC Language
	SFC Main Format
	SFC Basic Components
	Steps and Initial Steps
	Transitions
	Oriented Links
	Jump to a Step

	Divergences and Convergences
	Single Divergences (OR)
	Double Divergences (AND)

	Actions Within Steps
	Boolean Actions
	Pulse Actions
	Non-stored Actions
	SFC Actions
	List of Instructions
	Calling Functions and Function Blocks

	Conditions Attached to Transitions
	Condition Programmed in ST
	Condition Programmed in LD
	Condition Programmed in IL
	Calling Functions from a Transition
	Calling Function Blocks from a Transition

	SFC Dynamic Behavior
	SFC Program Hierarchy

	FC Language
	FC Basic Components
	FC BEGIN
	FC END
	FC Flow Links
	FC Actions
	FC Conditions

	Other FC Components
	FC Sub-Program
	FC I/O Specific Actions
	FC Connectors
	FC Comments
	FC Complex Structure Examples

	FC Dynamic Behavior
	FC Checking
	FC Examples

	FBD Language
	FBD Diagram Main Format
	RETURN Statement
	Jumps and Labels
	Boolean Negation
	Calling Functions and Function Blocks

	LD Language
	Power Rails and Connection Lines
	Multiple Connections
	Basic LD Contacts and Coils
	Direct Contact
	Inverted Contact
	Contact with Rising Edge Detection
	Contact with Falling Edge Detection
	Direct Coil
	Inverted Coil
	SET Coil
	RESET Coil
	Coil with Rising Edge Detection
	Coil with Falling Edge Detection

	RETURN Statement
	Jumps and Labels
	BLOCKS in LD

	ST Language
	ST Main Syntax
	Expressions and Parentheses
	Functions or Function Block Calls
	Calling Functions
	Calling Function Blocks

	ST Operators
	ST Basic Statements
	Assignment
	RETURN Statement
	IF-THEN-ELSIF-ELSE Statement
	CASE Statement
	WHILE Statement
	REPEAT Statement
	FOR Statement
	EXIT Statement

	ST Extensions
	GSTART Statement in SFC Action
	GKILL Statement in SFC Action
	GFREEZE Statement in SFC Action
	GRST Statement in SFC Action
	GSTATUS Statement in SFC Action

	IL Language
	IL Main Syntax
	Labels
	Operator Modifiers
	Delayed Operations

	IL Operators
	LD Operator
	ST Operator
	S Operator
	R Operator
	JMP Operator
	RET Operator
) Operator
	Calling Functions
	Calling Function Blocks: CAL Operator

	Standard Operators
	*
	+
	-
	/
	1 GAIN
	AND
	ANY_TO_BOOL
	ANY_TO_SINT
	ANY_TO_DINT
	ANY_TO_REAL
	ANY_TO_TIME
	ANY_TO_STRING
	Equal
	Greater Than or Equal
	Greater Than
	Less Than or Equal
	Less Than
	NEG
	NOT
	Not Equal
	OR
	TMR
	XOR

	Standard Functions
	ABS
	ACOS
	AND_MASK
	ASCII
	ASIN
	ATAN
	CHAR
	COS
	CURRENT_ISA_DATE
	DELETE
	EXPT
	FIND
	INSERT
	LEFT
	LIMIT
	LOG
	MAX
	MID
	MIN
	MLEN
	MOD
	MUX4
	MUX8
	NOT_MASK
	ODD
	OR_MASK
	POW
	RAND
	REPLACE
	RIGHT
	ROL
	ROR
	SEL
	SHL
	SHR
	SIN
	SQRT
	SUB_DATE_DATE
	TAN
	TRUNC
	XOR_MASK

	Standard Function Blocks
	ALARM
	AVERAGE
	BLINK
	CMP
	CONNECT
	CTD
	CTU
	CTUD
	DBG_CLR_GET_ERR
	DBG_CLR_SET_ERR
	DBG_GET_ERR
	DBG_SET_ERR
	DERIVATE
	EVENT
	F_TRIG
	HYSTER
	INTEGRAL
	R_TRIG
	REQUEST_LICENSE
	RS
	SET_PRIORITY
	SIG_GEN
	SOFT_POINT_READ
	SOFT_POINT_WRITE
	SR
	STACKINT
	TLP_GET_DINT
	TLP_GET_REAL
	TLP_GET_SINT
	TLP_GET_STRING
	TLP_GET_TLP
	TLP_SET_DINT
	TLP_SET_REAL
	TLP_SET_SINT
	TLP_SET_STRING
	TOF
	TON
	TP
	URCV_S
	USEND_S

	Glossary

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Copyright

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

