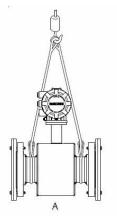
Messrohr des magnetisch-induktiven Durchflussmesssystems 8700 von Rosemount[™]

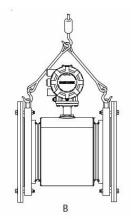
Sicherheit bei der Handhabung und beim Heben

A ACHTUNG

Um die Gefahr von Personen- und Sachschäden zu reduzieren, sind alle Anweisungen zur Handhabung und zum Heben zu befolgen.

- Alle Teile vorsichtig handhaben, um Schäden zu vermeiden. Das System wenn möglich in der originalen Versandverpackung an den Einbauort bringen.
- Messrohre mit PTFE-Auskleidung werden zum Schutz vor mechanischen Schäden und Verformung mit Enddeckeln versandt. Die Enddeckel erst unmittelbar vor der Installation entfernen.
- Die Versandverschlüsse an den Leitungseinführungen angebracht lassen, bis die Leitungen angeschlossen und abgedichtet werden. Es ist darauf zu achten, dass kein Wasser eindringt.
- Das Messrohr muss durch die Rohrleitung abgestützt werden. Die Verwendung von Rohrleitungsstützen sowohl am Einlass- als auch am Auslassende der Messrohr-Rohrleitung wird empfohlen. Keine weitere Halterung am Messrohr selbst anbringen.
- Angemessene persönliche Schutzausrüstung verwenden. Hierzu gehören Schutzbrillen und Sicherheitsschuhe mit Stahlkappen.
- Zum Anheben das Messgerät nicht am Elektronikgehäuse oder an der Anschlussdose greifen.
- Die Auskleidung des Messrohrs ist empfindlich und daher vorsichtig zu behandeln. Zum Anheben oder zur Erzeugung einer Hebelwirkung keine Gegenstände in das Messrohr einführen. Schäden an der Auskleidung können das Messrohr unbrauchbar machen.
- Das Gerät auf keinen Fall fallen lassen.


1.1 Hebeösen


A ACHTUNG

Sofern vorhanden die Hebeösen an den Flanschen verwenden, um das magnetisch-induktive Durchflussmesssystem zu transportieren und am Einbauort in seine Einbauposition abzusenken. Wenn keine Hebeösen vorhanden sind, muss das magnetisch-induktive Durchflussmesssystem an beiden Seiten des Gehäuses mit einem Hebegurt gesichert werden.

- Magnetisch-induktive Durchflussmesssysteme in Flanschbauweise für Standarddruck und eine Nennweite von 76 bis 914 mm (3 bis 36 Zoll) verfügen über Hebeösen.
- Magnetisch-induktive Durchflussmesssysteme in Flanschbauweise für Hochdruck (über 600#) und eine Nennweite von 25 bis 609 mm (1 bis 24 Zoll) verfügen über Hebeösen.
- Magnetisch-induktive Durchflussmesssysteme in Sandwich- und Hygienebauweise werden nicht mit Hebeösen geliefert.

Abbildung 1-1: Beispiele für das Anheben ohne und mit Hebeösen

- A. Ohne Hebeösen
- B. Mit Hebeösen

2 Einführung

Dieses Dokument enthält grundlegende Richtlinien für die Installation des Messrohrs des magnetisch-induktiven Durchflussmesssystems 8700 von Rosemount.

• Für Anweisungen im Hinblick auf die Installation des Messumformers siehe das entsprechende Dokument:

Produktbezeichnung	Dokumentennummer ⁽¹)
Messumformer 8732EM mit HART®-Protokoll	00825-01xx-4444
Messumformer 8732EM mit FOUNDATION™-Feldbus	00825-05xx-4444
Messumformer 8732EM mit Modbus®-RS-485- Protokoll	00825-04xx-4444
Messumformer 8712EM mit HART®-Protokoll	00825-01xx-4445
Messumformer 8712EM mit FOUNDATION™-Feldbus	00825-05xx-4445
Messumformer 8712EM mit Modbus®-RS-485- Protokoll	00825-04xx-4445
Magnetisch-induktives Durchflussmesssystem 8732E	00825-01xx-4662
Magnetisch-induktives Durchflussmesssystem 8732E mit FOUNDATION™-Feldbus	00825-01xx-4663
Magnetisch-induktives Durchflussmesssystem 8732E mit digitalem PROFIBUS-PA-Feldbus	00825-01xx-4665
Magnetisch-induktives Durchflussmesssystem 8712E	00825-01xx-4664
Magnetisch-induktive Durchflussmesssysteme 8712H	00825-01xx-4729

^{(1) &}quot;xx" im zweiten Segment der Dokumentennummer zeigt die Sprachversion an. Siehe Tabelle 2-1.

Tabelle 2-1: Dokumentensprachcodes

Code	Sprache
00	Englisch
02	Italienisch
03	Französisch
05	Deutsch
06	Chinesisch (vereinfacht)

Code Sprache

07 Russisch

09 Spanisch

15 Koreanisch

22 Portugiesisch (Brasilien)

Tabelle 2-1: Dokumentensprachcodes (Fortsetzung)

 Für weitere Informationen über die Installation, Konfiguration, Wartung und Fehlerbehebung siehe das entsprechende Handbuch.

Die gesamte Benutzerdokumentation findet sich unter www.emerson.com. Für weitere Kontaktdaten siehe Kundendienst von Emerson Flow.

2.1 Vorgaben zum Rücksendeverfahren

Zur Warenrücksendung sind die entsprechenden Verfahren von Emerson einzuhalten. Diese Verfahren sorgen für die Einhaltung der gesetzlichen Transportvorschriften und gewährleisten ein sicheres Arbeitsumfeld für die Mitarbeiter von Emerson. Bei Nichtbeachtung der Verfahren von Emerson wird die Annahme der Warenrücksendung verweigert.

2.2 Emerson Flow Kundenservice

E-Mail:

• Weltweit: flow.support@emerson.com

Asien/Pazifik: APflow.support@emerson.com

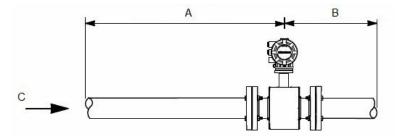
Telefon:

Nord- und Südamerika		Europa und Naher Osten		Asien/Pazifik	
Vereinigte Staaten	800 522 6277	Vereinigtes Königreich	0870 240 1978	Australien	800 158 727
Kanada	+1 303 527 5200	Niederlande	+31 (0) 704 136 666	Neuseeland	099 128 804
Mexiko	+41 (0) 41 7686 111	Frankreich	0800 917 901	Indien	800 440 1468
Argentinien	+54 11 4837 7000	Deutschland	0800 182 5347	Pakistan	888 550 2682
Brasilien	+55 15 3413 8000	Italien	8008 77334	China	+86 21 2892 9000
Venezuela	+58 26 1731 3446	Mittel- und Osteuropa	+41 (0) 41 7686 111	Japan	+81 3 5769 6803
		Russland/GUS	+7 495 981 9811	Südkorea	+82 2 3438 4600
		Ägypten	0800 000 0015	Singapur	+65 6 777 8211
		Oman	800 70101	Thailand	001 800 441 6426
		Katar	431 0044	Malaysia	800 814 008
		Kuwait	663 299 01		
		Südafrika	800 991 390		
		Saudi-Arabien	800 844 9564		
		VAE	800 0444 0684		

3 Lage und Stellung

3.1 Umgebungsanforderungen

Übermäßige Wärme und Vibrationen vermeiden, um die maximale Lebensdauer des Messumformers zu gewährleisten. Zu typischen Problembereichen gehören u. a.:


- Rohrleitungen mit starker Vibration bei integriert montierten Messumformern
- Installationen in feuchtwarmen oder heißen Umgebungen mit direkter Sonneneinstrahlung
- Außeninstallationen in kalten Umgebungen

Abgesetzt montierte Messumformer können in der Messwarte installiert werden, um die Elektronik vor rauen Umgebungsbedingungen zu schützen und einfachen Zugriff für Konfiguration oder Service zu gewährleisten.

3.2 Fin- und Auslaufstrecken

Um die spezifizierte Genauigkeit über einen großen Bereich unterschiedlicher Prozessbedingungen sicherzustellen, muss das Messrohr, jeweils von der Elektrodenebene aus gemessen, eine gerade Einlaufstrecke, deren Länge mindestens dem Fünffachen des Rohrdurchmesser entspricht, und eine gerade Auslaufstrecke, deren Länge dem Zweifachen des Rohrdurchmessers entspricht, haben.

Abbildung 3-1: Gerade Ein- und Auslaufstrecken auf der Grundlage des Rohrdurchmessers

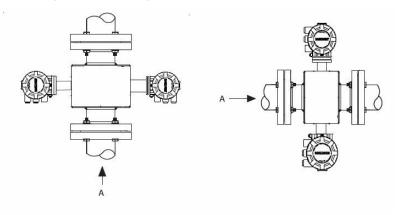
- A. Fünffacher Rohrdurchmesser (Einlaufstrecke)
- B. Zweifacher Rohrdurchmesser (Auslaufstrecke)
- C. Durchflussrichtung

Installationen mit kürzeren geraden Ein- und Auslaufstrecken sind möglich. Bei Installationen mit kürzeren geraden Rohrstrecken entsprechen die Messwerte des Messsystems möglicherweise nicht den Spezifikationen für die Genauigkeit. Die gemeldeten Durchflusswerte weisen jedoch weiterhin eine hohe Reproduzierbarkeit auf.

3.3 Durchflussrichtung

Das Messrohr ist so zu installieren, dass die Spitze des Durchflussrichtungspfeils in Durchflussrichtung zeigt.

Abbildung 3-2: Durchflussrichtungspfeil

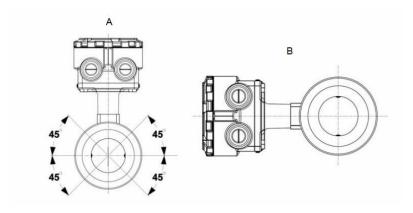


3.4 Lage und Ausrichtung des Messrohrs

Das Messrohr ist so zu installieren, dass es während des Betriebs stets gefüllt bleibt. Je nach Einbauort spielt auch die Ausrichtung eine Rolle.

- Beim vertikalen Einbau mit Durchflussrichtung von unten nach oben bleibt der Querschnitt unabhängig vom Durchfluss stets gefüllt.
- Der horizontale Einbau sollte auf tief gelegene Rohrleitungsabschnitte beschränkt werden, die normalerweise gefüllt sind.

Abbildung 3-3: Ausrichtung des Messrohrs



A. Durchflussrichtung

3.5 Elektrodenausrichtung

Die Elektroden im Messrohr sind ordnungsgemäß ausgerichtet, wenn die beiden Messelektroden in der 3-Uhr- und 9-Uhr-Stellung oder in einem Winkel von 45 Grad zur Horizontalen positioniert sind (siehe linker Teil von Abbildung 3-4). Einbaulagen, durch die die Oberseite des Messrohrs in einem Winkel von 90 Grad zur Vertikalen positioniert wird, sind zu vermeiden (siehe rechter Teil von Abbildung 3-4).

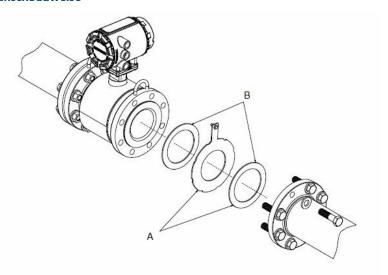
Abbildung 3-4: Elektrodenausrichtung

- A. Korrekte Ausrichtung
- B. Falsche Ausrichtung

Für die Einhaltung der Vorgaben der T-Codes für die Ex-Bereich-Einstufung ist möglicherweise eine bestimmte Ausrichtung des Messrohres erforderlich. Angaben zu möglichen Einschränkungen sind in dem entsprechenden Handbuch aufgeführt.

4 Messrohrinstallation

4.1 Messrohre in Flanschbauweise


Dichtungen

Alle Prozessanschlüsse des Messrohrs müssen mit einer Dichtung versehen werden. Der Dichtungswerkstoff muss mit dem Prozessmedium und den Betriebsbedingungen kompatibel sein. Auf jeder Seite des Erdungsrings ist eine Dichtung erforderlich (siehe Abbildung 4-1). Alle anderen Anwendungen (einschließlich Messrohre mit Auskleidungsschutz oder einer Erdungselektrode) erfordern nur eine Dichtung an jedem Prozessanschluss.

Anmerkung

Metall- oder Spiraldichtungen sollten nicht verwendet werden, da sie die Auskleidung des Messrohrs beschädigen. Wenn Metall- oder Spiraldichtungen für die Anwendung erforderlich sind, muss ein Auskleidungsschutz verwendet werden.

Abbildung 4-1: Anordnung der Dichtungen bei Messrohren in Flanschbauweise

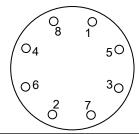
- A. Erdungsring und Dichtung (optional)
- B. Vom Kunden beigestellte Dichtung

Schrauben

Anmerkung

Nicht jeweils nur eine Seite festziehen. Es müssen beide Seiten gleichzeitig festgezogen werden. Beispiel:

- 1. Einlaufstrecke anlegen
- 2. Auslaufstrecke anlegen
- 3. Einlaufstrecke festziehen
- 4. Auslaufstrecke festziehen


Nicht zuerst die Einlaufstrecke anlegen und festziehen und erst danach die Auslaufstrecke anlegen und festziehen. Werden Einlauf- und Auslaufflansch nicht wechselseitig festgezogen, kann die Auskleidung beschädigt werden.

Die empfohlenen Drehmomentwerte für Flansche gemäß ASME B16.5 sind in Tabelle 4-2 und für EN-Flansche in Tabelle 4-3 bzw. Tabelle 4-4 entsprechend der Nennweite und dem Auskleidungstyp des Messrohrs aufgelistet. Informationen über nicht aufgelistete Druckstufen der Messrohrflansche sind auf Anfrage beim Hersteller erhältlich. Die Flanschschrauben auf der Einlaufseite des Messrohrs entsprechend der in Abbildung 4-2 gezeigten Reihenfolge auf 20 % der empfohlenen Drehmomentwerte festziehen. Das Verfahren auf der Auslaufseite des Messrohrs wiederholen. Bei Messrohren mit mehr oder weniger Flanschschrauben die Schrauben auf ähnliche Weise über Kreuz festziehen. Dieses gesamte Anzugsverfahren mit 40 %, 60 %, 80 % und 100 % der empfohlenen Drehmomentwerte wiederholen.

Wenn die Flanschverbindung bei den empfohlenen Drehmomentwerten undicht ist, können die Schrauben in Schritten von 10 % weiter angezogen werden, bis die Verbindung dicht ist oder bis der maximal zulässige Drehmomentwert der Schrauben erreicht wird. Praktische Anforderungen an die Integrität der Auskleidung führen oft zu bestimmten Drehmomentwerten für die vollständige Abdichtung von Leckagen, die durch bestimmte Kombinationen von Flanschen, Schrauben, Dichtungen und Messrohr-Auskleidungswerkstoffen verursacht werden.

Die Flanschverbindungen nach dem Anziehen der Schrauben auf Leckagen prüfen. Nichtbeachtung der korrekten Anzugsmethoden kann zu schweren Schäden führen. Messrohrwerkstoffe können sich im Laufe der Zeit durch Druck verformen; daher müssen die Flanschschrauben 24 Stunden nach der Erstinstallation nachgezogen werden.

Abbildung 4-2: Reihenfolge für das Anziehen der Flanschschrauben

Vor der Installation den Auskleidungswerkstoff des Messrohrs identifizieren, um sicherzustellen, dass die empfohlenen Drehmomentwerte angewandt werden.

Tabelle 4-1: Auskleidungswerkstoff

Fluorpolymer-Auskleidungen	Andere Auskleidungen
T – PTFE	P – Polyurethan
F – ETFE	N – Neopren
A – PFA	L – Linatex (Naturkautschuk)
K-PFA+	D – Adiprene

Tabelle 4-2: Empfohlene Flanschschrauben-Drehmomentwerte für Rosemount 8705 (ASME)

Nenn Nennweite weite		Fluorpolymer- Auskleidungen		Andere Auskleidungen	
ncod e		Class 150 (lb-ft)	Class 300 (lb-ft)	Class 150 (lb-ft)	Class 300 (lb-ft)
005	0,5 Zoll (15 mm)	8	8	k.A.	k.A.
010	1 Zoll (25 mm)	8	12	6	10
015	1,5 Zoll (40 mm)	13	25	7	18
020	2 Zoll (50 mm)	19	17	14	11
025	2,5 Zoll (65 mm)	22	24	17	16
030	3 Zoll (80 mm)	34	35	23	23
040	4 Zoll (100 mm)	26	50	17	32
050	5 Zoll (125 mm)	36	60	25	35
060	6 Zoll (150 mm)	45	50	30	37
080	8 Zoll (200 mm)	60	82	42	55

Tabelle 4-2: Empfohlene Flanschschrauben-Drehmomentwerte für Rosemount 8705 (ASME) (Fortsetzung)

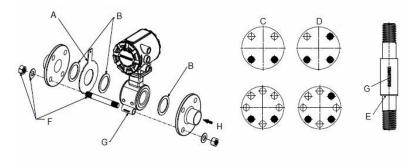
Nenn Nennweite weite		Fluorpolymer- Auskleidungen		Andere Auskleidungen	
ncod e		Class 150 (lb-ft)	Class 300 (lb-ft)	Class 150 (lb-ft)	Class 300 (lb-ft)
100	10 Zoll (250 mm)	55	80	40	70
120	12 Zoll (300 mm)	65	125	55	105
140	14 Zoll (350 mm)	85	110	70	95
160	16 Zoll (400 mm)	85	160	65	140
180	18 Zoll (450 mm)	120	170	95	150
200	20 Zoll (500 mm)	110	175	90	150
240	24 Zoll (600 mm)	165	280	140	250
300	30 Zoll (750 mm)	195	415	165	375
360	36 Zoll (900 mm)	280	575	245	525

Tabelle 4-3: Empfohlene Flanschschrauben-Drehmomentwerte für Messrohre 8705 von Rosemount mit Fluorpolymer-Auskleidungen (EN 1092-1)

Nenn	Nennweite	Fluorpolymer-Auskleidungen (in Newtonmetern)			
weite ncod e		PN 10	PN 16	PN 25	PN 40
005	0,5 Zoll (15 mm)	k.A.	k.A.	k.A.	10
010	1 Zoll (25 mm)	k.A.	k.A.	k.A.	20
015	1,5 Zoll (40 mm)	k.A.	k.A.	k.A.	50
020	2 Zoll (50 mm)	k.A.	k.A.	k.A.	60
025	2,5 Zoll (65 mm)	k.A.	k.A.	k.A.	50
030	3 Zoll (80 mm)	k.A.	k.A.	k.A.	50
040	4 Zoll (100 mm)	k.A.	50	k.A.	70
050	5 Zoll (125 mm)	k.A.	70	k.A.	100
060	6 Zoll (150 mm)	k.A.	90	k.A.	130
080	8 Zoll (200 mm)	130	90	130	170
100	10 Zoll (250 mm)	100	130	190	250
120	12 Zoll (300 mm)	120	170	190	270
140	14 Zoll (350 mm)	160	220	320	410

Tabelle 4-3: Empfohlene Flanschschrauben-Drehmomentwerte für Messrohre 8705 von Rosemount mit Fluorpolymer-Auskleidungen (EN 1092-1) (Fortsetzung)

Nenn	Nennweite	te Fluorpolymer-Auskleidungen (in Newtonmetern)			
weite ncod e		PN 10	PN 16	PN 25	PN 40
160	16 Zoll (400 mm)	220	280	410	610
180	18 Zoll (450 mm)	190	340	330	420
200	20 Zoll (500 mm)	230	380	440	520
240	24 Zoll (600 mm)	290	570	590	850


Tabelle 4-4: Empfohlene Flanschschrauben-Drehmomentwerte für Messrohre 8705 von Rosemount mit anderen Auskleidungen (kein Fluorpolymer) (EN 1092-1)

Nenn weite	Nennweite		Andere Auskleidungen (kein Fluorpolymer) (in Newtonmetern)			
ncod e		PN 10	PN 16	PN 25	PN 40	
005	0,5 Zoll (15 mm)	k.A.	k.A.	k.A.	20	
010	1 Zoll (25 mm)	k.A.	k.A.	k.A.	30	
015	1,5 Zoll (40 mm)	k.A.	k.A.	k.A.	40	
020	2 Zoll (50 mm)	k.A.	k.A.	k.A.	30	
025	2,5 Zoll (65 mm)	k.A.	k.A.	k.A.	35	
030	3 Zoll (80 mm)	k.A.	k.A.	k.A.	30	
040	4 Zoll (100 mm)	k.A.	40	k.A.	50	
050	5 Zoll (125 mm)	k.A.	50	k.A.	70	
060	6 Zoll (150 mm)	k.A.	60	k.A.	90	
080	8 Zoll (200 mm)	90	60	90	110	
100	10 Zoll (250 mm)	70	80	130	170	
120	12 Zoll (300 mm)	80	110	130	180	
140	14 Zoll (350 mm)	110	150	210	288	
160	16 Zoll (400 mm)	150	190	280	410	
180	18 Zoll (450 mm)	130	230	220	280	
200	20 Zoll (500 mm)	150	260	300	350	
240	24 Zoll (600 mm)	200	380	390	560	

4.2 Messrohre in Sandwichbauweise

Bei der Installation von Messrohren in Sandwichbauweise müssen verschiedene Komponenten verbaut und bestimmte Anforderungen erfüllt werden.

Abbildung 4-3: Komponenten für die Installation von Messrohren in Sandwichbauweise und Anforderungen für den Zusammenbau

- A. Erdungsring (optional)
- B. Vom Kunden beigestellte Dichtungen
- C. Distanzstückinstallation (Messgeräte mit horizontaler Ausrichtung)
- D. Distanzstückinstallation (Messgeräte mit vertikaler Ausrichtung)
- E. O-Ring
- F. Gewindebolzen, Muttern und Unterlegscheiben für die Installation (optional)
- G. Distanzstück bei Sandwichbauweise
- H. Durchfluss

Dichtungen

Alle Prozessanschlüsse des Messrohrs müssen mit einer Dichtung versehen werden. Der Dichtungswerkstoff muss mit dem Prozessmedium und den Betriebsbedingungen kompatibel sein. Auf jeder Seite des Erdungsrings ist eine Dichtung erforderlich. Siehe Abbildung 4-3.

Anmerkung

Metall- oder Spiraldichtungen sollten nicht verwendet werden, da sie die Auskleidung des Messrohrs beschädigen.

Distanzstücke

Bei Nennweiten von 40 bis 200 mm (1,5 bis 8 Zoll) sind Distanzstücke **erforderlich**, um die ordnungsgemäße Zentrierung des Messrohrs in Sandwichbauweise zwischen den Prozessflanschen zu gewährleisten. Bei der Bestellung eines Distanzstücksatzes (3 Distanzstücke) als Teilenummer

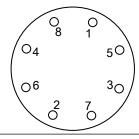
08711-3211-xxxx angeben und xxxx durch die in Tabelle 4-5 aufgeführte Teilekennzeichnung ersetzen.

Tabelle 4-5: Distanzstücke

Teilekennzeic Nennweite			Flanschdruckstufen
hnung (-xxxx)	(Zoll)	(mm)	
0A15	1,5	40	JIS 10K-20K
0A20	2	50	JIS 10K-20K
0A30	3	80	JIS 10K
0B15	1,5	40	JIS 40K
AA15	1,5	40	ASME - 150#
AA20	2	50	ASME - 150#
AA30	3	80	ASME - 150#
AA40	4	100	ASME - 150#
AA60	6	150	ASME - 150#
AA80	8	200	ASME - 150#
AB15	1,5	40	ASME - 300#
AB20	2	50	ASME - 300#
AB30	3	80	ASME - 300#
AB40	4	100	ASME - 300#
AB60	6	150	ASME - 300#
AB80	8	200	ASME - 300#
DB40	4	100	EN 1092-1 - PN10/16
DB60	6	150	EN 1092-1 - PN10/16
DB80	8	200	EN 1092-1 - PN10/16
DC80	8	200	EN 1092-1 - PN25
DD15	1,5	40	EN 1092-1 - PN10/16/25/40
DD20	2	50	EN 1092-1 - PN10/16/25/40
DD30	3	80	EN 1092-1 - PN10/16/25/40
DD40	4	100	EN 1092-1 - PN25/40
DD60	6	150	EN 1092-1 - PN25/40
DD80	8	200	EN 1092-1 - PN40
RA80	8	200	AS40871-PN16

Teilekennzeic	Nennweite		Flanschdruckstufen		
hnung (-xxxx)	(Zoll)	(mm)			
RC20	2	50	AS40871-PN21/35		
RC30	3	80	AS40871-PN21/35		
RC40	4	100	AS40871-PN21/35		
RC60	6	150	AS40871-PN21/35		
RC80	8	200	AS40871-PN21/35		

Tabelle 4-5: Distanzstücke (Fortsetzung)


Gewindebolzen

Für Messrohre in Sandwichbauweise sind Gewindebolzen erforderlich. Anzugsreihenfolge siehe Abbildung 4-4. Die Flanschverbindungen nach dem Anziehen der Flanschschrauben stets auf Leckagen prüfen. Alle Messrohr-Flanschschrauben müssen 24 Stunden nach dem ersten Festziehen nachgezogen werden.

Tabelle 4-6: Spezifikationen der Gewindebolzen

Messrohr-Nennweite	Spezifikationen der Gewindebolzen
4 bis 25 mm (0,15 bis 1 Zoll)	Gewindebolzen aus Edelstahl 316 SST ASTM A193, Grade B8M, Class 1
40 bis 200 mm (1½ bis 8 Zoll)	Gewindebolzen aus Kohlenstoffstahl, ASTM A193, Grade B7

Abbildung 4-4: Reihenfolge für das Anziehen der Flanschschrauben

4.2.1 Installation

 Die Gewindebolzen für die Unterseite des Messrohrs zwischen die Rohrflansche einführen und das Distanzstück in der Mitte des Gewindebolzens zentrieren. Die empfohlene Lage der Bohrungen für die beigestellten Distanzstücke ist in Abbildung 4-3 dargestellt. Die Spezifikationen der Gewindebolzen sind in Tabelle 4-6 aufgeführt.

- 2. Das Messrohr zwischen den Flanschen positionieren. Sicherstellen, dass die Distanzstücke richtig auf den Gewindebolzen zentriert sind. Bei Installationen mit vertikaler Durchflussrichtung den O-Ring auf den Gewindebolzen schieben, um das Distanzstück zu fixieren. Siehe Abbildung 4-3. Sicherstellen, dass die Distanzstücke für die Nennweite und Druckstufe der Prozessflansche geeignet sind. Siehe Tabelle 4-5.
- 3. Die restlichen Gewindebolzen, Unterlegscheiben und Muttern anbringen.
- 4. Die Gewinde mit den in Tabelle 4-7 angegebenen Drehmomenten anziehen. Nicht zu fest anziehen, um die Auskleidung nicht zu beschädigen.

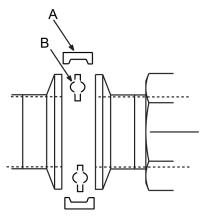
|--|

Nennweitencod e	Nennweite	lb-ft	Newtonmeter
015	1,5 Zoll (40 mm)	15	20
020	2 Zoll (50 mm)	25	34
030	3 Zoll (80 mm)	40	54
040	4 Zoll (100 mm)	30	41
060	6 Zoll (150 mm)	50	68
080	8 Zoll (200 mm)	70	95

4.3 Messrohre in Hygienebauweise

Dichtungen

Alle Geräte- oder Rohrleitungsanschlüsse des Messrohrs müssen mit einer Dichtung versehen werden. Der Dichtungswerkstoff muss mit dem Prozessmedium und den Betriebsbedingungen kompatibel sein.


Anmerkung

Dichtungen zwischen IDF-Anschluss und Prozessanschluss, wie z. B. einem Tri-Clamp-Anschluss, sind im Lieferumfang aller Messrohre 8721 von Rosemount in Hygienebauweise enthalten, außer wenn die Prozessanschlüsse nicht mitgeliefert werden und der einzige Anschlusstyp ein IDF-Anschluss ist.

Ausrichtung und Schraubenmontage

Bei der Installation eines magnetisch-induktiven Durchflussmessgeräts mit Hygieneanschlüssen sind die standardmäßigen Betriebsvorschriften zu befolgen. Es sind keine speziellen Drehmomentwerte und Schraubenmontageverfahren erforderlich.

Abbildung 4-5: Ausrichtung der Dichtung und Klemme bei einem Messrohr in Hygienebauweise

- A. Vom Anwender beigestellte Klammer
- B. Vom Anwender beigestellte Dichtung

5 Prozesserdung

Die Abbildungen in diesem Abschnitt zeigen ausschließlich die bewährten Vorgehensweisen für die Installation der Anschlüsse für die Prozesserdung. Bei Installationen in leitenden, nicht ausgekleideten Rohrleitungen kann es akzeptabel sein, einen Erdungsring oder einen Auskleidungsschutz zu erden, um eine Prozesserdung zu erreichen. Anschlüsse für Schutzerde sind als Teil der Installation ebenfalls erforderlich, werden in diesen Abbildungen aber nicht gezeigt. Die nationalen, lokalen und für die Anlage relevanten Normen für die Schutzerdung elektrischer Ausrüstung befolgen.

Zur Bestimmung der geeigneten Option für die Prozesserdung für die ordnungsgemäße Installation Tabelle 5-1 nutzen.

Tabelle 5-1: Optionen für die Prozesserdung

Rohrleitungst	Erdungsbänd	Erdungsringe	Bezugselektro	Auskleidungs
yp	er		de	schutz
Leitende Rohrleitung ohne Auskleidung	Siehe Abbildung 5-1	Siehe Abbildung 5-2	Siehe Abbildung 5-4	Siehe Abbildung 5-2
Leitende Rohrleitung mit Auskleidung	Ungenügende Erdung	Siehe Abbildung 5-2	Siehe Abbildung 5-1	Siehe Abbildung 5-2
Nicht leitende	Ungenügende	Siehe	Nicht	Siehe
Rohrleitung	Erdung	Abbildung 5-3	empfohlen	Abbildung 5-3

Anmerkung

Bei Nennweiten ab 250 mm (10 Zoll) ist das Erdungsband evtl. bereits nahe des Flansches am Messrohr angebracht. Siehe Abbildung 5-5.

Abbildung 5-1: Erdungsbänder in leitenden Rohrleitungen ohne Auskleidung oder Referenzelektrode in Rohrleitungen mit Auskleidung

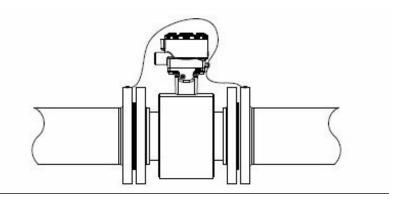
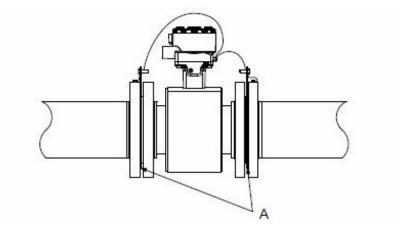
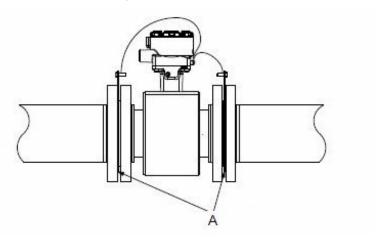




Abbildung 5-2: Erdung mit Erdungsringen oder Auskleidungsschutz in leitenden Rohrleitungen

A. Erdungsringe oder Auskleidungsschutz

Abbildung 5-3: Erdung mit Erdungsringen oder Auskleidungsschutz in nicht leitenden Rohrleitungen

A. Erdungsringe oder Auskleidungsschutz

Abbildung 5-4: Erdung mit Referenzelektrode in leitenden Rohrleitungen ohne Auskleidung

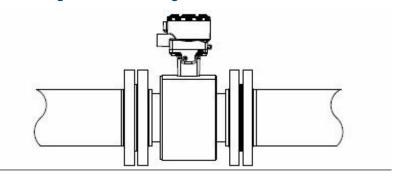
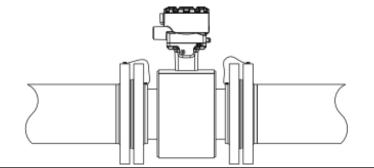
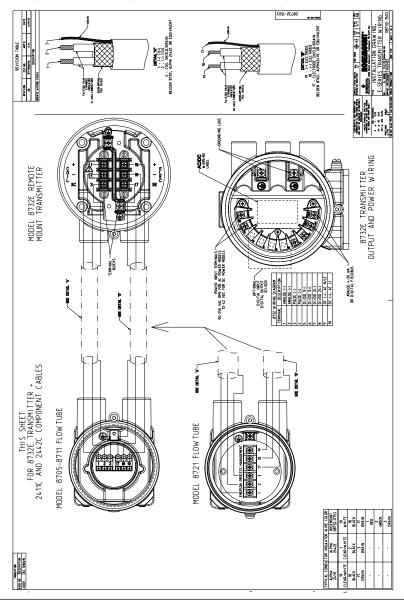
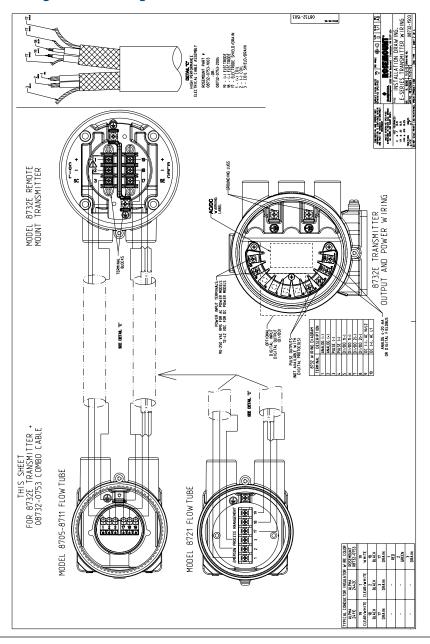
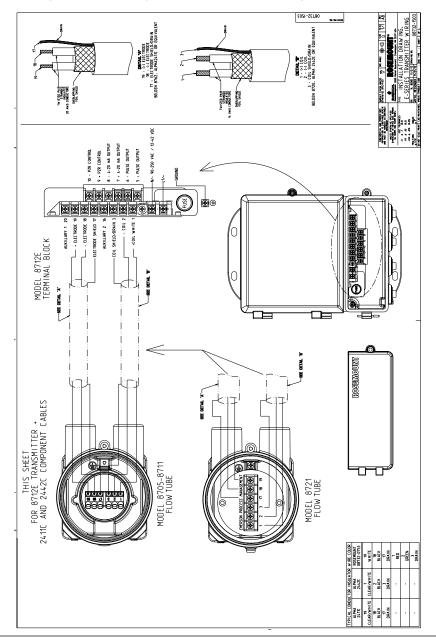
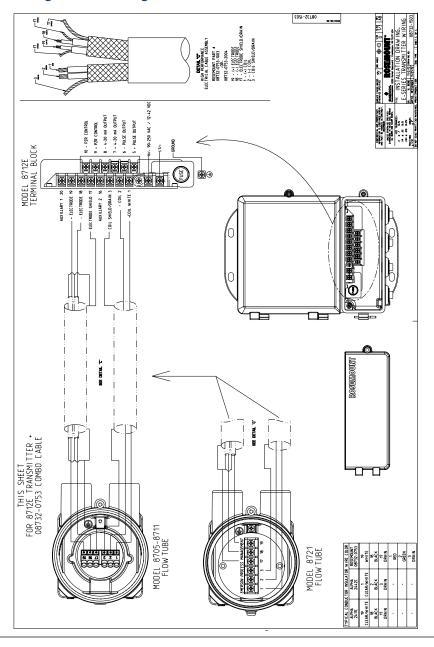




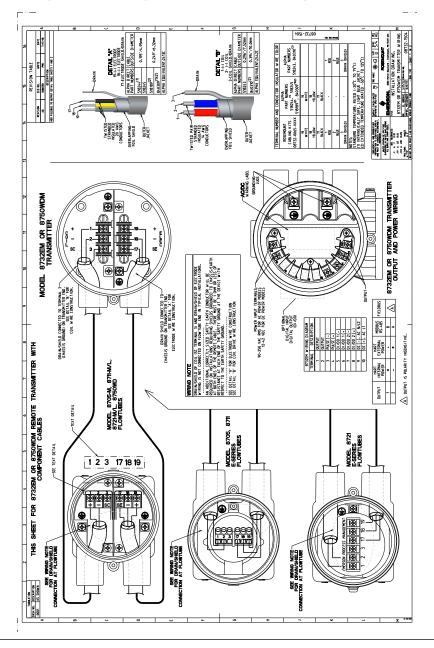
Abbildung 5-5: Erdung ab Nennweite 250 mm (10 Zoll)

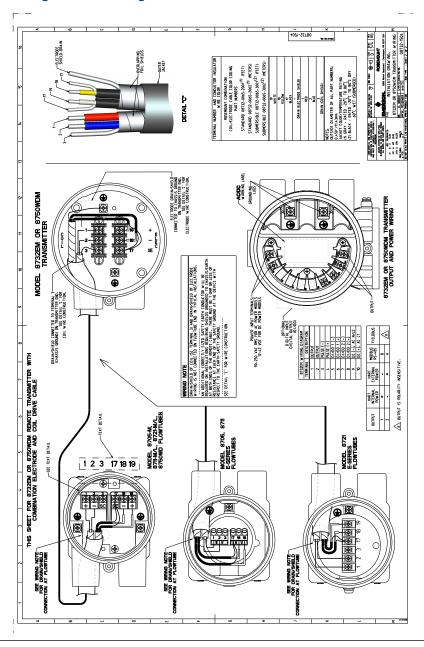
6 Verkabelung des Messrohrs mit dem Messumformer

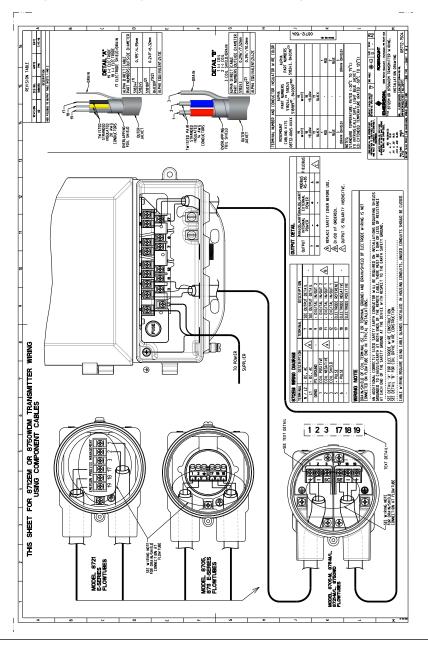
Abbildung 6-1: Verkabelung des 8732ES mit einem Komponentenkabel

Abbildung 6-2: Verkabelung des 8732ES mit einem Kombinationskabel


Abbildung 6-3: Verkabelung des 8712ES mit einem Komponentenkabel


Abbildung 6-4: Verkabelung des 8712ES mit einem Kombinationskabel


Abbildung 6-5: Verkabelung des 8732EM mit einem Komponentenkabel

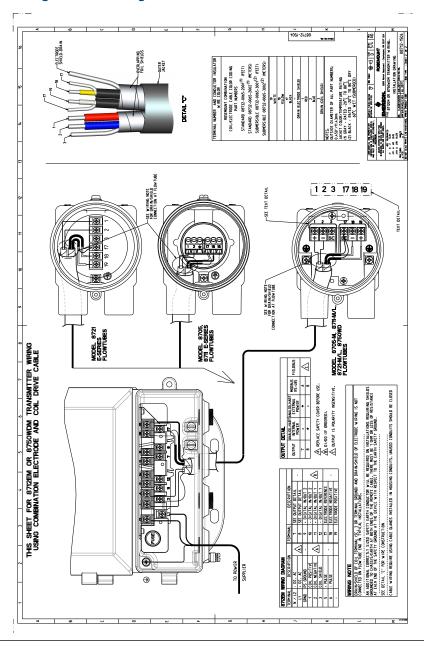

Abbildung 6-6: Verkabelung des 8732EM mit einem Kombinationskabel

Abbildung 6-7: Verkabelung des 8712EM mit einem Komponentenkabel

Abbildung 6-8: Verkabelung des 8712EM mit einem Kombinationskabel

Kurzanleitung für die Installation 00825-0105-4727, Rev. DD Mai 2019

Emerson Automation Solutions

Neonstraat 1 6718 WX Ede Niederlande T +31 (0) 70 413 6666 F +31 (0) 318 495 556

Emerson Process Management GmbH & Co OHG

Katzbergstr. 1 40764 Langenfeld (Rhld.) Deutschland T +49 (0) 2173 3348 – 0 F +49 (0) 2173 3348 – 100 www.EmersonProcess.de

Emerson Process Management AG

Blegistraße 21 6341 Baar-Walterswil Schweiz T +41 (0) 41 768 6111 F +41 (0) 41 761 8740 www.emersonprocess.ch

Emerson Automation Solutions Emerson Process Management AG

Industriezentrum NÖ Süd Straße 2a, Objekt M29 2351 Wr. Neudorf Österreich T +43 (0) 2236-607 F +43 (0) 2236-607 44 www.emersonprocess.at

©2019 Rosemount, Inc. Alle Rechte vorbehalten.

Das Emerson Logo ist eine Marke und Dienstleistungsmarke der Emerson Electric Co. Rosemount, 8600, 8700, und 8800 sind Marken eines der Emerson Automation Solutions Unternehmen. Alle anderen Marken sind Eigentum ihrer jeweiligen Besitzer.

