

Transmisor de temperatura Rosemount[™] 644

con el protocolo HART®

Índice

Sección 1: Introducción

1.1	Uso c	le este manual	1
	1.1.1	Generalidades sobre el transmisor	2

Sección 2: Configuración

2.1	Gene	ralidades
2.2	Mens	sajes de seguridad
2.3	Dispo	onibilidad del sistema
2	2.3.1	Confirmar que el controlador del dispositivo sea el correcto
2	2.3.2	Sobretensiones/transitorios
2.4	Méto	dos de configuración
2	2.4.1	Configuración en banco 5
2	2.4.2	Selección de una herramienta de configuración6
2	2.4.3	Ajuste del lazo a manual
2	2.4.4	Modo de fallo
2	2.4.5	Bloqueo del software HART
2.5	Verifi	icación de la configuración
2	2.5.1	Comunicador de campo
2	2.5.2	AMS Device Manager 10
2	2.5.3	LOI
2	2.5.4	Revisión de la salida del transmisor 10
2.6	Confi	iguración básica del transmisor11
2	2.6.1	Asignación de las variables HART 12
2	2.6.2	Configuración de sensor(es)13
2	2.6.3	Ajuste de las unidades de salida14
2.7	Confi	iguración de las opciones de sensor doble16
2	2.7.1	Configuración de temperatura diferencial16
2	2.7.2	Configuración de temperatura promedio17
2	2.7.3	Configuración de Hot Backup19
2	2.7.4	Configuración de la alerta de desviación del sensor
2.8	Confi	iguración de las salidas del dispositivo 22
2	2.8.1	Reajustar el rango del transmisor 22
2	2.8.2	Amortiguación
2	2.8.3	Configuración de los niveles de alarma y saturación
2	2.8.4	Configuración de la pantalla LCD 28
2.9	Intro	ducción de la información del dispositivo

2.9.1	Etiqueta, fecha, descriptor y mensaje 29
2.10 Confi	guración del filtrado de medidas 31
2.10.1	Filtro de 50/60 Hz
2.10.2	Restablecimiento del dispositivo
2.10.3	Detección de sensor intermitente 32
2.10.4	Holdoff de sensor abierto
2.11 Diagi	nóstico y mantenimiento
2.11.1	Realizar una prueba de lazo
2.11.2	Simular señal digital (prueba de lazo digital)
2.11.3	Diagnóstico de degradación del termopar 35
2.11.4	Diagnóstico de seguimiento de temperatura mínima/máxima
2.12 Com	unicación multipunto
2.12.1	Cambio de la dirección de un transmisor
2.13 Uso c	lel transmisor con HART Tri-Loop
2.13.1	Colocar el transmisor en modo burst 40
2.13.2	Establecer el orden de salida de las variables del proceso
2.14 Segu	ridad del transmisor
2.14.1	Opciones de seguridad disponibles 43

Sección 3: Instalación del hardware

3.1	Gene	ralidades
3.2	Mens	sajes de seguridad
3.3	Cons	ideraciones
	3.3.1	Consideraciones generales
	3.3.2	Consideraciones sobre el comisionamiento 46
	3.3.3	Consideraciones sobre la instalación 46
	3.3.4	Consideraciones mecánicas
	3.3.5	Consideraciones eléctricas
	3.3.6	Consideraciones ambientales
3.4	Proce	edimientos de instalación
	3.4.1	Configurar el interruptor de alarma 49
	3.4.2	Montar el transmisor 50
	3.4.3	Instalar el dispositivo 51
	3.4.4	Instalaciones multicanales
	3.4.5	Instalación de la pantalla LCD

Sección 4: Instalación eléctrica

	4.1	Gene	ralidades	. 57
	4.2	Mens	ajes de seguridad	. 57
	4.3	Cable	ado y alimentación del transmisor	. 57
		4.3.1	Conexiones del sensor	. 58
		4.3.2	Alimentación del transmisor	. 60
		4.3.3	Conexión a tierra del transmisor	. 61
		4.3.4	Cableado con un HART Tri-Loop Rosemount 333 (solo HART/4–20 mA)	. 64
Seco	ció	n 5: O	peración y mantenimiento	
	5.1	Gene	ralidades	. 67
	5.2	Mens	ajes de seguridad	. 67
	5.3	Gene	ralidades de calibración	. 68
		5.3.1	Ajuste	. 68
	5.4	Ajuste	e de la entrada del sensor	. 68
		5.4.1	Aplicación: desviación lineal (solución de ajuste de punto único)	. 69
		5.4.2	Aplicación: desviación lineal y corrección de pendientes (ajuste de dos puntos)	. 69
		5.4.3	Recuperar el ajuste de fábrica (ajuste del sensor)	. 70
		5.4.4	Calibrador activo y compensación de EMF	. 71
	5.5	Ajuste	e de la salida analógica	. 72
		5.5.1	Ajuste de la salida analógica o ajuste escalado de la salida analógica	. 72
		5.5.2	Ajuste de salida analógica	. 72
		5.5.3	Realizar un ajuste escalado de la salida	. 73
	5.6	Comb	pinación del transmisor y el sensor	. 73
	5.7	Camb	io de la revisión de HART	. 75
		5.7.1	Menú genérico	. 75
		5.7.2	Comunicador de campo	. 75
		5.7.3	AMS Device Manager	. 76
		5.7.4	LOI	. 76

Sección 6: Solución de problemas

6.1	Gene	ralidades
6.2	Mens	ajes de seguridad
6.3	Salida	a de 4–20 mA/HART
6.4	Mens	ajes de diagnóstico
	6.4.1	Estado de fallo
	6.4.2	Estado de advertencia
	6.4.3	Otros mensajes de la pantalla LCD 82

6.5	I	Devol	ución de materiales	32
Secció	n 7	7: Ce	ertificación de sistemas instrumentados de seguridad (SIS	5)
7.1	(Certif	icación SIS	33
7.2	I	Identi	ficación certificada para seguridad 8	33
7.3	I	Instala	ación	34
7.4	(Config	guración	34
	7.4	4.1	Amortiguación 8	34
	7.4	4.2	Niveles de alarma y de saturación 8	34
7.5	(Opera	ación y mantenimiento	35
	7.5	5.1	Prueba de verificación	35
	7.5	5.2	Prueba de verificación parcial 1 8	35
	7.5	5.3	Prueba de verificación completa 2 8	36
	7.5	5.4	Prueba de verificación completa 3 8	36
	7.5	5.5	Inspección	37
7.6	I	Espec	ificaciones	37
	7.6	6.1	Datos para el índice de falla 8	37
	7.6	6.2	Valores de fallo 8	37
	7.6	6.3	Duración del producto	37

Apéndice A: Datos de referencia

A.1	Certificaciones del producto
A.2	Información para realizar pedidos, especificaciones y planos

Apéndice B: Estructuras de menús y teclas de acceso rápido del comunicador de campo

B.1	Estructuras de menús del comunicador de campo9	1
B.2	Teclas de acceso rápido del comunicador de campo10	13

Apéndice C: Interfaz local del operador (LOI)

C.1	Entrada numérica	. 107
C.2	Entrada de texto	. 108
(C.2.1 Desplazamiento	. 108
C.3	Tiempo de espera	. 110
C.4	Guardar y cancelar	. 110
C.5	Estructura de los menús de la LOI	. 111
C.6	Estructura de menús de la LOI – menú extendido	. 113

Transmisor de temperatura Rosemount[™] 644

	Montaje en carril	Montaje en cabezal	Montaje en cabezal
Revisión del hardware del Rosemount 644	31	2	2
Revisión del dispositivo	7	8	9
Revisión HART®	5	5	7

A PRECAUCIÓN

Leer este manual antes de trabajar con el producto. Para seguridad personal y del sistema y para un funcionamiento óptimo del producto, asegurarse de comprender completamente el contenido antes de instalar, usar o realizar el mantenimiento del producto.

En los Estados Unidos existen dos números telefónicos para obtener ayuda sin costo y un número internacional.

Centro de ayuda al cliente

1-800-999-9307 (7:00 a.m. a 7:00 p.m. CST)

Centro nacional de respuesta

1-800-654-7768 (las 24 horas) Necesidades de servicio de equipo

Internacional

1-(952)-906-8888

Los productos que se describen en este documento NO están diseñados para aplicaciones calificadas como nucleares.

La utilización de productos calificados como no nucleares en aplicaciones que requieren hardware o productos calificados como nucleares puede producir lecturas inexactas.

Para obtener información sobre productos Rosemount calificados como nucleares, ponerse en contacto con un Representante de ventas de Emerson[™].

ADVERTENCIA

Si no se siguen estas recomendaciones de instalación se podría provocar la muerte o lesiones graves.

Asegurarse de que solo personal calificado realiza la instalación. Las explosiones pueden ocasionar lesiones graves o fatales.

- No quitar la tana del cabezal de conevión en entornos evplosivos
- No quitar la tapa del cabezal de conexión en entornos explosivos cuando el circuito esté energizado.
- Antes de conectar HART en un entorno explosivo, asegurarse de que los instrumentos en el lazo estén instalados de acuerdo a procedimientos de cableado de campo no inflamables o intrínsecamente seguros.
- Verificar que el entorno operativo del transmisor sea consistente con las certificaciones apropiadas para áreas clasificadas.
- Todas las tapas del cabezal de conexión deben estar completamente encajadas para cumplir con los requisitos de seguridad antideflagrantes.

Las fugas del proceso pueden causar lesiones graves o fatales.

- No extraer el termopozo cuando esté en funcionamiento.
- Instalar y apretar los termopozos y los sensores antes de aplicar presión.
- Las descargas eléctricas pueden ocasionar lesiones graves o fatales.

Se debe tener extremo cuidado al ponerse en contacto con los conductores y terminales.

Sección 1 Introducción

1.1 Uso de este manual

Este manual está diseñado para ayudar en la instalación, operación y mantenimiento de transmisores de montaje en cabezal, montaje en campo y montaje en riel Rosemount[™] 644 con el protocolo HART[®].

Sección 2: Configuración ofrece instrucciones sobre el comisionamiento y la operación del transmisor HART Rosemount 644. La información explica la manera de configurar las funciones del software y muchos parámetros de configuración en un sistema de gestión de equipos, un comunicador de campo y la opción de indicador de interfaz local del operador.

Sección 3: Instalación del hardware contiene instrucciones de instalación mecánica para el transmisor.

Sección 4: Instalación eléctrica contiene instrucciones de instalación eléctrica para el transmisor.

Sección 5: Operación y mantenimiento contiene técnicas comunes de funcionamiento y mantenimiento para el transmisor.

Sección 6: Solución de problemas proporciona técnicas para solucionar los problemas de funcionamiento más comunes del transmisor.

Sección 7: Certificación de sistemas instrumentados de seguridad (SIS) proporciona información de identificación, instalación, configuración, funcionamiento, mantenimiento e inspección para sistemas instrumentados de seguridad correspondientes al transmisor de temperatura de montaje en cabezal y montaje en campo Rosemount 644.

Apéndice A: Datos de referencia explica procedimientos para acceder a especificaciones, información para realizar pedidos y certificaciones de productos.

Apéndice B: Estructuras de menús y teclas de acceso rápido del comunicador de campo contiene las estructuras de menús y las teclas de acceso rápido del comunicador de campo.

Apéndice C: Interfaz local del operador (LOI) contiene instrucciones para la entrada numérica, entrada de texto, así como la estructura de menús de la LOI y estructura del menú extendido de la LOI.

1.1.1 Generalidades sobre el transmisor

Los transmisores de temperatura de montaje en cabezal y montaje en campo Rosemount 644 de montaje por cabezal aceptan las siguientes características:

- Configuración HART con capacidad de revisión HART seleccionable (revisiones 5 o 7).
- Acepta 1 o 2 entradas de una amplia variedad de tipos de sensor (termorresistencia de 2, 3 y 4 hilos, termopar, mV y ohmios).
- Un transmisor compacto con electrónica completamente encapsulada en silicona protectora y alojada en una carcasa de plástico asegurando una fiabilidad del transmisor a largo plazo.
- Opción de certificación de seguridad (IEC 61508 SIL 2).
- Precisión mejorada opcional y funcionamiento muy estable.
- Pantalla LCD opcional con clasificaciones de temperatura extendidas de -40 a 85 °C.
- Pantalla LCD avanzada opcional con interfaz local del operador (LOI).
- El transmisor de montaje en cabezal Rosemount 644 está disponible con dos materiales de carcasa (aluminio y acero inoxidable) y varias opciones de carcasas que permiten flexibilidad de montaje en una variedad de condiciones ambientales. El transmisor de montaje en campo Rosemount 644 está disponible con carcasa de aluminio.
- Las características especiales del sensor doble incluyen Hot Backup[™], alerta de desviación del sensor, medidas de temperatura primera buena, diferencial y promedio, y cuatro salidas simultáneas de variables de medición además de la señal de salida analógica.
- Entre las características avanzadas adicionales se destacan el diagnóstico de degradación del termopar, que monitorea el estado del termopar, y el seguimiento de la temperatura mínima y máxima del proceso y el transmisor.

El transmisor de temperatura de montaje en carril Rosemount 644 acepta las siguientes características: Protocolo de 4–20 mA/HART (revisión 5).

- Acepta una entrada de sensor de una amplia variedad de tipos de sensor (termorresistencia de 2, 3 y 4 hilos, termopar, mV y ohmios).
- Electrónica completamente encapsulada para asegurar fiabilidad del transmisor a largo plazo.

Consultar la siguiente documentación para conocer una gama de cabezales de conexión compatibles, además de sensores y termopares proporcionados por Emerson.

- <u>Hoja de datos del producto</u> (en inglés): accesorios y sensores de temperatura volumen 1 de Rosemount.
- Hoja de datos del producto: sensores de temperatura y termopozos (métricos) tipo DIN de Rosemount.

Sección 2 Configuración

Generalidades página 3
Mensajes de seguridad página 4
Disponibilidad del sistema página 4
Métodos de configuración página 5
Verificación de la configuración página 9
Configuración básica del transmisor página 1
Configuración de las opciones de sensor doble página 1
Configuración de las salidas del dispositivo página 2
Introducción de la información del dispositivo página 2
Configuración del filtrado de medidas página 3
Diagnóstico y mantenimiento página 3
Comunicación multipunto página 3
Uso del transmisor con HART Tri-Loop página 4

2.1 Generalidades

Esta sección contiene información sobre el comisionamiento y tareas que se deben ejecutar en el banco antes de la instalación. Se proporcionan instrucciones para el comunicador de campo, AMS Device Manager e interfaz local del operador (LOI) para realizar funciones de configuración. Por conveniencia, las secuencias de teclas de acceso rápido del comunicador de campo están etiquetadas "Fast Keys" y se proporcionan menús LOI abreviados para cada función. La LOI solo está disponible en Rosemount[™] 644 de montaje en cabezal y montaje en campo, y las instrucciones de configuración que mencionan la interfaz no corresponden al factor de forma de montaje en carril.

Se tienen disponibles estructuras de menús completas del comunicador de campo y sus secuencias de teclas de acceso rápido en el Apéndice B: Estructuras de menús y teclas de acceso rápido del comunicador de campo. Las estructuras de menús de la interfaz local del operador están disponibles en el Apéndice C: Interfaz local del operador (LOI).

2.2 Mensajes de seguridad

Los procedimientos y las instrucciones que se explican en esta sección pueden exigir medidas de precaución especiales que garanticen la seguridad del personal involucrado. La información que plantea posibles problemas de seguridad se indica con un símbolo de advertencia (\triangle). Consultar los siguientes mensajes de seguridad antes de realizar una operación que vaya precedida por este símbolo.

ADVERTENCIA

Si no se siguen estas recomendaciones de instalación se podría provocar la muerte o lesiones graves.

Asegurarse de que solo personal calificado realiza la instalación.

Las explosiones pueden ocasionar lesiones graves o fatales.

- No quitar la tapa del cabezal de conexión en entornos explosivos cuando el circuito esté energizado.
- Antes de conectar un comunicador de campo en un entorno explosivo, asegúrese de que los instrumentos en el lazo estén instalados de acuerdo con procedimientos de cableado de campo no inflamable o intrínsecamente seguros.
- Verificar que el entorno operativo del transmisor sea consistente con las certificaciones apropiadas para áreas clasificadas.
- Todas las tapas del cabezal de conexión deben estar completamente encajadas para cumplir con los requisitos de seguridad antiexplosiones.

Las fugas del proceso pueden causar lesiones graves o fatales.

- No extraer el termopozo cuando esté en funcionamiento.
- Instalar y apretar los termopozos y los sensores antes de aplicar presión.

Las descargas eléctricas pueden ocasionar lesiones graves o fatales.

Se debe tener extremo cuidado al ponerse en contacto con los conductores y terminales.

2.3 Disponibilidad del sistema

Confirmar la capacidad de revisión del HART®

- Si se usan sistemas de gestión de recursos o de control basados en HART, confirmar la capacidad HART con esos sistemas antes de instalar el transmisor. No todos los sistemas pueden comunicarse con el protocolo HART revisión 7. Este transmisor puede estar configurado para la revisión 5 o 7 de HART.
- Para obtener instrucciones sobre la forma de cambiar la revisión del HART en el transmisor, consultar "Disponibilidad del sistema" en la página 4.

2.3.1 Confirmar que el controlador del dispositivo sea el correcto

- Verificar que los archivos del controlador más recientes del dispositivo estén cargados en los sistemas para garantizar una comunicación apropiada.
- Descargar el controlador más reciente del dispositivo desde <u>Emerson.com/Rosemount</u> o <u>Fieldcomm.org</u>.

Tabla 2-1. Archivos y revisiones del dispositivo Rosemount 644

Fecha del software	Identificar el	entificar el dispositivo Buscar archivos del controlador del dispositivo Revisar las instrucciones		Buscar archivos del controlador del dispositivo		Revisar la funcionalidad
Fecha	Revisión de software NAMUR	Revisión de software HART	Revisión universal de HART ⁽¹⁾	Revisión del dispositivo ⁽²⁾	Documento	Cambios al software ⁽³⁾
			5	8	<u>Manual de referencia</u>	Consultar la Nota
Junio de 2012	1.1.1	01	7	9	del transmisor de temperatura Rosemount 644	al pie 3 para ver la lista de cambios

1. La revisión de software NAMUR se encuentra en la etiqueta de hardware del dispositivo. La revisión del software HART puede leerse con una herramienta de comunicación HART.

2. Los nombres de archivo del controlador de dispositivo utilizan la revisión de dispositivos y las revisiones de DD, p. ej. 10_01. El protocolo HART está diseñado para permitir que las revisiones del controlador del dispositivo anteriores continúen comunicándose con los nuevos dispositivos HART. Para acceder a la nueva funcionalidad, debe descargarse el nuevo controlador del dispositivo. Se recomienda descargar los nuevos archivos del controlador del dispositivo para garantizar una funcionalidad completa.

3. Se pueden seleccionar la revisión 5 y la revisión 7 de HART. Compatible con sensor doble, con certificación de seguridad, diagnósticos avanzados (si se pidió), precisión y estabilidad mejoradas (si se pidió).

2.3.2 Sobretensiones/transitorios

El transmisor resistirá las fluctuaciones eléctricas transitorias del nivel de energía que se presentan en descargas estáticas o fluctuaciones de conmutación inducida. No obstante, las fluctuaciones transitorias de gran energía, como aquellas inducidas en el cableado por la caída de rayos en lugares cercanos, equipo eléctrico pesado o mecanismos de conmutación pueden dañar tanto el transmisor como el sensor. Para proteger los transmisores contra las fluctuaciones transitorias de gran energía, instalar el transmisor en un cabezal de conexión adecuado con el protector contra transitorios integral, opción T1. Para obtener más información, consultar la <u>Hoja de datos del producto</u> de Rosemount 644.

2.4 Métodos de configuración

A PRECAUCIÓN

Configurar los ajustes de hardware del transmisor durante el comisionamiento para evitar exponer la electrónica del transmisor al entorno de la planta después de la instalación.

El transmisor Rosemount 644 se puede configurar antes o después de la instalación. La configuración del transmisor en el banco con un comunicador de campo, AMS Device Manager o una LOI garantiza que todos los transmisores tengan buen funcionamiento antes de la instalación.

El transmisor Rosemount 644 se puede configurar en línea o fuera de línea usando un comunicador de campo, AMS Device Manager o la LOI opcional (montaje en cabezal o montaje en campo). Durante la configuración en línea, el transmisor se conecta a un comunicador de campo. Los datos se introducen en el registro funcional del comunicador y se envían directamente al transmisor.

La configuración fuera de línea consta de datos de configuración almacenados en un comunicador de campo mientras no está conectado a un transmisor. Los datos se almacenan en la memoria no volátil y se pueden descargar al transmisor en otro momento.

2.4.1 Configuración en banco

Para configurar en el banco, el equipo necesario incluye una fuente de alimentación, un multímetro digital (DMM) y un comunicador de campo, AMS Device Manager o una LOI (opción M4).

Conectar el equipo como se muestra en la Figura 2-1. Conectar los conductores del comunicador HART en cualquier punto terminal del lazo de señal. Para garantizar una comunicación HART satisfactoria, debe existir una resistencia mínima de 250 ohmios entre el transmisor y la fuente de alimentación. Conectar los

conductores del comunicador de campo a los clips ubicados detrás de los terminales de alimentación (+,–) en la parte superior del dispositivo. Evitar exponer la electrónica del transmisor al entorno de la planta después de la instalación configurando los puentes del transmisor durante la etapa de comisionamiento en banco.

Figura 2-1. Alimentación del transmisor para la configuración en banco

Rosemount 644 de montaje en carril

A. Fuente de alimentación B. Comunicador de campo

Nota

- El lazo de señal puede estar conectado a tierra en cualquier punto o puede dejarse sin conexión a tierra.
- El comunicador de campo puede estar conectado en cualquier punto terminal del lazo de señal. El lazo de señal debe tener una carga entre 250 y 1100 ohmios para las comunicaciones.
- El par de torsión máximo es de 0,7 N-m (6 pulg.-lb).

2.4.2 Selección de una herramienta de configuración

Comunicador de campo

El comunicador de campo es un dispositivo portátil que intercambia información con el transmisor desde la sala de control, el sitio de instrumentos o cualquier punto de terminación de cableado del lazo. Para facilitar la comunicación, conectar el comunicador de campo, mostrado en este manual, en paralelo con el transmisor (consultar la Figura 2-1). Utilizar los puertos de conexión del lazo en el panel posterior del comunicador de campo. Las conexiones no están polarizadas. No efectuar ninguna conexión al puerto serial o al enchufe del recargador de níquel-cadmio en entornos explosivos. Antes de conectar el comunicador de campo en un entorno explosivo, asegurarse de que los instrumentos del circuito estén instalados conforme a procedimientos de cableado de campo intrínsecamente seguro o no inflamable.

Existen dos interfaces disponibles con el comunicador de campo: tradicionales y del panel de instrumentos. En todos los pasos donde se utiliza un comunicador de campo se utilizarán interfaces del panel de instrumentos. La Figura 2-2 muestra la interfaz del panel de instrumentos del dispositivo. Como se indica en "Disponibilidad del sistema" en la página 4, es crucial descargar los DD más recientes en el comunicador de campo para un funcionamiento óptimo del transmisor.

Para descargar la biblioteca más reciente de DD, visitar Emerson.com/Rosemount.

Encender el comunicador de campo presionando la tecla de encendido/apagado. El comunicador de campo buscará un dispositivo compatible con HART e indicará que se ha realizado la conexión. Si el

comunicador de campo no consigue conectarse, indicará que no se encontró ningún dispositivo. Si ocurre esto, consultar la Sección 6: Solución de problemas.

Figura 2-2. Interfaz de	panel de instrumentos del	comunicador de campo

6 44 Tempe	♥ erature:64	4TT	X
Online			
2 Configure 3 Service To	ools		
	SAVE		

Las estructuras de menús y las teclas de acceso rápido del comunicador de campo están disponibles en Apéndice B: Estructuras de menús y teclas de acceso rápido del comunicador de campo (configuración con AMS Device Manager)

Con un paquete de software de AMS Device Manager, es posible comisionar y configurar instrumentos, monitorear el estatus y las alerta, solucionar problemas desde la sala de control, realizar diagnósticos avanzados, administrar la calibración y documentar automáticamente las actividades con una sola aplicación.

La capacidad de configuración total con AMS Device Manager requiere que se cargue el descriptor de dispositivos (DD) más reciente para este dispositivo. Descargar el DD más reciente en <u>Emerson.com/Rosemount</u> o <u>Fieldcomm.org</u>.

Nota

En todos los pasos indicados en este manual del producto que utilizan AMS Device Manager se supone que se está usando la Versión 11.5.

LOI

La LOI requiere que se pida la opción código M4. Para activar la LOI, pulsar cualquiera de los botones de configuración. Los botones de configuración se encuentran en la pantalla LCD (se debe quitar la tapa de la carcasa para tener acceso a la interfaz). Consultar la Tabla 2-2 para conocer la funcionalidad de los botones de configuración y la Figura 2-3 para ver su ubicación. Al usar la LOI para la configuración, varias funciones requieren múltiples pantallas para una configuración satisfactoria. Los datos introducidos se guardarán en cada pantalla; la LOI indicará esto con la palabra destellante "SAVED" (Guardado) en la pantalla LCD cada vez que se guarden los datos.

Nota

Entrar en el menú de la LOI desactiva efectivamente la capacidad de que otro host o herramienta de configuración escriba en el dispositivo. Asegurarse de que esto sea comunicado al personal necesario antes de usar la LOI para la configuración del dispositivo.

Figura 2-3. Botones de configuración de la LOI

A. Botones de configuración

Tabla 2-2. Funcionamiento del botón de LOI

Botón	ÉXİT MENU? NO YES	ÉXÏT MENU ↓ ↓	
Izquierdo	No	DESPLAZAMIENTO	
Derecho	Sí	INTRO	

Contraseña de la LOI

Se puede ingresar y activar una contraseña de la LOI a fin de evitar la revisión y la modificación de la configuración del dispositivo con la LOI. Esto no evita la configuración con HART o a través del sistema de control. La contraseña de la LOI es un código de cuatro dígitos que el usuario debe configurar. Si se pierde o se olvida la contraseña, la contraseña maestra es "9307". La contraseña de la LOI se puede configurar y activar/ desactivar con comunicación HART mediante un comunicador de campo, AMS Device Manager o la LOI.

Los árboles de menú de la LOI están disponibles en Apéndice C: Interfaz local del operador (LOI).

2.4.3 Ajuste del lazo a manual

Cuando se envían o se solicitan datos que afectarían el lazo o que cambiarían la salida del transmisor, se debe configurar el lazo de la aplicación del proceso a manual. El comunicador de campo, AMS Device Manager o la LOI le pedirá al usuario que configure el lazo a modo manual cuando sea necesario. La confirmación de este mensaje no coloca el lazo en la modalidad manual. **El mensaje sólo es un recordatorio; configurar el lazo en la modalidad manual como una operación separada.**

2.4.4 Modo de fallo

Como parte del funcionamiento normal, cada transmisor monitorea continuamente su propio funcionamiento. Esta rutina automática de diagnósticos es una serie cronometrada de comprobaciones que se repiten continuamente. Si los diagnósticos detectan un fallo de entrada en el sensor o un fallo en la electrónica del transmisor, el transmisor dirige su salida a bajo o alto dependiendo de la posición del interruptor de modo de fallo. Si la temperatura del sensor está fuera de los límites del rango, el transmisor saturará su salida a 3,9 mA para la configuración estándar en el extremo bajo (3,8 mA si está configurado para un funcionamiento en conformidad con NAMUR) y 20,5 mA en el extremo alto (o en conformidad con NAMUR). Estos valores también pueden ser configurados por la fábrica o usando el comunicador de campo. Los valores a los que el transmisor lleva su salida en el modo de fallo dependen de si está configurado para funcionamiento estándar, en conformidad con NAMUR o especial. Consultar la hoja de datos del producto del transmisor de temperatura Rosemount 644 para conocer los parámetros de operación estándar y en conformidad con NAMUR.

2.4.5 Bloqueo del software HART

El bloqueo del software HART evita los cambios a la configuración del transmisor de todos los orígenes; todos los cambios solicitados por el comunicador de campo mediante HART, AMS Device manager o la LOI serán rechazados. El bloqueo HART solo puede ser configurado mediante comunicación HART, y solo está disponible en modo HART Revisión 7. El bloqueo HART se puede activar o desactivar con un comunicador de campo o con AMS Device Manager.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	3, 2, 1

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En Configuración manual, seleccionar la pestaña Seguridad.
- 3. Seleccionar el botón **Bloquear/Desbloquear** en *Bloqueo HART (software)* y seguir las indicaciones en la pantalla.

2.5 Verificación de la configuración

Se recomienda que los diversos parámetros de configuración sean verificados antes de la instalación en el proceso. Los diversos parámetros son detallados para cada herramienta de configuración. Dependiendo de las herramientas de configuración disponibles, seguir los pasos indicados que sean relevantes a cada herramienta.

2.5.1 Comunicador de campo

Los parámetros de configuración indicados en la Tabla 2-3 siguiente son los parámetros básicos que deben ser revisados antes de la instalación de transmisor. Se puede ver una lista completa de parámetros de configuración que pueden ser revisados y configurados usando un comunicador de campo, en el Apéndice B: Estructuras de menús y teclas de acceso rápido del comunicador de campo. Para verificar la configuración, se debe tener instalado el descriptor de dispositivo (DD) Rosemount 644 en el comunicador de campo.

- 1. Verificar la configuración del dispositivo utilizando las secuencias de teclas de acceso rápido de la Tabla 2-3.
 - a. En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido que se indica en la Tabla 2-3.

Tabla 2-3. Secuencias de teclas de acceso rápido del tablero del dispositivo

Función	HART 5	HART 7
Valores de alarma	2, 2, 5, 6	2, 2, 5, 6
Valores de amortiguación	2, 2, 1, 5	2, 2, 1, 6
Valor inferior del rango (LRV)	2, 2, 5, 5, 3	2, 2, 5, 5, 3
Valor superior del rango (URV)	2, 2, 5, 5, 2	2, 2, 5, 5, 2
Variable primaria	2, 2, 5, 5, 1	2, 2, 5, 5, 1
Configuración del sensor 1	2, 1, 1	2, 1, 1
Configuración del sensor 2 ⁽¹⁾	2, 1, 1	2, 1, 1
Etiqueta	2, 2, 7, 1, 1	2, 2, 7, 1, 1
Unidades	2, 2, 1, 5	2, 2, 1, 4

1. Disponible solo si se pidió la opción código (S) o (D).

2.5.2 AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar **Propiedades de configuración** en el menú.
- 2. Navegar en las pestañas para revisar los datos de configuración del transmisor.

2.5.3 LOI

Presionar cualquier botón de configuración para activar la LOI. Seleccionar **VER CONFIGURACIÓN** para revisar los siguientes parámetros. Usar los botones de configuración para navegar a través del menú. Entre los parámetros que deben revisarse antes de la instalación se incluyen:

- Etiqueta
- Configuración del sensor
- Unidades
- Niveles de alarma y de saturación
- Variable primaria
- Valores del rango
- Amortiguación

2.5.4 Revisión de la salida del transmisor

Antes de realizar otra operación en línea del transmisor, revisar los parámetros de salida digital del transmisor Rosemount 644 para asegurar que el transmisor está funcionando adecuadamente y está configurado con las variables del proceso adecuadas.

Revisión y ajuste de las variables de proceso

El menú **"Variables de proceso"** muestra las variables de proceso, incluidas la temperatura del sensor, el porcentaje del rango, la salida analógica y la temperatura del terminal. Estas variables del proceso se actualizan constantemente. La variable primaria predeterminada es el sensor 1. La variable secundaria es la temperatura de terminal del transmisor por defecto.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	3, 2, 1

AMS Device Manager

Hacer clic con el botón derecho en el dispositivo y seleccionar **Herramientas de servicio** del menú. La pestaña *Variables* muestra las siguientes variables de proceso:

• Variables primaria, segunda, tercera y cuarta, además de la salida analógica.

LOI

Para revisar las variables de proceso desde la LOI, el usuario debe configurar primero el indicador para que muestre las variables deseadas (consultar "Configuración de la pantalla LCD" en la página 28). Cuando se hayan seleccionado las variables deseadas del dispositivo, simplemente salir del menú de la LOI y ver los valores alternantes en la pantalla del indicador.

2.6 Configuración básica del transmisor

Para poder funcionar, el transmisor Rosemount 644 debe estar configurado para ciertas variables básicas. En muchos casos, todas estas variables se configuran previamente en la fábrica. Se requerirá la configuración si el transmisor no está configurado o si han de revisarse las variables de configuración.

2.6.1 Asignación de las variables HART

Comunicador de campo

El menú "Correlación de variables" muestra la secuencia de las variables de proceso. Seleccionar la siguiente secuencia para cambiar esta configuración. Las pantallas de configuración de la entrada de sensor individual del transmisor Rosemount 644 permiten seleccionar la variable primaria (VP) y la variable secundaria (VS). Cuando aparece la pantalla Seleccionar VP, se debe seleccionar Snsr 1.

Las pantallas de configuración para la opción de doble sensor del transmisor Rosemount 644 permiten seleccionar la variable primaria (VP), la variable secundaria (VS), la variable terciaria (VT) y la variable cuaternaria (VC). Las opciones de variables son Sensor 1, Sensor 2, Temperatura diferencial, Temperatura promedio, Temperatura del terminal y No se utiliza. La señal analógica de 4–20 mA representa la Variable primaria.

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 8, 6
--	------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar el menú Configurar.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual en la pestaña HART.
- 3. Asignar cada variable individualmente o utilizar el método **Reasignación de variables** para guiar al usuario en el proceso de reasignación.
- 4. Seleccionar **Aplicar** al finalizar.

LOI

Seguir los diagramas de flujo para seleccionar las variables asignadas deseadas. Usar los botones **DESPLAZAMIENTO** e **INTRO** para seleccionar cada variable. Para guardar, seleccionar **GUARDAR** cuando aparezca el mensaje en la pantalla LCD. Consultar la Figura 2-4 en la página 12 para ver un ejemplo de una variable asignada con la interfaz local del operador.

2.6.2 Configuración de sensor(es)

La configuración del sensor incluye el ingreso de información para:

- Tipo de sensor
- Tipo de conexión
- Unidades
- Valores de amortiguación
- Número de serie del sensor
- Compensación de 2 hilos de termorresistencia

Comunicador de campo

El método Configurar sensores guiará al usuario en la configuración de todos los ajustes necesarios asociados con la configuración de un sensor, incluidos:

Para ver una lista completa de tipos de sensor disponibles con el transmisor Rosemount 644 y sus niveles asociados de precisión.

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 1, 1

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En el panel de navegación izquierdo, seleccionar **Configuración manual** y luego la pestaña **Sensor 1** o **Sensor 2**, según lo que se necesite.
- 3. En los menús desplegables en la pantalla, seleccionar individualmente las opciones Tipo de sensor, Conexión, Unidades y el resto de la información relacionada con el sensor según se desee.
- 4. Seleccionar Aplicar al finalizar.

LOI

Consultar la Figura 2-5 para obtener una guía sobre el lugar en que se puede encontrar la opción Configuración del sensor en el menú de la LOI.

Figura 2-5. Configuración de sensores con la LOI

Consultar la con un representante de Emerson[™] para obtener información sobre los sensores de temperatura, los termopozos y los accesorios de montaje disponibles en Emerson.

Compensación de termorresistencia de 2 hilos

La opción Compensación de 2 hilos permite introducir y corregir el valor de resistencias medida de los conductores, lo que ocasiona que el transmisor ajuste su medición de temperatura para el error ocasionado por esta resistencia añadida. Debido a la falta de compensación de los conductores de la termorresistencia, las medidas de temperatura realizadas con una termorresistencia de 2 hilos a menudo son inexactas.

Esta opción se puede configurar como un subconjunto del proceso **Configuración del sensor** en el comunicador de campo, AMS Device Manager y en la LOI.

Para utilizar esta función adecuadamente, realizar los siguientes pasos:

- 1. Medir la resistencia de ambos conductores de la termorresistencia después de instalar la termorresistencia de 2 hilos y el transmisor Rosemount 644.
- 2. Navegar hasta el parámetro Compensación de termorresistencia de 2 hilos:
- 3. Para asegurar un ajuste adecuado, ingresar la resistencia medida total de los conductores de la termorresistencia cuando se solicite en Compensación de termorresistencia de 2 hilos. El transmisor ajustará su medición de temperatura para corregir el error ocasionado por la resistencia de los conductores.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 1, 1
--	---------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- En el panel de navegación izquierdo, seleccionar Configuración manual y luego la pestaña Sensor 1 o Sensor 2, según lo que se necesite. Buscar el campo de texto Compensación de 2 hilos e ingresar el valor.
- 3. Seleccionar Aplicar al finalizar.

2.6.3 Ajuste de las unidades de salida

El parámetro Unidades puede configurarse para una cantidad diferente de parámetros en el transmisor Rosemount 644. Se pueden configurar unidades individuales para:

- Sensor 1
- Sensor 2
- Temperatura de terminal
- Temperatura diferencial
- Temperatura promedio
- Primera temperatura correcta

Cada uno de los parámetros básicos y salidas calculadas de esos valores pueden tener una unidad de medición asociada. Ajustar la salida del transmisor a una de las unidades técnicas siguientes:

- Celsius
- Fahrenheit
- Rankine
- Kelvin
- Ohmios
- Milivoltios

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

	HART 5	HART 7
Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 1, 4	2, 2, 1, 5

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- En el panel de navegación izquierdo, seleccionar Configuración manual. Los campos de unidades de distintas variables están distribuidos en las pestañas Configuración manual; hacer clic en las pestañas y cambiar las unidades deseadas.
- 3. Seleccionar Aplicar al finalizar.

LOI

Consultar la siguiente imagen para encontrar los campos de configuración de Unidades en el menú de la LOI.

Figura 2-6. Configuración de las unidades con la LOI

* Disponible solo si se pidió la opción código (S) o (D).

** Disponible solo si se pidieron los códigos de opción (S) y (DC) o (D) y (DC).

Nota

La lista de opciones disponibles para las unidades después del menú principal depende de los ajustes de configuración del sensor.

2.7

Configuración de las opciones de sensor doble

La configuración del sensor doble incluye las funciones que se pueden usar con un transmisor pedido con entradas de sensor doble. En el transmisor Rosemount 644, estas funciones incluyen:

- Temperatura diferencial
- Temperatura promedio
- Hot Backup[™]y diagnósticos de alerta de desviación del sensor (requiere la opción código DC)
 - Primera temperatura correcta (requiere las opciones S y DC, o bien D y DC)

2.7.1 Configuración de temperatura diferencial

El transmisor Rosemount 644 pedido y configurado para sensor doble puede aceptar dos entradas de temperatura y mostrará la temperatura diferencial a partir de ellas. Usar los siguientes procedimientos para configurar el transmisor para medir la temperatura diferencial.

Nota

En este procedimiento se supone que la temperatura diferencial es una salida calculada del dispositivo pero no la reasigna como la variable primaria. Si se desea que la temperatura diferencial sea la variable primaria del transmisor, consultar "Asignación de las variables HART" en la página 12 para configurarla como VP.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 3, 1
--	------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña Salida calculada, encontrar el cuadro de grupo Temperatura diferencial.
- 4. Seleccionar los ajustes de Unidades y Amortiguación, luego hacer clic en Aplicar al finalizar.

LOI

Para configurar la temperatura diferencial en la LOI, será necesario establecer los valores de los parámetros Unidades y Amortiguación por separado. Consultar las figuras a continuación para saber dónde buscar estos valores en el menú.

* Disponible solo si se pidió la opción código (S) o (D).

** Disponible solo si se pidieron los códigos de opción (S) y (DC) o (D) y (DC).

* Disponible solo si se pidió la opción código (S) o (D).

* * Disponible solo si se pidieron los códigos de opción (S) y (DC) o (D) y (DC).

2.7.2 Configuración de temperatura promedio

El transmisor Rosemount 644 pedido y configurado para sensores dobles puede transmitir y mostrar la temperatura promedio de cualquiera de las dos entradas. Usar los siguientes procedimientos para configurar el transmisor para medir la temperatura promedio:

Nota

En este procedimiento se supone que la temperatura promedio es una salida calculada del dispositivo pero no la reasigna como la variable primaria. Si se desea que la temperatura promedio sea la variable primaria del transmisor, consultar "Asignación de las variables HART" en la página 12 para configurarla como VP.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 3, 3
--	------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña Salida calculada, encontrar el cuadro de grupo Temperatura promedio.
- 4. Seleccionar los ajustes de Unidades y Amortiguación, luego hacer clic en Aplicar al finalizar.

LOI

Para configurar la temperatura promedio en la LOI, será necesario establecer los valores de los parámetros Unidades y Amortiguación por separado. Consultar la Figura 2-9 y la Figura 2-10 para conocer el lugar donde buscar estos valores en el menú.

* Disponible solo si se pidió la opción código (S) o (D).

* * Disponible solo si se pidieron los códigos de opción (S) y (DC) o (D) y (DC).

Figura 2-10. Configuración de la amortiguación de temperatura promedio con la LOI

* Disponible solo si se pidió la opción código (S) o (D).

* * Disponible solo si se pidieron los códigos de opción (S) y (DC) o (D) y (DC).

Nota

Si falla el Sensor 1 y/o el Sensor 2 mientras se configura la VP para temperatura promedio y si no está activada la función Hot Backup, el transmisor pasará a un estado de alarma. Por esta razón, se recomienda que cuando la VP sea Promedio del sensor, se active la función Hot Backup al utilizar sensores duales, o cuando se tomen dos medidas de temperatura en el mismo punto del proceso. Si ocurre un fallo del sensor cuando la función Hot Backup está activada mientras la VP es Promedio del sensor, se pueden producir tres situaciones:

- Si Sensor 1 falla, la temperatura promedio se tomará solo del Sensor 2, el que funciona
- Si Sensor 2 falla, la temperatura promedio se tomará solo del Sensor 1, el que funciona
- Si ambos sensores fallan simultáneamente, el transmisor pasará a un estado de alarma y la variable de estado (mediante HART) indica que tanto el Sensor 1 como el Sensor 2 han fallado

En las dos primeras situaciones, la señal de 4–20 mA no se interrumpe y el estado disponible al sistema de control (mediante HART) especifica cuál sensor ha fallado.

Configuración de Hot Backup 2.7.3

La opción Hot Backup ajusta el transmisor para usar automáticamente el sensor 2 como la entrada primaria en caso de que falle el sensor 1. Con la opción Hot Backup activada, la variable primaria (VP) debe ser Primera Correcta o Promedio. Consultar la "NOTA" directamente arriba para ver detalles sobre el uso de Hot Backup cuando la VP es Promedio.

Los sensores 1 o 2 se pueden asociar como la variable secundaria (VS), terciaria (VT) o cuaternaria (VC). En caso de que la variable primaria (Sensor 1) falle, el transmisor entra en modo Hot Backup y el Sensor 2 se convierte en la VP. La señal de 4–20 mA no se interrumpe, y se tiene disponible un estado para el sistema de control mediante HART, indicando que el Sensor 1 ha fallado. Si se tiene conectada una pantalla LCD, allí se mostrará el estatus del sensor fallido.

Mientras se tiene configurada la opción Hot Backup, si el Sensor 2 falla pero el Sensor 1 aún funciona correctamente, el transmisor continúa transmitiendo la señal de la salida analógica de 4–20 mA de la VP, mientras se tiene disponible un estado al sistema de control mediante HART, indicando que el Sensor 2 ha fallado.

Restablecimiento de Hot Backup

En el modo Hot Backup, si el sensor 1 falla y si se ha iniciado Hot Backup, el transmisor no regresará a Sensor 1 para controlar la salida analógica de 4–20 mA, hasta que el modo Hot Backup sea restablecido activándolo mediante HART, mediante la LOI o apagando brevemente el transmisor.

Comunicador de campo

El comunicador de campo guiará al usuario durante el método para configurar correctamente los elementos necesarios de la opción Hot Backup.

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 1, 5
--	---------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar **Configurar**.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña Diagnósticos, encontrar el cuadro de grupo Hot Backup.
- 4. Seleccionar el botón **Configurar Hot Backup** o **Restablecer Hot Backup**, según la función deseada, y avanzar por los pasos guiados.
- 5. Seleccionar Aplicar al finalizar.

LOI

Para configurar Hot Backup en la LOI, será necesario activar el modo y establecer los valores de la VP. Consultar la Figura 2-11 para saber dónde buscar estos valores en el menú.

Figura 2-11. Configuración de Hot Backup con la LOI

* Disponible solo si se pidió la opción código (S) o (D).

** Disponible solo si se pidieron los códigos de opción (S) y (DC) o (D) y (DC).

Para obtener información sobre el uso de Hot Backup en combinación con HART Tri-Loop™, consultar "Uso del transmisor con HART Tri-Loop" en la página 40.

2.7.4 Configuración de la alerta de desviación del sensor

El comando de alerta de desviación del sensor permite que el transmisor establezca una bandera de advertencia (mediante HART), o que pase a un estado de alarma analógica cuando la diferencia de temperatura entre el sensor 1 y el sensor 2 supere el límite definido por el usuario.

Esta característica es útil al medir la misma temperatura del proceso con dos sensores, idealmente cuando se usan sensores de elemento doble. Cuando el modo Alerta de desviación del sensor está activado, el usuario establece la diferencia máxima permitida, en unidades de ingeniería, entre el sensor 1 y el sensor 2. Si se excede esta diferencia máxima, se establece una bandera de advertencia de 1la 1 alerta de desviación del sensor.

Aunque la salida analógica del transmisor pasa a ADVERTENCIA de manera predeterminada cuando se configura el transmisor para Alerta de desviación del sensor, el usuario también puede especificar que la salida analógica del transmisor pase a un estado de ALARMA cuando se detecte una desviación del sensor.

Nota

Al utilizar la configuración de sensor doble en el transmisor Rosemount 644, este acepta la configuración y el uso simultáneo de Hot Backup y Alerta de desviación del sensor. Si falla un sensor, el transmisor cambia la salida para utilizar el otro sensor en buen estado. Si la diferencia entre las dos lecturas de los sensores rebasa el límite configurado, la salida analógica entrará en alarma indicando la condición de desviación del sensor y Hot Backup mejora la capacidad de diagnóstico del sensor a la vez que se mantiene un elevado nivel de disponibilidad. Consultar el informe FMEDA del transmisor Rosemount 644 para conocer el impacto en la seguridad.

Comunicador de campo

El comunicador de campo guiará al usuario durante el método para configurar correctamente los elementos necesarios de la opción Alerta de desviación del sensor.

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 1, 6
--	---------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar **Configurar**.
- 2. En la pestaña **Diagnóstico**, encontrar el cuadro de grupo **Alerta de desviación del sensor**.
- Seleccionar Activar el Modo y completar los valores de Unidades, Umbral y Amortiguación en los menús desplegables proporcionados, o bien seleccionar el botón Configurar la alerta de desviación del sensor y avanzar por los pasos guiados.
- 4. Seleccionar Aplicar al finalizar.

LOI

Para configurar la alerta de desviación del sensor en la LOI, activar el modo, configurar los valores de PV, Límite de desviación y establecer un valor para Amortiguación de alerta de desviación, todos por separado. Consultar la figura a continuación para saber dónde buscar estos valores en el menú.

* Disponible solo si se pidió la opción código (S) o (D).

* * Disponible solo si se pidieron los códigos de opción (S) y (DC) o (D) y (DC).

Nota

Al activar la opción de alerta de desviación a ADVERTENCIA se establecerá una bandera (mediante comunicación HART) cuando se haya excedido la diferencia máxima aceptable entre el Sensor 1 y el Sensor 2. Para que la señal analógica del transmisor entre en estado de ALARMA cuando se detecte la Alerta de desviación, seleccionar Alarma durante el proceso de configuración.

2.8 Configuración de las salidas del dispositivo

2.8.1 Reajustar el rango del transmisor

Al reajustar el rango del transmisor, se establece el rango de medición a los límites de lecturas esperadas para una determinada aplicación. El ajuste del rango de medición a los límites de las lecturas esperadas aumentará al máximo el rendimiento del transmisor; el transmisor es más exacto cuando funciona dentro del rango de temperatura esperado para la aplicación.

El rango de las lecturas esperadas se define con el Valor inferior del rango (LRV) y el Valor superior del rango (URV). Se pueden restablecer los valores de rango del transmisor tan a menudo como sea necesario para reflejar las condiciones cambiantes del proceso.

Nota

Las funciones de cambio de rango no deben ser confundidas con las funciones de ajuste. Aunque la función de reajuste de rango hace coincidir una entrada de sensor a una salida de 4–20 mA, como en la calibración convencional, este reajuste no afecta la interpretación de la entrada en el transmisor.

Seleccionar uno de los siguientes métodos para reajustar el rango del transmisor.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

	Valor inferior del rango	Valor superior del rango
Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 5, 5, 3	2, 2, 5, 5, 2

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar **Configurar**.
- 2. En el panel de navegación izquierdo, seleccionar **Configuración manual**.
- 3. En la pestaña **Salida analógica**, encontrar el cuadro de grupo Configuración de la variable primaria.
- 4. Cambiar los valores de Valor superior del rango y Valor inferior del rango a los ajustes deseados.
- 5. Seleccionar Aplicar al finalizar.

LOI

Consultar la siguiente imagen para encontrar la ruta de configuración de Valor de rango en la LOI.

2.8.2 Amortiguación

La función Amortiguación cambia el tiempo de respuesta del transmisor para estabilizar las variaciones en las lecturas de rendimiento causadas por cambios rápidos en la entrada. Determinar el ajuste de amortiguación apropiado de acuerdo al tiempo de respuesta necesario, la estabilidad de la señal y otros requisitos de la dinámica del lazo del sistema. El valor de amortiguación predeterminado es de 5,0 segundos y puede restablecerse a cualquier valor entre 1 y 32 segundos.

El valor seleccionado para la amortiguación afecta el tiempo de respuesta del transmisor. Cuando se establece en cero (desactivada), la función de amortiguación está inactiva y la salida del transmisor reacciona a los cambios de la entrada tan rápido como lo permite el algoritmo intermitente del sensor. Si se aumenta el valor de amortiguación, se aumenta el tiempo de respuesta del transmisor.

Con la amortiguación activada, si el cambio en la temperatura está dentro del 0,2 por ciento de los límites del sensor, el transmisor mide el cambio en la entrada cada 500 milisegundos (en el caso de un dispositivo de sensor individual) y transmite los valores de salida de acuerdo con la siguiente relación:

Valor amortiguado =
$$(N - P) \times \left(\frac{2T - U}{2T + U}\right) + P$$

P = valor amortiguado previo

N = nuevo valor del sensor

T = constante de tiempo de amortiguación

U = velocidad de actualización

En el valor al que se establece la constante de tiempo de amortiguación, la salida del transmisor está a 63 por ciento del cambio de entrada y continúa acercándose a la entrada de acuerdo con la ecuación de amortiguación anterior.

Por ejemplo, como se ilustra en la Figura 2-14, si la temperatura sufre un cambio en escalón, dentro del 0,2 por ciento de los límites del sensor, de 100 grados a 110 grados, y la amortiguación está configurada a 5,0 segundos, el transmisor calcula y transmite una nueva lectura cada 500 milisegundos usando la ecuación de amortiguación. A los 5,0 segundos, el transmisor transmite 106,3 grados, o 63 por ciento del cambio de la entrada, y la salida continúa acercándose a la curva de entrada de acuerdo con la ecuación anterior.

Para obtener información acerca de la función de amortiguación cuando el cambio de entrada es mayor que el 0,2 por ciento de los límites del sensor, consultar "Detección de sensor intermitente" en la página 32.

La amortiguación puede aplicarse a varios parámetros del transmisor Rosemount 644. Las variables que pueden amortiguarse son:

- Variable primaria (PV)
- Sensor 1
- Sensor 2
- Temperatura diferencial
- Temperatura promedio
- Primera temperatura correcta

Nota

Las siguientes instrucciones solo corresponden a la amortiguación de la Variable primaria (PV).

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

	HART 5	HART 7
Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 1, 5	2, 2, 1, 6

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar **Configurar**.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña **Sensor 1** encontrar el cuadro de grupo Configuración.
- 4. Cambiar el Valor de amortiguación al valor deseado.
- 5. Seleccionar Aplicar al finalizar.

LOI

Consultar la siguiente figura para encontrar la ruta de configuración de Amortiguación en la LOI.

2.8.3 Configuración de los niveles de alarma y saturación

En funcionamiento normal, el transmisor hará que la salida responda a las mediciones entre los puntos de saturación inferior y superior. Si la temperatura se sale de límites del sensor, o si la salida estaría más allá de los puntos de saturación, la salida estará limitada al punto de saturación asociado.

El transmisor Rosemount 644 ejecuta automática y continuamente rutinas de autodiagnóstico. Si las rutinas de autodiagnóstico detectan un fallo, el transmisor lleva la salida al valor de alarma configurado de acuerdo con la posición del interruptor de alarma. El ajuste de Alarma y Saturación permite ver o cambiar los ajustes de alarma (Alta o Baja) y los valores de saturación.

Los niveles de alarma y saturación del modo de fallo se pueden configurar usando un comunicador de campo, AMS Device Manager y la LOI. Existen las siguientes limitaciones para los niveles personalizados:

- El valor de alarma bajo debe ser menor que el nivel de saturación bajo.
- El valor de alarma alto debe ser mayor que el nivel de saturación alto.
- La alarma y los niveles de saturación deben estar separados al menos por 0,1 mA.

La herramienta de configuración proporcionará un mensaje de error si se viola la regla de configuración.

Consultar la siguiente tabla para ver los niveles de alarma y saturación comunes.

Tabla 2-4. Valores de alarma y saturación Rosemount

Unidades - mA	Mín.	Máx.	Rosemount	Namur
Alarma alta	21	23	21,75	21,0
Alarma baja ⁽¹⁾	3,5	3,75	3,75	3,6
Saturación alta	20,5	22,9 ⁽²⁾	20,5	20,5
Saturación baja ⁽¹⁾	3,6 ⁽³⁾	3,9	3,9	3,8

1. Se requiere una brecha de 0,1 mA entre los valores de alarma baja y saturación baja.

- 2. Los transmisores de montaje en carril tienen una saturación alta máx. de 0,1 mA menos que el valor de alarma alta, con un valor máx. de 0,1 mA menos que el máx. de alarma alta.
- 3. Los transmisores de montaje en carril tienen una saturación baja mín. de 0,1 mA más que el valor de alarma baja, con un mínimo de 0,1 mA más que el mín. de alarma baja.

Nota

Los transmisores configurados a modo HART en multipunto envían toda la información de saturación y alarma digitalmente; las condiciones de saturación y alarma no afectarán la salida analógica.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositiv	2, 2, 5, 6
---	------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña Salida analógica encontrar el cuadro de grupo Niveles de alarma y saturación.
- 4. Ingresar los niveles de Alarma alta, Saturación alta, Saturación baja y Alarma baja con los valores deseados.
- 5. Seleccionar Aplicar al finalizar.

LOI

Consultar la siguiente Figura 2-15 para encontrar la ruta de configuración de los valores de Alarma y Saturación en la LOI.

* Disponible solo si se pidió la opción código (S) o (D).

** Disponible solo si se pidieron los códigos de opción (S) y (DC) o (D) y (DC).

2.8.4 Configuración de la pantalla LCD

El comando de configuración de la pantalla LCD permite personalizar la pantalla LCD para adaptarse a los requerimientos de la aplicación. La pantalla LCD mostrará en forma alterna las opciones seleccionadas; cada opción se mostrará durante tres segundos.

- Sensor 1
- Sensor 2
- Salida analógica
- Variable primaria
- Temperatura promedio
- Primera temperatura correcta
- Temperatura diferencial

- Porcentaje del rango
- Temperatura de terminal
- Mín. y máx. 1
- Mín. y máx. 2
- Mín. y máx. 3
- Mín. y máx. 4

Consultar la Figura 2-16 para ver las diferencias entre las opciones de pantalla LCD y LOI, disponibles con el transmisor Rosemount 644.

Figura 2-16. LOI y pantalla LCD

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo 2, 1, 4

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña **Pantalla** habrá un cuadro de grupo con todas las variables disponibles que se pueden mostrar.
- 4. Marcar y desmarcar las variables deseadas de la pantalla; una casilla marcada indica que la variable se mostrará.
- 5. Seleccionar "Aplicar" al finalizar.
LOI

Consultar la Figura 2-17 para encontrar la ruta de configuración de valor de la pantalla LCD en la LOI.

* Disponible solo si se pidió la opción código (S) o (D).

2.9 Introducción de la información del dispositivo

Se puede tener acceso a las variables de información del transmisor en línea utilizando el comunicador de campo o con otro dispositivo de comunicación adecuado. A continuación se presenta una lista de variables de información del transmisor, incluyendo los identificadores del dispositivo, variables de configuración de fábrica y otra información.

2.9.1 Etiqueta, fecha, descriptor y mensaje

Los parámetros *Etiqueta*, *Fecha*, *Descriptor* y *Mensaje* proporcionan identificación del transmisor en instalaciones grandes. A continuación se proporciona una descripción y un proceso para ingresar estos elementos configurables de información del dispositivo:

La variable **Etiqueta** es la manera más sencilla de identificar y distinguir entre los diferentes transmisores en entornos de transmisores múltiples. Se utiliza para etiquetar los transmisores electrónicamente de acuerdo a los requerimientos de la aplicación. La etiqueta definida se muestra automáticamente cuando un comunicador basados en HART establece contacto con el transmisor durante el encendido. La etiqueta tiene hasta ocho caracteres, y la etiqueta larga (un parámetro introducido con el protocolo HART 6 y 7) aumentó hasta 32 caracteres de longitud. Ninguno de los parámetros afecta a las lecturas de la variable primaria del transmisor, solo son informativos.

El parámetro **Fecha** es una variable definida por el usuario que proporciona un lugar para guardar la fecha de la última revisión de la información de configuración. No afecta el funcionamiento del transmisor ni del comunicador basado en HART.

La variable **Descriptor** proporciona una etiqueta electrónica más larga definida por el usuario para ayudar con la identificación del transmisor más específica que con la etiqueta habitual. El descriptor puede tener hasta 16 caracteres y no afecta al funcionamiento del transmisor ni del comunicador basado en HART.

La variable **Mensaje** proporciona el medio más específico definido por el usuario para identificar transmisores individuales en entornos de transmisores múltiples. Permite utilizar 32 caracteres de información y se almacena con los demás datos de configuración. La variable Mensaje no afecta el funcionamiento del transmisor ni del comunicador basado en HART.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	1,8
--	-----

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar **Configurar**.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña **Dispositivo** se encuentra un cuadro de grupo llamado Identificación; en el cuadro, encontrar los campos **Etiqueta**, **Fecha**, **Descriptor** y **Mensaje** e ingresar los caracteres deseados.
- 4. Seleccionar **Aplicar** al finalizar.

LOI

Consultar la Figura 2-18 para encontrar la ruta de configuración de Etiqueta en la LOI.

2.10 Configuración del filtrado de medidas

2.10.1 Filtro de 50/60 Hz

La función Filtro de 50/60 Hz (también denominado Filtro de voltaje de línea o Filtro de alimentación de CA) establece el filtro electrónico del transmisor para rechazar la frecuencia de la fuente de alimentación de CA en la planta. Se puede elegir el modo 60 Hz o 50 Hz. La configuración predeterminada de fábrica es 50 Hz.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 7, 4, 1
--	---------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar **Configurar**.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña **Dispositivo**, se encuentra un cuadro de grupo llamado **Rechazo de ruido**; en el cuadro **Filtro de alimentación de CA**, seleccionar en el menú desplegable.
- 4. Seleccionar Aplicar al finalizar.

2.10.2 Restablecimiento del dispositivo

La función **Reinicio del procesador** reinicia la electrónica sin apagar el equipo. El transmisor no regresa a la configuración original de fábrica.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	3, 4, 6, 1
--	------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Herramientas de servicio.
- 2. En el panel de navegación izquierdo, seleccionar Mantenimiento.
- 3. En la pestaña Restablecer/Restaurar, seleccionar el botón Reinicio del procesador.
- 4. Seleccionar Aplicar al finalizar.

2.10.3 Detección de sensor intermitente

La opción **Detección del sensor intermitente** (también denominada Filtro de transitorios) está diseñada como protección contra lecturas erráticas de temperatura del proceso ocasionadas por condiciones de sensor abierto intermitente. Una condición de sensor intermitente es una condición de sensor abierto que dura menos de una actualización. En forma predeterminada, el transmisor se envía con la opción Detección del sensor intermitente **activada** y el valor de umbral configurado en 0,2% de los límites del sensor. La opción Detección de sensor intermitente puede **activarse** o **desactivarse**, y el valor del umbral se puede cambiar a cualquier valor entre 0 y 100 por ciento de los límites del sensor con un comunicador de campo.

Cuando la opción Detección de sensor intermitente está **activada**, el transmisor puede eliminar el pulso de salida ocasionado por condiciones de sensor intermitente. La salida del transmisor normalmente seguirá los cambios de temperatura del proceso (T) dentro del valor de umbral. Un valor T mayor que el valor de umbral activará el algoritmo de sensor intermitente. Las verdaderas condiciones de sensor abierto ocasionarán que el transmisor entre en estado de alarma.

El valor de umbral del transmisor Rosemount 644 se debe configurar a un nivel que permita las fluctuaciones de temperatura del proceso en el rango normal; si se establece demasiado alto, el algoritmo no podrá filtrar las condiciones intermitentes; si se establece demasiado bajo, el algoritmo se activará innecesariamente. El valor de umbral predeterminado es de 0,2 por ciento de los límites del sensor.

Cuando la opción Detección de sensor intermitente está **desactivada**, el transmisor sigue todos los cambios de temperatura del proceso, incluso en condiciones de sensor intermitente. (En efecto, el transmisor se comporta como si el valor de umbral se hubiera configurado al 100 por ciento). Se eliminará el retraso de salida provocado por el algoritmo de sensor intermitente.

Comunicador de campo

Los siguientes pasos indican cómo **activar** o **desactivar** la opción Detección de sensor intermitente (o Filtro de transitorios). Cuando el transmisor está conectado a un comunicador de campo, utilizar la secuencia de teclas de acceso rápido y seleccionar **activado** (ajuste normal) o **desactivado**.

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 7, 4, 2
--	---------------

El valor de umbral se puede cambiar respecto al valor predeterminado de 0,2 por ciento. Al poner la función de detección de sensor intermitente en **desactivado** o dejarla en **activado** y aumentar el valor de umbral por encima del predeterminado, no se afecta el tiempo necesario para que el transmisor emita la señal de alarma correcta después de detectar una verdadera condición de sensor abierto. Sin embargo, el transmisor puede emitir brevemente una falsa lectura de temperatura hasta en una actualización en cualquier dirección hasta el valor de umbral (100% de los límites del sensor si la opción

Detección de sensor intermitente está **desactivada**). A menos que se requiera una rápida respuesta, se recomienda dejar la opción **activada** con un umbral de 0,2%.

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña **Dispositivo** se encontrará un cuadro de grupo llamado Rechazo de ruido; en el cuadro **Umbral de filtro de transitorios**, introducir el porcentaje deseado.
- 4. Seleccionar Aplicar al finalizar.

2.10.4 Holdoff de sensor abierto

La opción **Holdoff de sensor abierto**, en el ajuste normal, permite al transmisor 644 ser más robusto bajo condiciones de mucha interferencia electromagnética. Esto se logra cuando el software hace que el transmisor realice una verificación adicional del estado de sensor abierto antes de activar la alarma del transmisor. Si la verificación adicional muestra que la condición de sensor abierto no es válida, el transmisor no entrará en estado de alarma.

Para los usuarios del transmisor Rosemount 644 que deseen una detección de sensor abierto más vigorosa, se puede cambiar la opción Holdoff de sensor abierto a un ajuste rápido donde el transmisor informará acerca de una condición de sensor abierto sin realizar una verificación adicional de si tal condición es válida o no.

Nota

En entornos con nivel de ruido elevado, se recomienda el modo normal.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 7, 3
--	------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la **pestaña Dispositivo** se encontrará un cuadro de grupo llamado Holdoff de sensor abierto. Cambiar el modo a **Normal** o **Rápido**.
- 4. Seleccionar Aplicar al finalizar.

2.11 Diagnóstico y mantenimiento

2.11.1 Realizar una prueba de lazo

La **prueba de lazo** verifica la salida del transmisor, la integridad del lazo y las operaciones de registradores o de dispositivos similares instalados en el lazo. Para iniciar una prueba de lazo, realizar los siguientes procedimientos:

El sistema host puede proporcionar una medida de corriente para la salida HART de 4–20 mA. Si no es así, conectar un medidor de referencia al transmisor conectando el medidor a los terminales de prueba en el bloque de terminales, o conectando en paralelo la alimentación del transmisor a través del medidor en algún punto del lazo.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	3, 5, 1
--	---------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Herramientas de servicio.
- 2. En el panel de navegación izquierdo, seleccionar **Simular**.
- 3. En la pestaña **Simular**, encontrar el botón **Realizar prueba de lazo** en el cuadro de grupo **Verificación de salida analógica**.
- 4. Seguir las instrucciones paso a paso y seleccionar **Aplicar** al finalizar.

LOI

Consultar la Figura 2-19 para encontrar la ruta a la prueba del lazo en el menú de la LOI.

Figura 2-19. Realizar una prueba de lazo con la LOI

2.11.2 Simular señal digital (prueba de lazo digital)

La opción **Simular señal digital** se agrega a la prueba del lazo analógico confirmando que los valores de salida HART están transmitiéndose correctamente. La prueba de lazo digital solo está disponible en la Revisión 7 de HART.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	3, 5, 2
--	---------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Herramientas de servicio.
- 2. En el panel de navegación izquierdo, seleccionar Simular.
- 3. En el cuadro de grupo etiquetado Variables del dispositivo, seleccionar la variable que se va a simular.
 - a. Sensor de temperatura 1
 - b. Temperatura del sensor 2 (solo disponible con la opción S o D)
- 4. Seguir las indicaciones que aparecen en la pantalla para simular el valor digital seleccionado.

LOI

Consultar la Figura 2-20 para encontrar la ruta a Simular señal digital en el menú de la LOI.

2.11.3 Diagnóstico de degradación del termopar

El diagnóstico de degradación del termopar funciona como un indicador de la condición operativa general del termopar e indica si existen cambios importantes en el estatus del termopar o en el lazo del termopar. El transmisor supervisa la resistencia del lazo del termopar para detectar las condiciones de desviación o cambios en la condición del cableado. El transmisor utiliza un valor de referencia y un valor de activación de umbral e informa acerca del estatus sospechoso del termopar de acuerdo con la diferencia entre estos valores. No se pretende que esta función sea una medida precisa del estado del termopar, sino que es un indicador general de la condición operativa del termopar y del lazo del termopar.

El diagnóstico del termopar debe estar activado, conectado y configurado para leer un sensor de tipo termopar. Después de activar el diagnóstico, se calcula un valor de resistencia de referencia. Luego se debe seleccionar un umbral de activación, que puede ser dos, tres o cuatro veces el valor de resistencia

de referencia, o el valor predeterminado de 5000 ohmios. Si la resistencia del lazo del termopar alcanza el nivel de activación de umbral, se genera una alerta de mantenimiento.

A PRECAUCIÓN

El diagnóstico de degradación del termopar supervisa la condición operativa de todo el lazo del termopar, incluyendo el cableado, las terminaciones, las uniones y el sensor mismo. Por lo tanto, es obligatorio que el valor de resistencia de referencia de diagnóstico sea medido con el sensor totalmente instalado y cableado en el proceso, y no en el banco de pruebas.

Nota

El algoritmo de resistencia del termopar no calcula los valores de resistencia mientras el calibrador activo está habilitado.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña Diagnósticos, se encuentra un cuadro de grupo etiquetado como **Diagnósticos del** sensor y del proceso; seleccionar el botón para **Configurar el diagnóstico del termopar**.
- 4. Seguir las indicaciones que aparecen en la pantalla para activar y configurar los valores para el diagnóstico.

Términos de AMS

Resistencia: es la lectura existente de resistencia del lazo del termopar.

Umbral de resistencia excedido: la casilla indica si la resistencia del sensor ha pasado el nivel de activación.

Nivel de umbral: valor de resistencia de umbral para el lazo del termopar. El nivel de activación se puede configurar a 2, 3 o $4 \times$ veces el valor de referencia, o al valor predeterminado de 5000 ohmios. Si la resistencia del lazo del termopar rebasa el nivel de activación, se generará una alerta avisando que se requiere mantenimiento.

Resistencia de referencia: la resistencia del lazo del termopar que se obtiene después de la instalación, o después de restablecer el valor de referencia. El nivel de activación se puede calcular a partir del valor de referencia.

Restablecer resistencia de referencia: ejecuta un método para recalcular el valor de referencia (esto puede tardar varios segundos).

Modo de diagnóstico de TC del sensor 1 o 2: este campo se leerá como Activado o Desactivado para indicar cuando el diagnóstico de degradación del termopar está activado o desactivado para ese sensor.

LOI

Consultar la Figura 2-21 para encontrar la ruta a Diagnóstico de termopar en el menú de la LOI.

2.11.4 Diagnóstico de seguimiento de temperatura mínima/máxima

El seguimiento de temperatura mínima y máxima (seguimiento mín./máx.), cuando está activado, registra las temperaturas mínima y máxima con fecha y hora en transmisores de temperatura Rosemount 644 HART de montaje en cabezal y en campo. Esta opción registra los valores de temperatura del Sensor 1, Sensor 2, diferencial, promedio, primera lectura correcta y terminal. La opción Seguimiento mín./máx. solo registra la temperatura máxima y mínima obtenida desde la última puesta a cero, y no es una función de bitácora.

Para seguir las temperaturas máxima y mínima, se debe activar la función Seguimiento mín./máx. con un comunicador de campo, AMS Device Manager, la LOI u otro comunicador. Mientras está activada, esta función permite restablecer la información en cualquier momento, y todas las variables se pueden poner a cero simultáneamente. Además, cada uno de los valores individuales mínimo y máximo del parámetro puede restablecerse individualmente. Cuando se ha puesto a cero un campo en particular, se sobrescriben los valores anteriores.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 4, 3, 5
--	---------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña Diagnósticos, se encuentra un cuadro de grupo etiquetado como **Diagnósticos del** sensor y del proceso; seleccionar el botón para **Configurar el seguimiento mín/máx**.
- 4. Seguir las indicaciones que aparecen en la pantalla para activar y configurar los ajustes para el diagnóstico.

LOI

Consultar la Figura 2-22 para encontrar la ruta a Configurar mín./máx. en el menú de la LOI.

2.12 Comunicación multipunto

Multipunto hace referencia a la conexión de varios transmisores a una sola línea de transmisión de comunicaciones. La comunicación entre el controlador y los transmisores tiene lugar digitalmente con la salida analógica de los transmisores desactivada.

Muchos transmisores Rosemount se pueden conectar en multipunto. Con el protocolo de comunicaciones HART, se pueden conectar hasta 15 transmisores a un solo par de cables trenzados o sobre líneas telefónicas especializadas.

Un comunicador de campo puede probar, configurar y realizar el formato de un transmisor Rosemount 644 conectado en multipunto, del mismo modo que si estuviera en una instalación estándar de punto a punto. La aplicación de una instalación en multipunto requiere la consideración del índice de actualización necesario desde cada transmisor, la combinación de los modelos de transmisores, y la longitud de la línea de transmisión. Cada transmisor está identificado por una dirección única (1–15) y responde a los comandos definidos en el protocolo HART. Un comunicador HART puede probar, configurar y realizar el formato de un transmisor conectado en multipunto, del mismo modo que si estuviera en una instalación estándar de punto.

Nota

Las conexiones multipunto no son adecuadas para aplicaciones e instalaciones certificadas para seguridad.

Nota

Los transmisores Rosemount 644 son configurados en fábrica a la dirección 0, permitiendo su funcionamiento de la forma estándar de punto a punto con una señal de salida de 4–20 mA. Para activar la comunicación multipunto, se debe cambiar la dirección del transmisor a un número entre 1 y 15. Este cambio desactiva la salida analógica de 4–20 mA, fijándola en 4 mA. También se desactiva la corriente del modo de fallo.

2.12.1 Cambio de la dirección de un transmisor

Para activar la comunicación multipunto, la dirección de sondeo del transmisor debe asignarse a un número de 1 a 15 para HART revisión 5, y de 1 a 63 para HART revisión 7. Cada transmisor de un lazo en multipunto debe tener una dirección de sondeo única.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	1, 2, 1
--	---------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar **Propiedades de configuración** en el menú.
- 2. En modo HART Revisión 5:
 - En la pestaña HART, introducir la dirección de sondeo en el cuadro Dirección de sondeo y hacer clic en Aplicar.
- 3. En modo HART Revisión 7:
 - En la pestaña HART, hacer clic en el botón Cambiar la dirección de sondeo.

2.13 Uso del transmisor con HART Tri-Loop

Para preparar el transmisor Rosemount 644 con la opción de sensor dual para utilizarlo con un HART Tri-Loop Rosemount 333, se debe configurar el transmisor al modo burst y se debe establecer el orden de salida de las variables de proceso. En el modo burst, el transmisor proporciona al HART Tri-Loop información digital para las cuatro variables del proceso. El HART Tri-Loop divide la señal en lazos de 4–20 mA separados hasta para tres de las siguientes opciones:

- Variable primaria (VP)
- Variable secundaria (VS)
- Variable terciaria (VT)
- Variable cuaternaria (VC)

Cuando se utiliza el transmisor Rosemount 644 con la opción de sensor dual en combinación con el HART Tri-Loop, considerar la configuración de las temperaturas diferencial, promedio, primera correcta, las funciones de alerta de desviación del sensor y Hot Backup (si corresponde).

Nota

Los procedimientos deben realizarse cuando los sensores y los transmisores estén conectados, energizados y funcionando correctamente. Además, debe haber un comunicador de campo conectado y en comunicación con el lazo de control. Para conocer el uso del comunicador, consultar "Comunicador de campo" en la página 9.

2.13.1 Colocar el transmisor en modo burst

Para configurar el transmisor a modo burst, seguir los pasos que se indican a continuación con la secuencia de teclas de acceso rápido.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

	HART 5	HART 7
Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 8, 4	2, 2, 8, 5

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar **Configurar**.
- 2. En el panel de navegación izquierdo, seleccionar Configuración manual.
- 3. En la pestaña **HART** encontrar el cuadro de grupo Configuración del modo burst e ingresar la información necesaria.
- 4. Seleccionar Aplicar al finalizar.

2.13.2 Establecer el orden de salida de las variables del proceso

Para establecer el orden de salida de las variables de proceso, seguir los pasos de uno de los métodos descritos en "Asignación de las variables HART" en la página 12.

Nota

Considerar cuidadosamente el orden de salida de las variables del proceso. El HART Tri-Loop se debe configurar para que lea las variables en el mismo orden.

Consideraciones especiales

Para iniciar el funcionamiento de un transmisor Rosemount 644 con la opción de sensor doble y el HART Tri-Loop, considerar la configuración de las temperaturas diferencial, promedio y primera lectura correcta, así como las funciones de alerta de desviación del sensor y Hot Backup (si corresponde).

Medición de la temperatura diferencial

Para habilitar la función de medida de temperatura diferencial de un transmisor 644 de sensor dual en combinación con el HART Tri-Loop, ajustar los puntos extremos del rango del canal correspondiente en un HART Tri-Loop para incluir el cero. Por ejemplo, si la variable secundaria se utiliza para transmitir la temperatura diferencial, configurar el transmisor para tal fin (consultar "Asignación de las variables HART" en la página 12) y ajustar el canal correspondiente del HART Tri-Loop de modo que un punto extremo del rango sea negativo y el otro sea positivo.

Hot Backup

Para habilitar la opción Hot Backup de un transmisor Rosemount 644 con la opción de sensor dual en combinación con el HART Tri-Loop, asegurarse de que las unidades de salida de los sensores sean las mismas que las unidades del HART Tri-Loop. Utilizar cualquier combinación de termorresistencias o termopares, siempre y cuando las unidades de ambos coincidan con las unidades del HART Tri-Loop.

Uso del Tri-Loop para detectar la alerta de desviación del sensor

El transmisor Rosemount 644 de sensor dual establece una bandera de fallo (a través de HART) cuando ocurre un fallo en el sensor. Si se requiere una advertencia analógica, se puede configurar el HART Tri-Loop para que produzca una señal analógica que se pueda ser interpretada por el sistema de control como un fallo del sensor.

Seguir estos pasos para configurar el HART Tri-Loop para transmitir alertas de fallo del sensor.

1. Configurar el mapa de variables del transmisor Rosemount 644 de sensor doble como se muestra:

Variable	Correlación
VP	Sensor 1 o promedio de los sensores
VS	Sensor 2
VT	Temperatura diferencial
VC	Como se desee

- 2. Configurar el canal 1 del HART Tri-Loop como la VT (temperatura diferencial). Si cualquiera de los dos sensores fallara, la salida de temperatura diferencial será +9999 o -9999 (saturación alta o baja), dependiendo de la posición del interruptor del modo de fallo (consultar "Configurar el interruptor de alarma" en la página 49).
- 3. Seleccionar las unidades de temperatura para el canal 1 que coincidan con las unidades de temperatura diferencial del transmisor.
- 4. Especificar un rango para la VT, por ejemplo, −100 a 100 °C. Si el rango es grande, una desviación del sensor de algunos grados representará sólo un pequeño porcentaje del rango. Si el sensor 1 o el sensor 2 fallan, la VT será +9999 (saturación alta) o −9999 (saturación baja). En este ejemplo, cero es el punto medio del rango de VT. Si se fija un ∆T del cero como el límite inferior del rango (4 mA), entonces la salida se podría saturar en bajo nivel si la lectura del sensor 2 excede la lectura del sensor 1. Al poner un cero en el medio del rango, la salida normalmente permanecerá cerca de 12 mA, y se evitará el problema.
- 5. Configurar el SCD de modo que VT < -100 °C o VT > 100 °C indiquen un fallo del sensor y, por ejemplo, VT ≤ -3 °C o VT ≥ 3 °C indiquen una alerta de desviación. Consultar la Figura 2-24.

2.14 Seguridad del transmisor

2.14.1 Opciones de seguridad disponibles

Existen tres métodos de seguridad para utilizar con el transmisor Rosemount 644.

- Interruptor de seguridad de software (protección contra escritura)
- Bloqueo HART
- Contraseña de la LOI

La opción Protección contra escritura permite proteger los datos del transmisor contra cambios a la configuración accidentales o no deseados. Para activar la característica de protección contra escritura, realizar los siguientes procedimientos.

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Protección contra escritura	2, 2, 9, 1
Bloqueo HART	2, 2, 9, 2
Contraseña de la LOI	2, 2, 9, 3

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar el menú **Configurar**.
- 2. En el panel de navegación izquierdo, seleccionar **Configuración manual** y luego la pestaña **Seguridad**.
 - Los tres parámetros se pueden configurar desde esta pantalla.
- 3. Seleccionar **Aplicar** al finalizar.

Sección 3 Instalación del hardware

Generalidades	. página 45
Mensajes de seguridad	. página 46
Consideraciones	. página 46
Procedimientos de instalación	. página 48

Nota

Cada transmisor está marcado con una etiqueta que indica las aprobaciones. Instalar el transmisor de acuerdo a todos los códigos de instalación y aprobaciones y planos de instalación (consultar la <u>Hoja de</u> <u>datos del producto</u>). Verificar que el entorno operativo del transmisor sea consistente con las certificaciones para áreas peligrosas. Una vez que se instale un dispositivo con tipos de aprobación múltiples, no debe reinstalarse usando ninguna otra etiqueta de aprobación diferente. Para asegurar que esto se cumpla, la etiqueta de aprobación debe marcarse permanentemente para distinguir el tipo(s) de aprobaciones usadas.

3.1 Generalidades

La información de esta sección es acerca de las consideraciones de instalación del transmisor de temperatura Rosemount[™] 644 con protocolo HART[®]. Se envía una Guía de instalación rápida con cada transmisor para describir los procedimientos de montaje y de cableado para la instalación inicial. Los planos dimensionales para las configuraciones de montaje del Rosemount 644 se incluyen en la <u>Hoja de datos del producto</u>.

3.2 Mensajes de seguridad

Los procedimientos y las instrucciones que se explican en esta sección pueden exigir medidas de precaución especiales que garanticen la seguridad del personal involucrado. La información que plantea posibles problemas de seguridad se indica con un símbolo de advertencia (\triangle). Consultar los siguientes mensajes de seguridad antes de realizar una operación que vaya precedida por este símbolo.

ADVERTENCIA

Si no se siguen estas recomendaciones de instalación se podría provocar la muerte o lesiones graves. Asegurarse de que solo personal calificado realiza la instalación.

Las explosiones pueden ocasionar lesiones graves o fatales.

- No guitar la tapa del cabezal de conexión en entornos explosivos cuando el circuito esté energizado.
- Antes de conectar un comunicador de campo en un entorno explosivo, asegúrese de que los instrumentos en el lazo estén instalados de acuerdo con procedimientos de cableado de campo no inflamable o intrínsecamente seguros.
- Verificar que el entorno operativo del transmisor sea consistente con las certificaciones apropiadas para áreas clasificadas.
- Todas las tapas del cabezal de conexión deben estar completamente encajadas para cumplir con los requisitos de seguridad antideflagrantes.

Las fugas del proceso pueden causar lesiones graves o fatales.

- No extraer el termopozo cuando esté en funcionamiento.
- Instalar y apretar los termopozos y los sensores antes de aplicar presión.

Las descargas eléctricas pueden ocasionar lesiones graves o fatales.

Se debe tener extremo cuidado al ponerse en contacto con los conductores y terminales.

3.3 Consideraciones

3.3.1 Consideraciones generales

Los sensores eléctricos de temperatura tales como las termorresistencias (RTD) y los pares termoeléctricos producen señales de nivel bajo proporcionales a la temperatura detectada. El modelo 644 Rosemount convierte la señal de nivel bajo del sensor en una señal estándar de 4-20 mA de CC o digital HART que es relativamente insensible a la longitud del conductor y al ruido eléctrico. Esta señal se transmite después a la sala de control por medio de dos hilos.

3.3.2 Consideraciones sobre el comisionamiento

El transmisor se puede comisionar antes o después de su instalación. Puede ser útil comisionarlo en banco, antes de la instalación, para asegurar un funcionamiento adecuado y para familiarizarse con sus funciones. Asegurarse de que los instrumentos del lazo han sido instalados de acuerdo con los procedimientos de cableado de campo intrínsecamente seguro o no inflamable.

3.3.3 Consideraciones sobre la instalación

La precisión de la medición depende de la instalación adecuada del transmisor. Montar el transmisor cerca del proceso y usar cableado mínimo para obtener la mejor precisión. Tener en cuenta la necesidad de acceso fácil, seguridad del personal, calibración práctica in situ y un entorno adecuado para el transmisor. Instalar el transmisor de manera que se minimicen las vibraciones, los impactos y las fluctuaciones de temperatura.

3.3.4 Consideraciones mecánicas

Ubicación

Al seleccionar un lugar y posición de instalación, tener en cuenta la necesidad de acceso al transmisor.

Montaje especial

Se tienen disponibles accesorios de montaje para montar un transmisor Rosemount 644 de montaje en cabezal en un carril DIN, o para montar un transmisor Rosemount 644 Head Mount nuevo en un cabezal de conexión roscada del sensor existente (opción código anterior L1).

3.3.5 Consideraciones eléctricas

Es necesaria una instalación eléctrica adecuada para evitar errores debido a la resistencia de los conductores y al ruido eléctrico. A fin de obtener los mejores resultados en entornos de ruido eléctrico debe utilizarse cables apantallados.

Hacer las conexiones de cableado a través de la entrada para cables en el lado de la carcasa. Asegurarse de dejar espacio libre suficiente para la extracción de la tapa.

3.3.6 Consideraciones ambientales

El módulo de la electrónica del transmisor está sellado permanentemente dentro de una carcasa de plástico, resistiendo a la humedad y a daños corrosivos. Verificar que la atmósfera funcional del transmisor sea consistente con las certificaciones apropiadas para lugares peligrosos.

Efectos de la temperatura

El transmisor funcionará según especificaciones si las temperaturas ambientales son de entre – 40 °C y 85 °C (-40 y 185 °F). El calor procedente del proceso se transfiere del termopozo a la carcasa del transmisor. Si la temperatura esperada del proceso se aproxima o es superior a los límites de las especificaciones, considerar el uso de un aislante térmico adicional, una boquilla de extensión o una configuración de montaje remoto para aislar el transmisor con respecto al proceso.

La Figura 3-1 proporciona un ejemplo de la relación entre el aumento de temperatura de la carcasa del transmisor y la longitud de la extensión.

Figura 3-1. Aumento de la temperatura del cabezal de conexión vs. longitud de la extensión del transmisor de montaje en cabezal

Ejemplo

El aumento máximo permisible de la temperatura de la carcasa (T) se puede calcular restando la temperatura ambiental máxima (A) de la temperatura ambiental del transmisor según el límite de especificación (S). Por ejemplo, si A = 40 °C.

Para una temperatura de proceso de 540 °C (1004 °F), una longitud de extensión de 91,4 mm (3,6 pulg.) produce un aumento de la temperatura de la carcasa (R) de 22 °C (72 °F), proporcionando un margen de seguridad de 23 °C (73 °F). Una longitud de extensión de 152,4 mm (6,0 pulg.) (R = 10 °C [50 °F]) ofrece un mayor margen de seguridad (35 °C [95 °F]) y reduce los errores por efecto de la temperatura, pero probablemente será necesario un soporte adicional del transmisor. Adaptar los requerimientos de aplicaciones individuales a lo largo de esta escala. Si se utiliza un termopozo con aislante térmico, tal vez se reduzca la longitud de la extensión según la longitud del aislante.

3.4 Procedimientos de instalación

3.4.1 Configurar el interruptor de alarma

Asegurarse de que el interruptor de alarma esté en la posición deseada antes de poner el dispositivo en funcionamiento a fin de asegurar un funcionamiento correcto en caso de que ocurra un fallo.

Sin pantalla LCD

- 1. Colocar el lazo en manual (si corresponde) y desconectar la alimentación.
- 2. Extraer la tapa de la carcasa.
- 3. Poner el interruptor de alarma físico en la posición deseada. **H** indica Alta, **L** indica Baja. Luego volver a colocar la tapa de la carcasa. Consultar la Figura 3-3 para ver la ubicación del interruptor de alarma.
- 4. Energizar y establecer el lazo en control automático.

Figura 3-3. Ubicación del interruptor de fallo

Transmisor Rosemount 644 Rosemount 644 de montaje en campo

A. Interruptor de alarma

Nota

Si se utiliza una pantalla LCD o una LOI, en primer lugar retirar la pantalla desmontándola desde la parte superior del dispositivo; colocar el interruptor en la ubicación deseada y volver a colocar la pantalla LCD. Consultar la Figura 3-4 para conocer la orientación correcta de la pantalla.

Figura 3-4. Conexión de la pantalla

3.4.2 Montar el transmisor

Montar el transmisor en un punto alto en el tramo del conducto de cables para evitar que entre humedad a la carcasa del transmisor.

El Rosemount 644 de montaje en cabezal se instala:

- En un cabezal de conexión o en un cabezal universal directamente en un conjunto de sensor.
- Independiente de un conjunto de sensor usando un cabezal universal.
- En un carril DIN, con una presilla de montaje.

El Rosemount 644 de montaje en campo se instala en una carcasa de montaje en campo, directamente montado en un sensor o independiente de un conjunto de sensor, con un soporte opcional.

El Rosemount 644 de montaje en carril se monta directamente en una pared o en un carril DIN.

Kit de accesorios para montar un Rosemount 644 de montaje en cabezal en un carril DIN

Para conectar un transmisor de montaje en cabezal en un carril DIN, montar el juego de montaje adecuado (número de pieza 00644-5301-0010) al transmisor, como se muestra en la Figura 3-5. Seguir el procedimiento en "Instalación del transmisor de montaje en el campo con sensor roscado".

Figura 3-5. Montaje del hardware de la presilla para carril en un transmisor 644 Rosemount

Carril G (asimétrico)

Carril Top Hat (simétrico)

Nota: El juego (número de pieza 00644-5301-0010) incluye tornillería de montaje y ambos tipos de juegos de carriles.

A. Accesorios de montaje B. Transmisor C. Presilla para carril

3.4.3 Instalar el dispositivo

Transmisor de montaje en cabezal con instalación de sensor tipo placa DIN

- 1. Acoplar el termopozo a la tubería o a la pared del recipiente del proceso. Instalar y apretar el termopozo antes de aplicar presión al proceso.
 - 2. Verificar la posición del interruptor del modo de fallo del transmisor.
 - 3. Montar el transmisor en el sensor⁽¹⁾. Pasar los tornillos de montaje del transmisor a través de la placa de montaje del sensor.
 - 4. Conectar los cables del sensor al transmisor (consultar "Cableado y alimentación del transmisor" en la página 57).
 - 5. Insertar el conjunto del sensor y el transmisor en el cabezal de conexión. Enroscar el tornillo de montaje del transmisor en los agujeros de montaje del cabezal de conexión. Montar la extensión al cabezal de conexión apretando las conexiones roscadas de la extensión a la carcasa. Introducir el conjunto en el termopozo y apretar las conexiones roscadas.
 - 6. Si se utiliza un prensaestopas para el cableado de alimentación, fijarlo adecuadamente a una entrada de cables de la carcasa.
- 1, Si se usa un sensor tipo roscado con un cabezal de conexión, consultar los pasos 1–6 en "Instalación del transmisor de montaje en cabezal con sensor roscado" en la página 52.

- 7. Introducir los conductores del cable apantallado en el cabezal de conexión a través de la entrada de cables.
- 8. Conectar los conductores del cable de alimentación apantallado a los terminales de alimentación del transmisor. Evitar el contacto con los conductores y las conexiones del sensor. Conectar y apretar el prensaestopas del cable.
- 9. Instalar y apretar la tapa del cabezal de conexión. Las tapas de las carcasas deben estar completamente encajadas para cumplir con los requisitos de equipo antideflagrante.

A. Cubierta de la cabeza de conexión B. Cabeza de conexión C. Termopozo D. Transmisor Rosemount 644 E. Sensor de montaje integral con conductores flotantes F. Extensión

Instalación del transmisor de montaje en cabezal con sensor roscado

- 1. Acoplar el termopozo a la tubería o a la pared del recipiente del proceso. Instalar y apretar los termopozos antes de aplicar presión al proceso.
 - 2. Acoplar al termopozo los adaptadores y las boquillas de extensión necesarios. Sellar las roscas de la boquilla y del adaptador con cinta de silicona.
 - 3. Enroscar el sensor en el termopozo. Si es necesario, instalar sellos de drenaje, para condiciones físicas fuertes o para satisfacer los requisitos de los códigos normativos.
 - 4. Verificar que el interruptor de modo de fallo del transmisor esté en la posición deseada.
 - 5. Para verificar que la instalación de la protección contra transitorios integrada sea correcta (opción código T1) en el dispositivo Rosemount 644, confirmar que se hayan completado los siguientes pasos:
 - a. Asegurarse de que la unidad de protección contra transitorios esté conectada firmemente en el conjunto del soporte del transmisor.
 - b. Asegurarse de que los hilos de alimentación del protector contra transitorios estén asegurados adecuadamente debajo de los tornillos del terminal de alimentación del transmisor.
 - c. Verificar que el conductor de tierra del protector contra transitorios esté conectado firmemente al tornillo de conexión a tierra interno que se encuentra en el cabezal universal.

Nota

La protección contra transientes requiere el uso de una carcasa con un diámetro mínimo de 89 mm (3,5 pulg.).

- 6. Tirar de los conductores del cableado del sensor a través del cabezal universal y del transmisor. Montar el transmisor en el cabezal universal; para ello, enroscar los tornillos de montaje del transmisor en los orificios de montaje del cabezal universal.
- 7. Sellar las roscas del adaptador con sellador de roscas.
- 8. Tirar de los conductores del cableado de campo a través del conducto, hacia el cabezal universal. Conectar los cables de alimentación y del sensor al transmisor (consultar "Cableado y alimentación del transmisor" en la página 57). Evitar el contacto con otros terminales.

9. Instalar y apretar la tapa del cabezal universal. Las tapas de las carcasas deben estar completamente encajadas para cumplir con los requisitos de equipo antideflagrante.

Instalación del transmisor de montaje en el campo con sensor roscado

- 1. Acoplar el termopozo a la tubería o a la pared del recipiente del proceso. Instalar y apretar los termopozos antes de aplicar presión al proceso.
 - 2. Acoplar al termopozo los adaptadores y las boquillas de extensión necesarios.
 - 3. Sellar las roscas de la boquilla y del adaptador con cinta de silicona.
 - 4. Enroscar el sensor en el termopozo. Si es necesario, instalar sellos de drenaje, para condiciones físicas fuertes o para satisfacer los requisitos de los códigos normativos.
 - 5. Verificar que el interruptor de modo de fallo del transmisor esté en la posición deseada.
 - 6. Montar el conjunto transmisor/sensor en el termopozo, o realizar un montaje remoto si se lo desea.
 - 7. Sellar las roscas del adaptador con cinta de silicona.
 - 8. Pasar los conductores del cableado de campo a través del conducto en dirección de la carcasa de montaje en el campo. Cablear los hilos del sensor y de alimentación en el transmisor. Evitar el contacto con otros terminales.
- 9. Instalar y ajustar las tapas de los dos compartimentos. Las tapas de las carcasas deben estar completamente encajadas para cumplir con los requisitos de equipo antideflagrante.

- B. Carcasa para montaje en campo
- C. Sensor roscado

C. Sensor roscado

E. Termopozo roscado

Sensor y transmisor de montaje en carril

- 1. Acoplar el transmisor a un carril o panel adecuado.
 - 2. Acoplar el termopozo a la tubería o a la pared del recipiente del proceso. Antes de aplicar presión, instalar y apretar el termopozo conforme a las normas de la planta.
 - 3. Conectar el sensor al cabezal de conexión y montar el conjunto entero en el termopozo.
 - 4. Acoplar y conectar el número suficiente de tramos de cable conductor del sensor, desde el cabezal de conexión hasta el bloque de terminales del sensor.
- 1. Apretar la tapa de conexión del cabezal. Las tapas de las carcasas deben estar completamente encajadas para cumplir con los requisitos de equipo antideflagrante.
 - 6. Llevar los cables conductores del sensor desde el conjunto de este hasta el transmisor.
 - 7. Verificar el interruptor del modo de fallo del transmisor.
- 1. 8. Conectar los cables del sensor al transmisor.

D. Cabezal de conexión E. Extensión estándar F. Termopozo roscado

C. Sensor de montaje integral con bloque de terminales

- Transmisor de montaje en carril con sensor roscado
- 1. Acoplar el transmisor a un carril o panel adecuado.
 - 2. Acoplar el termopozo a la tubería o a la pared del recipiente del proceso. Instalar y apretar los termopozos antes de aplicar presión.
 - 3. Acoplar las boquillas de extensión y adaptadores necesarios. Sellar las roscas de la boquilla y del adaptador con sellador de roscas.
 - 4. Enroscar el sensor en el termopozo. Si es necesario, instalar sellos de drenaje, para condiciones físicas fuertes o para satisfacer los requisitos de los códigos normativos.
 - 5. Atornillar el cabezal de conexión en el sensor.
 - 6. Conectar los hilos conductores del sensor a los terminales del cabezal de conexión.
 - 7. Conectar los cables conductores del sensor adicionales del cabezal de conexión al transmisor.
- 8. Acoplar y apretar la tapa del cabezal de conexión. Las tapas de las carcasas deben estar completamente encajadas para cumplir con los requisitos de equipo antideflagrante.
 - 9. Fijar el interruptor del modo de fallo del transmisor.

3.4.4 Instalaciones multicanales

En una instalación HART, se pueden conectar varios transmisores a una fuente de alimentación principal individual, como se muestra en la Figura 3-6. En este caso, el sistema puede ponerse a tierra solamente en el terminal de fuente de alimentación negativa. En las instalaciones de canales múltiples, donde varios transmisores dependen de una sola fuente de alimentación y la pérdida de todos los transmisores ocasionaría problemas operativos, considerar el uso de una fuente de alimentación ininterrumpida o una batería de respaldo. Los diodos mostrados en la Figura 3-6 evitan cargas o descargas no deseadas de la batería de respaldo.

Entre 250 Ω y 1100 Ω si no hay resistencia de carga.

A. Transmisor n.° 1 B. Transmisor n.° 2 C. R_{Cable} D. Lectura o controlador n.° 1 E. Lectura o controlador n.° 2 F. Batería de reserva G. A transmisores adicionales H. Fuente de alimentación de CC

3.4.5 Instalación de la pantalla LCD

La pantalla LCD ofrece indicación local de la salida del transmisor y mensajes de diagnóstico abreviados que controlan la operación del transmisor. Los transmisores pedidos con pantalla LCD se envían con la pantalla instalada. Se puede realizar la instalación posventa de la pantalla. Una instalación postventa requiere el juego del medidor, que incluye:

- Conjunto de la pantalla LCD (incluye la pantalla LCD, el separador de la pantalla y dos tornillos)
- Tapa del medidor, con la junta tórica en su lugar

Usar el siguiente procedimiento para instalar el medidor.

- 1. Si el transmisor se instala en un lazo, asegurar el lazo y desconectar la alimentación. Si el transmisor se instala en una carcasa, extraer la tapa de la carcasa.
- 2. Decidir la orientación del medidor (el medidor puede girarse en incrementos de 90 grados). Para cambiar la orientación del medidor, extraer los tornillos localizados por encima y por debajo de la pantalla. Levantar el medidor del separador del medidor. Girar la parte superior de la pantalla y volver a introducirla en la ubicación que proporcione la visión deseada.
- 3. Acoplar el medidor al separador del medidor usando los tornillos. Si el medidor se gira 90 grados de su posición original, será necesario extraer los tornillos de sus orificios originales y reinsertarlos en los orificios adyacentes para tornillos.
- 4. Alinear el conector con el casquillo de clavijas y empujar el medidor dentro del transmisor hasta que se ajuste en su lugar.
- 5. Colocar la tapa del medidor. La tapa debe estar completamente encajada para cumplir con los requisitos de equipo antideflagrante.
- 6. Usar un comunicador de campo o la herramienta de AMS Device Manager para configurar el medidor y obtener la visualización deseada.

Nota

Respetar los siguientes límites de temperatura de la pantalla LCD: Funcionamiento: $-40 a 80 \degree C (-40 a 175 \degree F)$ Almacenamiento: $-40 a 85 \degree C (0 a 185 \degree F)$

Sección 4 Instalación eléctrica

Generalidades	página 57
Mensajes de seguridad	página 57
Cableado y alimentación del transmisor	página 57

4.1 Generalidades

La información de esta sección es acerca de las consideraciones de instalación del transmisor de temperatura Rosemount[™] 644. Se envía un guía de inicio rápido con todos los transmisores para describir los procedimientos de montaje, cableado e instalación de hardware básica para la instalación inicial.

4.2 Mensajes de seguridad

Los procedimientos y las instrucciones que se explican en esta sección pueden exigir medidas de precaución especiales que garanticen la seguridad del personal involucrado. La información que plantea posibles problemas de seguridad se indica con un símbolo de advertencia ($\underline{\Lambda}$). Consultar los siguientes mensajes de seguridad antes de realizar una operación que vaya precedida por este símbolo.

ADVERTENCIA

Las explosiones pueden ocasionar lesiones graves o fatales.

- La instalación de este transmisor en un entorno explosivo debe realizarse de acuerdo con los códigos, las normas y las prácticas locales, nacionales e internacionales vigentes. Revisar la sección de certificaciones de este manual para conocer las restricciones existentes asociadas con una instalación segura.
- En una instalación antideflagrante y/o incombustible, no se deben quitar las tapas del transmisor mientras la unidad está conectada a alimentación eléctrica.

Las fugas del proceso pueden ocasionar lesiones o la muerte.

Instalar y asegurar los conectores del proceso antes de aplicar presión.

Las descargas eléctricas pueden provocar lesiones graves o fatales.

Evitar el contacto con los conductores y terminales. Los cables conductores pueden contener corriente de alto voltaje y ocasionar descargas eléctricas.

4.3 Cableado y alimentación del transmisor

Toda la alimentación al transmisor se suministra mediante un circuito de señalización. Utilizar hilos de cobre ordinario de suficiente tamaño para asegurar que el voltaje a través de los terminales de alimentación del transmisor no caiga por debajo de 12,0 V CC.

Si el sensor se instala en un medio de alta tensión y ocurre un error de instalación o una condición de fallo, los conductores del sensor y los terminales del transmisor podrían conducir voltajes letales. Se debe tener extremo cuidado al ponerse en contacto con los conductores y terminales.

Nota

No aplicar alta tensión (por ejemplo, tensión de línea de CA) a las terminales del transmisor. Una tensión alta anormal puede dañar la unidad. (Los terminales de alimentación del sensor y del transmisor tienen una especificación de 42,4 V CC. Un voltaje constante de 42,4 voltios en los terminales del sensor puede dañar el equipo).

Para instalaciones HART[®] multicanal, consultar la información anterior. El transmisor aceptará entradas de una variedad de tipos de termorresistencias y termopares. Consultar la Figura 2-6 en la página 15 cuando se realicen conexiones de sensores.

El diagrama de cableado del sensor está ubicado en la etiqueta superior del dispositivo, debajo de los tornillos de terminal. Consultar la Figura 4-1 y la Figura 4-2 para ver dónde encontrar y cómo conectar correctamente todos los tipos de sensor al transmisor Rosemount 644.

Figura 4-1. Ubicación del diagrama de cableado

4.3.1 Conexiones del sensor

El transmisor Rosemount 644 es compatible con varios tipos de sensores de termorresistencia y termopar. La Figura 4-2 muestra las conexiones de entrada correctas a los terminales del sensor en el transmisor. Para asegurar unas conexiones de sensor apropiadas, sujetar los hilos conductores del sensor en los terminales cautivos apropiados y apretar los tornillos.

Figura 4-2. Diagramas de cableado del sensor

*Emerson™ proporciona sensores de cuatro hilos para todas las termorresistencias de elemento individual.

Se pueden usar las termorresistencias en configuraciones de 3 hilos si se dejan los hilos que no sean necesarios desconectados y aislados con cinta aislante

Entradas de termopar y milivoltios

El termopar se puede conectar directamente al transmisor. Usar el cable de extensión del termopar apropiado si se monta el transmisor remotamente al sensor. Realizar las conexiones de entradas de milivoltios con conductor de cobre. Utilizar hilos blindados para los tramos largos.

RTD o entradas de ohmnios

Los transmisores aceptan una variedad de configuraciones de termorresistencia, incluidas las de 2 hilos, 3 hilos o 4 hilos. Si el transmisor está montado remotamente desde una termorresistencia de 3 o 4 hilos, funcionará dentro de las especificaciones, sin recalibración, para resistencias de hilos conductores de hasta 60 ohmios por conductor (equivalente a 6000 pies de hilos de 20 AWG). En este caso, los conductores entre las termorresistencias y el transmisor deben estar blindados. Si se utilizan solamente dos conductores, ambos conductores de termorresistencia están en serie con el elemento del sensor, por lo que pueden ocurrir errores significativos si las longitudes de los conductores exceden tres pies del conductor de 20 AWG (aproximadamente 0,05 °C/pie). Para tramos más largos, conectar un tercer o cuarto conductor como se ha descrito anteriormente.

Efecto de la resistencia de los conductores del sensor (entrada de termorresistencia)

Cuando se use una termorresistencia de 4 hilos, el efecto de la resistencia de los conductores se elimina y no afecta a la precisión. Sin embargo, un sensor de 3 hilos no eliminará totalmente el error de resistencia de los conductores porque no puede compensar los desequilibrios de resistencia entre los cables. Al usar el mismo tipo de cable en los tres conductores, una instalación de termorresistencia de 3 hilos será lo más exacta posible. Un sensor de 2 hilos producirá el mayor error debido a que añade directamente la resistencia del conductor a la resistencia del sensor. Para termorresistencias de 2 y 3 hilos, se induce un error adicional de resistencia de los cables con las variaciones de temperatura ambiental. La tabla y los ejemplos que se muestran a continuación ayudan a cuantificar estos errores.

Nota

Para transmisores HART, no se recomienda utilizar dos termopares conectados a tierra con un transmisor Rosemount 644 de sensor doble. Para aplicaciones en las que se desea utilizar dos termopares, conectar dos termopares no conectados a tierra, uno conectado a tierra y uno no conectado a tierra o un termopar de elemento doble.

4.3.2 Alimentación del transmisor

- 1. Se requiere un suministro de alimentación externo para hacer funcionar el transmisor.
- 2. Quitar la tapa de la carcasa (si corresponde).
- 3. Conectar el conductor de alimentación positivo al terminal "+". Conectar el conductor de alimentación negativo al terminal "-".
 - Si se utiliza una protección contra transitorios, los hilos de alimentación ahora se conectarán en la parte superior de la unidad de protección contra transitorios. Consultar la etiqueta del protector contra transitorios para ver las conexiones de los terminales "+" y "-".
- 4. Apretar los tornillos de los terminales. Al apretar los cables del sensor y los de alimentación, el par de fuerzas máximo es de 0,73 Nm (6,5 pulg.-lb).
- 5. Volver a colocar y ajustar la tapa (si corresponde).
- 6. Suministrar alimentación (12–42 V CC).

Septiembre de 2018

Figura 4-3. Alimentación del transmisor para la configuración en banco

Rosemount 644 de montaje en cabezal

B. Comunicador de campo

Nota

- El lazo de señal se puede conectado a tierra en cualquier punto o puede dejarse sin conexión a tierra.
- El comunicador de campo puede estar conectado en cualquier punto terminal del lazo de señal. El lazo de señal debe tener una carga entre 250 y 1100 ohmios para las comunicaciones.
- El par de torsión máximo es de 0/7 N-m (6 pulg.-lb).

Limitación de carga

La alimentación necesaria a través de los terminales de alimentación del transmisor es de 12 a 42,4 V CC (los terminales de alimentación tienen una especificación de hasta 42,4 V CC). Para impedir que se dañe el transmisor, no permitir que el voltaje de los terminales descienda por debajo de 12,0 V CC mientras se cambian los parámetros de configuración.

4.3.3 Conexión a tierra del transmisor

Pantalla del sensor

Las corrientes de los conductores inducidas por interferencia electromagnética pueden reducirse mediante la pantalla. La pantalla conduce la corriente a tierra alejándola de los conductores y de la electrónica. Si los extremos de los hilos de las pantallas se conectan a tierra adecuadamente, sólo una pequeña cantidad de corriente entrará en el transmisor. Si los extremos de la pantalla se dejan sin conectar a tierra, se crea una tensión entre la pantalla y la carcasa del transmisor y también entre la pantalla y tierra en el extremo del elemento. Tal vez el transmisor no sea capaz de compensar esta tensión, ocasionando que se pierda la comunicación o que se active una alarma. En lugar de que la pantalla lleve las corrientes lejos del transmisor, estas fluirán a través de los conductores del sensor hacia el circuito del transmisor donde harán interferencia con el funcionamiento del circuito.

Recomendaciones relativas a la pantalla

A continuación se presentan procedimientos recomendados en la norma API 552 (Estándar de transmisión) sección 20.7, y en pruebas de laboratorio y en campo. Si se proporciona más de una recomendación para un tipo de sensor, comenzar con la primera técnica mostrada o con la técnica que se recomienda para el establecimiento en los planos de instalación. Si al seguir la técnica recomendada no se eliminan las alarmas del transmisor, intentar con otra técnica. Si al seguir todas las técnicas recomendadas no se eliminan ni se evitan las alarmas del transmisor debido a la presencia de una elevada interferencia electromagnética, contacta con un representante de Emerson.

Para garantizar una correcta conexión a tierra, es importante que la pantalla del cable del instrumento sea:

- Cortada cerca de la carcasa del transmisor y aislada para que no haga contacto con la carcasa
- Conectada a la siguiente pantalla si se pasa el cable a través de una caja de conexiones
- Conectada a una buena tierra en el extremo de la fuente de alimentación

Termopar sin conexión a tierra, mV y entradas para RTD/ohmios

La instalación para cada proceso requiere diferentes conexiones a tierra. Usar las opciones de conexión a tierra recomendadas en las instalaciones para el tipo de sensor especificado, o comenzar con la **Opción 1**: de conexión a tierra (la más habitual).

Opción 1

- 1. Conectar la pantalla del cableado del sensor a la carcasa del transmisor.
- 2. Asegurarse de que la pantalla del sensor esté eléctricamente aislada respecto de los accesorios circundantes que pudieran estar conectados a tierra.
- 3. Conectar a tierra la pantalla del cableado de señal en el extremo de la fuente de alimentación.

- A. Cables del sensor
- B. Transmisor
- C. Punto de conexión a tierra del blindaje

Opción 2

- 1. Conectar la pantalla del cableado de señal a la pantalla del cableado del sensor.
- 2. Asegurarse de que los dos blindajes estén atados entre sí y que estén aislados eléctricamente de la carcasa del transmisor.
- 3. Conectar la pantalla a tierra solamente en el extremo de la fuente de alimentación.

4. Asegurarse de que la pantalla del sensor esté eléctricamente aislada respecto de dispositivos circundantes que estén conectados a tierra.

5. Conectar las pantallas entre sí, aisladas eléctricamente respecto al transmisor.

Opción 3

B. Transmisor

C. Punto de conexión a tierra del blindaje

- 1. En el sensor, conectar a tierra la pantalla del cableado del sensor, si es posible.
- 2. Asegurarse de que las pantallas del cableado del sensor y el cableado de señal estén aislados eléctricamente de la carcasa del transmisor.
- 3. No conectar la pantalla del cableado de señal a la pantalla del cableado del sensor.
- 4. Conectar a tierra la pantalla del cableado de señal en el extremo de la fuente de alimentación.

Entradas del termopar conectadas a tierra

Opción 1

- 1. En el sensor, conectar a tierra la pantalla del cableado del sensor.
- 2. Asegurarse de que las pantallas del cableado del sensor y el cableado de señal estén aislados eléctricamente de la carcasa del transmisor.
- 3. No conectar la pantalla del cableado de señal a la pantalla del cableado del sensor.
- 4. Conectar a tierra la pantalla del cableado de señal en el extremo de la fuente de alimentación.

A. Cables del sensor

- B. Transmisor
- C. Punto de conexión a tierra del blindaje

4.3.4

Cableado con un HART Tri-Loop Rosemount 333 (solo HART/4–20 mA)

Utilizar el transmisor Rosemount 644 con opción de sensor doble que funciona con dos sensores en combinación con un convertidor de señales HART a analógicas HART Tri-Loop Rosemount 333 para obtener una señal de salida analógica de 4–20 mA independiente para cada entrada del sensor. El transmisor se puede configurar para que transmita cuatro de estas seis variables digitales de proceso:

- Sensor 1
- Sensor 2
- Temperatura diferencial
- Temperatura promedio
- Primera temperatura correcta
- Temperatura terminal del transmisor

El HART Tri-Loop lee la señal digital y transmite cualquiera de las variables o todas ellas a tres canales analógicos de 4–20 mA separados. Consultar la Figura 2-6 en la página 15 para obtener información de instalación básica. Para obtener información completa sobre la instalación, consultar el <u>manual de</u> <u>referencia</u> del convertidor de señales HART a analógica HART Tri-Loop Rosemount 333.

Fuente de alimentación

Se requiere una fuente de alimentación externa para hacer funcionar el transmisor Rosemount 644, que no se incluye. El rango de voltaje de entrada del transmisor es de 12 a 42,4 V CC. Esta es la alimentación que se requiere entre los terminales de alimentación del transmisor. Los terminales de alimentación tienen una especificación de 42,4 V CC. Con 250 ohmios de resistencia en el lazo, el transmisor requiere un mínimo de 18,1 V CC para que se establezca la comunicación.
La alimentación suministrada al transmisor se determina mediante la resistencia total del lazo y no debe ser menor que el voltaje mínimo necesario para que el transmisor funcione. El voltaje mínimo para que el transmisor funcione es el voltaje mínimo requerido para cualquier resistencia total de lazo. Si la alimentación desciende por debajo del voltaje mínimo requerido mientras se configura el transmisor, éste puede transmitir información incorrecta.

La fuente de alimentación de CC debe suministrar energía con una fluctuación menor de dos por ciento. La carga total de resistencia es la suma de la resistencia de los conductores de señal y la resistencia de carga de cualquier controlador, indicador o pieza relacionada del equipo en el lazo. Tenga en cuenta que, si se utilizan las barreras de seguridad intrínseca, su resistencia debe incluirse.

Nota

Se puede ocasionar un daño permanente al transmisor si el voltaje desciende por debajo de 12,0 V CC en los terminales de alimentación al cambiar los parámetros de configuración del transmisor.

Figura 4-4. Límites de carga

Carga máxima = $40.8 \times$ (voltaje de alimentación - 12,0)

Sección 5 Operación y mantenimiento

Generalidades	página 67
Mensajes de seguridad	página 67
Generalidades de calibración	página 68
Ajuste de la entrada del sensor	página 68
Ajuste de la salida analógica	página 72
Combinación del transmisor y el sensor	página 73
Cambio de la revisión de HART	página 75

5.1 Generalidades

Esta sección contiene información sobre la calibración del transmisor de temperatura Rosemount[™] 644. Se proporcionan instrucciones para el comunicador de campo, AMS Device Manager e interfaz local del operador (LOI) para realizar todas las funciones.

5.2 Mensajes de seguridad

Los procedimientos y las instrucciones que se explican en esta sección pueden exigir medidas de precaución especiales que garanticen la seguridad del personal involucrado. La información que plantea posibles problemas de seguridad se indica con un símbolo de advertencia (\triangle). Consultar los siguientes mensajes de seguridad antes de realizar una operación que vaya precedida por este símbolo.

ADVERTENCIA

Si no se siguen estas recomendaciones de instalación se podría provocar la muerte o lesiones graves. Asegurarse de que solo personal calificado realiza la instalación.

Las explosiones pueden ocasionar lesiones graves o fatales.

- No quitar la tapa del cabezal de conexión en entornos explosivos cuando el circuito esté energizado.
- Antes de conectar un comunicador de campo en un entorno explosivo, asegúrese de que los instrumentos en el lazo estén instalados de acuerdo con procedimientos de cableado de campo no inflamable o intrínsecamente seguros.
- Verificar que la atmósfera funcional del transmisor sea consistente con las certificaciones apropiadas para lugares peligrosos.
- Todas las tapas del cabezal de conexión deben estar completamente encajadas para cumplir con los requisitos de seguridad antideflagrantes.

Las fugas del proceso pueden causar lesiones graves o fatales.

- No extraer el termopozo cuando esté en funcionamiento.
- Instalar y apretar los termopozos y los sensores antes de aplicar presión.

Las descargas eléctricas pueden ocasionar lesiones graves o fatales.

Se debe tener extremo cuidado al ponerse en contacto con los conductores y terminales.

5.3 Generalidades de calibración

Si se calibra el transmisor se aumenta la precisión de medición al permitir efectuar las correcciones en la curva de caracterización almacenada en la fábrica alterando digitalmente la interpretación que hace el transmisor de la entrada del sensor.

Para comprender la calibración, es necesario comprender que los transmisores funcionan de forma diferente de los transmisores analógicos. Una diferencia importante es que los transmisores inteligentes son caracterizados en la fábrica; eso significa que se envían con una curva de sensor estándar almacenada en el firmware del transmisor. En la operación, el transmisor usa esta información para producir un rendimiento de variable del proceso, en unidades de ingeniería, dependiendo de la entrada del sensor.

La calibración del Rosemount 644 puede incluir los siguientes procedimientos:

- Ajuste de entrada del sensor: altera digitalmente la interpretación que hace el sensor de la señal de entrada.
- **Combinación de transmisor y sensor**: genera una curva personalizada especial para hacer coincidir esa curva específica del sensor, como se deriva de las constantes de Callendar-Van Dusen.
- Ajuste de la salida: calibra el transmisor a una escala de referencia de 4–20 mA.
- Ajuste escalable de la salida: calibra el transmisor a una escala de referencia seleccionada por el usuario.

5.3.1 Ajuste

Las funciones de ajuste fino no deben ser confundidas con las funciones de reajuste. Aunque el comando de reajuste de rango hace coincidir una entrada de sensor a una salida de 4–20 mA, como en la calibración convencional, este cambio no afecta la interpretación de la entrada en el transmisor.

Al realizar la calibración, se puede utilizar una o más de las funciones de ajuste. Las funciones de ajuste son las siguientes:

- Ajuste de la entrada del sensor
- Combinación del transmisor y el sensor
- Ajuste de la salida
- Ajuste escalado de la salida

5.4 Ajuste de la entrada del sensor

El comando Ajuste del sensor permite alterar la interpretación que hace el transmisor de la señal de entrada. El comando Ajuste del sensor ajusta, en unidades de ingeniería (°F, °C, °R, K) o unidades brutas (ohmios, mV), el sistema combinado de sensor y transmisor a un estándar de sitio utilizando una fuente de temperatura conocida. El ajuste del sensor es adecuado para los procedimientos de validación o para aplicaciones que requieran la adaptación del sensor y del transmisor juntos.

Realizar un ajuste del sensor si el valor digital del transmisor correspondiente a la variable primaria no coincide con el equipo de calibración estándar de la planta. La función de ajuste del sensor calibra el sensor al transmisor en unidades de temperatura o unidades brutas. A menos que la fuente de entrada estándar del sitio sea trazable de acuerdo a NIST, las funciones del ajuste no mantendrán la trazabilidad NIST del sistema.

5.4.1 Aplicación: desviación lineal (solución de ajuste de punto único)

- 1. Conectar el sensor al transmisor. Poner el sensor en baño entre los puntos del rango.
- 2. Introducir el valor conocido de temperatura del baño usando el comunicador de campo.

5.4.2 Aplicación: desviación lineal y corrección de pendientes (ajuste de dos puntos)

- 1. Conectar el sensor al transmisor. Poner el sensor en baño en el punto bajo del rango.
- 2. Introducir el valor conocido de temperatura del baño usando el comunicador de campo.
- 3. Repetir en un punto de rango alto.

Utilizar los siguientes procedimientos para realizar un ajuste del sensor en el transmisor Rosemount 644:

Comunicador de campo

- 1. Conectar el dispositivo de calibración o el sensor al transmisor. (Si se utiliza un calibrador activo, consultar "Calibrador activo y compensación de EMF" en la página 71).
- 2. Conectar el comunicador al lazo del transmisor.

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	3, 4, 4, 1
--	------------

El comunicador preguntará si está utilizando un calibrador activo.

- a. Seleccionar **No** si se tiene un sensor conectado al transmisor.
- b. Seleccionar Sí se está utilizando un dispositivo de calibración. Al seleccionar Sí, el transmisor cambiará al modo de calibración activa (consultar "Calibrador activo y compensación de EMF"). Esto es vital si el calibrador requiere una corriente constante del sensor para la calibración. Si se utiliza un dispositivo de calibración que pueda aceptar corriente con pulsos, seleccionar "No".

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Generalidades.
- 2. En la pestaña principal Generalidades, hacer clic en el botón **Calibrar sensor(es)** cerca de la parte inferior de la ventana.
- 3. Seguir las indicaciones que aparecen en la pantalla, que sirven como guía en el proceso de ajuste del sensor.

LOI

Consultar la siguiente imagen para obtener una guía sobre el lugar en que se puede encontrar la opción Calibración del sensor en el menú de la LOI.

5.4.3 Recuperar el ajuste de fábrica (ajuste del sensor)

El comando Recuperar el ajuste de fábrica (ajuste del sensor) permite restaurar los parámetros de fábrica para el ajuste de la salida analógica. Este comando puede ser útil para recuperarse de un ajuste accidental, un patrón incorrecto de la planta o un medidor defectuoso.

Comunicador de campo

En la pantalla *INICIO*, introducir la secuencia de teclas de acceso rápido y seguir los pasos del comunicador de campo para completar el Ajuste del sensor.

Secuencia de teclas de acceso rápido del tablero del dispositivo	3, 4, 4, 2	

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Herramientas de servicio.
- 2. En la pestaña Calibración del sensor, seleccionar Restaurar calibración de fábrica.
- 3. Seguir las indicaciones que aparecen en la pantalla, que servirán como guía en la restauración de los ajustes de calibración.

LOI

Consultar la Figura 5-3 para encontrar Recuperar el ajuste del sensor en el menú de la LOI.

5.4.4 Calibrador activo y compensación de EMF

El transmisor funciona con una corriente pulsante del sensor para permitir la compensación EMF y la detección de condiciones de sensor abierto. Debido a que algún equipo de calibración requiere una corriente estable del sensor para funcionar adecuadamente, la opción "Modo de calibrador activo" se debe utilizar cuando se encuentra conectado un calibrador activo. Al permitir temporalmente este modo, se configura el transmisor para que proporcione una corriente estable del sensor, a menos que se configuren dos entradas de sensor.

Desactivar este modo antes de regresar el transmisor al proceso para volver a configurar el transmisor a corriente pulsante. El "Modo de calibrador activo" es volátil, y se desactivará automáticamente cuando se realice un reinicio maestro (mediante HART) o cuando se apaga y se vuelve a encender el transmisor.

La compensación EMF permite que el transmisor proporcione medidas del sensor que no se ven afectadas por tensiones no deseadas, generalmente debido a las fuerzas electromagnéticas térmicas del equipo conectado al transmisor, o por algunos tipos de equipo de calibración. Si este equipo también requiere una corriente estable del sensor, se debe poner el transmisor en "Modo de calibrador activo". Sin embargo, la corriente estable no permite al transmisor realizar la compensación EMF y como resultado, es posible que exista una diferencia en las lecturas entre el Calibrador activo y el sensor real.

Si se observa una diferencia en las lecturas y ésta es mayor que el valor permitido en la especificación de precisión de la planta, realizar un ajuste del sensor con el "Modo de calibrador activo" desactivado. En este caso, se debe utilizar un calibrador activo que sea capaz de tolerar la corriente pulsante del sensor o bien, se deben conectar sensores reales al transmisor. Cuando el comunicador de campo, AMS o la LOI preguntan si se está utilizando un calibrador activo cuando se ingresa en la rutina de ajuste del sensor, seleccionar **No** para dejar desactivado el "Modo de calibrador activo".

5.5 Ajuste de la salida analógica

5.5.1 Ajuste de la salida analógica o ajuste escalado de la salida analógica

Realizar un ajuste fino de salida o un ajuste fino escalado de salida si el valor digital para la variable primaria coincide con los valores estándar de la planta, pero la salida analógica del transmisor no coincide con la lectura del dispositivo de salida. La función de ajuste fino de salida calibra el transmisor a una escala de referencia de 4–20 mA; la función de ajuste fino de salida gradual calibra a una escala de referencia seleccionable por el usuario. Para determinar si se necesita un ajuste de la salida o un ajuste escalado de la salida, realizar una prueba de lazo ("Realizar una prueba de lazo" en la página 33).

5.5.2 Ajuste de salida analógica

El comando Ajuste de salida analógica permite alterar la conversión que hace el transmisor en la señal de entrada a una salida de 4–20 mA (Figura 5-4). Ajustar la señal de salida analógica a intervalos regulares para mantener la precisión de la medición. Para realizar un ajuste fino de digital a analógico, realizar el siguiente procedimiento con la secuencia de teclas de acceso rápido tradicional:

Comunicador de campo

1. Conectar un medidor de referencia exacto al transmisor en **CONECTAR MEDIDOR DE REFERENCIA**, poniendo en paralelo la alimentación al transmisor mediante el medidor de referencia en algún punto del lazo.

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	3, 4, 5, 1
--	------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Herramientas de servicio.
- 2. En el panel de navegación izquierdo, seleccionar Mantenimiento.
- 3. Encontrar la pestaña Calibración analógica y hacer clic en el botón Ajuste analógico.
- 4. Seguir las indicaciones que aparecen en la pantalla, que sirven como guía en el proceso de ajuste analógico.

LOI

Consultar la Figura 5-5 para obtener una guía sobre el lugar en que se puede encontrar el ajuste analógico en el menú de la LOI.

5.5.3 Realizar un ajuste escalado de la salida

El comando Ajuste escalado de la salida hace coincidir los puntos de 4 y 20 mA con una escala de referencia seleccionada por el usuario, que sea diferente de 4 y 20 mA (por ejemplo, 2–10 voltios). Para realizar un ajuste D/A escalado, conectar un medidor de referencia exacto al transmisor y ajustar la señal de salida a la escala como se explica en el procedimiento "Ajuste de la salida analógica".

Comunicador de campo

1. Conectar un medidor de referencia exacto al transmisor en **CONECTAR MEDIDOR DE REFERENCIA**, poniendo en paralelo la alimentación al transmisor mediante el medidor de referencia en algún punto del lazo.

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	3, 4, 5, 2
--	------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Herramientas de servicio.
- 2. En el panel de navegación izquierdo, seleccionar Mantenimiento.
- 3. Encontrar la pestaña Calibración analógica y seleccionar el botón Ajuste escalado.
- 4. Seguir las indicaciones que aparecen en la pantalla, que sirven como guía en el proceso de ajuste analógico.

5.6 Combinación del transmisor y el sensor

Usar Combinación del transmisor y el sensor para mejorar la precisión de la medición de temperatura del sistema y si se tiene un sensor con constantes Callendar-Van Dusen. Cuando se piden en Emerson[™], los sensores con constantes Callendar-Van Dusen son trazables de acuerdo con NIST.

El transmisor Rosemount 644 acepta constantes Callendar-Van Dusen de un programa de termorresistencia calibrada y genera una curva personalizada especial para hacer corresponder esa resistencia específica del sensor con el rendimiento de temperatura. Figura 5-6.

(1) La curva real se identifica a partir de la ecuación de Callendar-Van Dusen.

Al hacer corresponder la curva específica del sensor con el transmisor, se mejora considerablemente la precisión de medida de temperatura. Consultar la siguiente comparación en la Tabla 5-1.

Tabla 5-1. Termorresistencia estándar vs. termorresistencia con constantes CVD combinadas con precisión del transmisor estándar

Comparación de precisión del sistema a 150 °C utilizando una termorresistencia PT 100 (α=0,00385) con un span de 0 a 200 °C			
Termorresistencia estándar		Termorresistencia combinada	
Rosemount 644	±0,15 °C	Rosemount 644	±0,15 °C
Termorresistencia estándar	±1,05 °C	Termorresistencia combinada	±0,18 °C
Precisión total del sistema ⁽¹⁾	±1,06 °C	Precisión total del sistema ⁽¹⁾	±0,23 °C

1. Calculada utilizando el método estadístico de raíz cuadrada de la suma de los cuadrados (RSS).

TotalSystemAccuracy = $\sqrt{(TransmitterAccuracy)^2 + (SensorAccuracy)^2}$

Tabla 5-2. Termorresistencia estándar vs. termorresistencia con constantes Callendar-Van Dusen con opción P8 para precisión mejorada del transmisor

Comparación de precisión del sistema a 150 °C utilizando una termorresistencia PT 100 (α=0,00385) con un span de 0 a 200 °C			
Termorresistencia estándar		Termorresistencia combinada	
Rosemount 644	±0,10 °C	Rosemount 644	±0,10 °C
Termorresistencia estándar	±1,05 °C	Termorresistencia combinada	±0,18 °C
Precisión total del sistema ⁽¹⁾	±1,05 °C	Precisión total del sistema ⁽¹⁾	±0,21 °C

1. Calculada utilizando el método estadístico de raíz cuadrada de la suma de los cuadrados (RSS)

TotalSystemAccuracy = $\sqrt{(TransmitterAccuracy)^2 + (SensorAccuracy)^2}$

Ecuación de Callendar-Van Dusen:

Se requieren las siguientes variables de entrada, incluidas con sensores de temperatura Rosemount pedidos especialmente:

 $R_t = R_o + R_o a [t - d(0,01t-1)(0,01t) - b(0,01t-1)(0,01t)^3]$

 R_0 = Resistencia en el punto de congelación

Alfa = Constante específica del sensor

Beta = Constante específica del sensor

Delta = Constante específica del sensor

Para introducir las constantes de Callendar-Van Dusen, realizar uno de los siguientes procedimientos:

Comunicador de campo

En la pantalla INICIO, ingresar la secuencia de teclas de acceso rápido.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 1, 9
--	------------

AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar **Configurar**.
- 2. En el panel de navegación izquierdo, seleccionar **Configuración manual** y luego la pestaña **Sensor 1** o **Sensor 2**, según lo que se necesite.
- Encontrar el cuadro de grupo Combinación de transmisor y sensor (CVD) e ingresar las constantes CVD requeridas. O bien seleccionar el botón "Establecer los coeficientes CVD" para ser guiado por los pasos. También puede seleccionar el botón "Mostrar los coeficientes CVD" para ver los coeficientes actuales cargados en el dispositivo.
- 4. Seleccionar Aplicar al finalizar.

Nota

Cuando la combinación de transmisor y sensor está desactivada, el transmisor regresa al ajuste del usuario o de la fábrica, el que se haya utilizado anteriormente. Antes de volver a poner el transmisor en funcionamiento, asegurarse de que las unidades de ingeniería del transmisor regresen correctamente al valor predeterminado.

5.7 Cambio de la revisión de HART

Algunos sistemas no son capaces de comunicarse con dispositivos HART revisión 7. Los siguientes procedimientos muestran cómo cambiar las revisiones de HART entre HART Revisión 7 y HART Revisión 5.

5.7.1 Menú genérico

Si la herramienta de configuración HART no es capaz de comunicarse con un dispositivo HART revisión 7, se debe cargar un menú genérico con capacidad limitada. Los siguientes procedimientos permiten cambiar entre HART Revisión 7 y HART Revisión 5 desde un menú genérico en cualquier herramienta de configuración compatible con HART.

- 1. Ubicar el campo "Mensaje".
 - a. Para cambiar al HART revisión 5, introducir: HART5 en el campo Mensaje.
 - b. Para cambiar al HART revisión 7, introducir: HART7 en el campo Mensaje.

5.7.2 Comunicador de campo

Desde la pantalla *INICIO*, introducir la secuencia de teclas de acceso rápido y seguir los pasos del comunicador de campo para completar el cambio de revisión de HART.

Secuencia de teclas de acceso rápido del tablero del dispositivo	2, 2, 8, 3
--	------------

5.7.3 AMS Device Manager

- 1. Hacer clic con el botón derecho en el dispositivo y seleccionar Configurar.
- 2. En el panel de navegación izquierdo, seleccionar **Configuración manual** y hacer clic en la pestaña **HART**.
- 3. Seleccionar el botón Cambiar la revisión de HART y seguir las indicaciones.

Nota

HART Revisión 7 solo es compatible con AMS Device Manager 10.5, y posteriores. Para que AMS Device Manager versión 10.5 sea compatible requiere una revisión de software.

5.7.4 LOI

Consultar la Figura 5-7 para encontrar Revisión HART en el menú de la LOI.

Figura 5-7. Cambiar la revisión de HART con la LOI

Sección 6 Solución de problemas

Generalidades	página 77
Mensajes de seguridad	
Salida de 4–20 mA/HART	
Mensajes de diagnóstico	página 79

6.1 Generalidades

La Tabla 6-1 en la página 78 proporciona sugerencias resumidas de mantenimiento y resolución de problemas para los problemas de funcionamiento más comunes.

Si se sospecha que hay un fallo a pesar de la ausencia de mensajes de diagnóstico en el indicador del comunicador de campo, seguir los procedimientos descritos en la Tabla 6-1 en la página 78 para verificar que el hardware del transmisor y las conexiones del proceso están en buenas condiciones de trabajo. Debajo de cada uno de los cuatro mayores síntomas, se ofrecen sugerencias específicas para la resolución de problemas. Siempre se deben atender primero las condiciones más probables y más fáciles de revisar.

6.2 Mensajes de seguridad

Los procedimientos e instrucciones que se explican en esta sección pueden requerir precauciones especiales para garantizar la seguridad del personal que realice dichas operaciones. La información que plantea cuestiones de seguridad potenciales se indica con un símbolo de advertencia (\underline{A}). Consultar los siguientes mensajes de seguridad antes de realizar una operación que vaya precedida por este símbolo.

ADVERTENCIA

Las explosiones pueden ocasionar lesiones graves o fatales.

- La instalación de este transmisor en un entorno explosivo debe realizarse de acuerdo con los códigos, las normas y las prácticas locales, nacionales e internacionales vigentes. Revisar la sección de aprobaciones de este manual de consulta para conocer las restricciones existentes asociadas con una instalación segura.
- Antes de conectar un comunicador de campo en un entorno explosivo, asegurarse de que los instrumentos del lazo estén instalados de acuerdo con procedimientos de cableado de campo intrínsecamente seguro o no inflamable.
- En una instalación antideflagrante y/o incombustible, no se deben quitar las tapas del transmisor mientras la unidad está conectada a alimentación eléctrica.

Las fugas del proceso pueden ocasionar lesiones o la muerte.

Instalar y asegurar los conectores del proceso antes de aplicar presión.

Las descargas eléctricas pueden provocar lesiones graves o fatales.

Evitar el contacto con los conductores y terminales. Los cables conductores pueden contener corriente de alto voltaje y ocasionar descargas eléctricas.

6.3 Salida de 4–20 mA/HART

Tabla 6-1. Solución de problemas de la salida de 4–20 mA

Síntoma o problema	Origen potencial	Medida correctiva	
El transmisor no se comunica con el Cab comunicador de lazo campo	Cableado del lazo		 Comprobar el nivel de revisión de los descriptores de dispositivo (DD) del transmisor almacenados en el comunicador. El comunicador debe mostrar Dev v4, DD v1 (mejorado), o consultar "Comunicador de campo" en la página 6 para versiones anteriores. Contactar con Emerson™ para obtener ayuda.
		 Comprobar que haya una resistencia mínima de 250 ohmios entre la fuente de alimentación y la conexión del comunicados de campo. 	
		 Comprobar que la tensión al transmisor sea adecuada. Si el comunicador de campo está conectado y hay una resistencia correcta de 250 ohmios en el lazo, entonces el transmisor requiere un mínimo de 12,0 V en los terminales para funcionar (en todo el rango operativo de 3,5 a 23,0 mA), y un mínimo de 12,5 V para que se comunique digitalmente. 	
		 Comprobar que no haya cortocircuitos intermitentes, circuitos abiertos y conexiones a tierra múltiples. 	
	Conexión o fallo en la entrada del sensor	 Conectar un comunicador de campo e iniciar el modo de prueba del transmisor para revisar si hay un fallo del sensor. 	
		 Comprobar si hay un cortocircuito o sensor abierto. 	
		 Comprobar la variable del proceso para ver si está fuera del rango. 	
Cableado d lazo Fuente de alimentació Componen electrónico	Cableado del lazo	 Comprobar que las terminales, pasadores de interconexión o tomacorrientes, no estén sucios o en mal estado. 	
	Fuente de alimentación	 Comprobar la tensión de salida de la fuente de alimentación en las terminales del transmisor. Debería de ser de 12,0 a 42,4 V CC (sobre el rango de funcionamiento completo de 3,75 a 23 mA). 	
	Componentes	 Conectar un comunicador de campo e iniciar el modo de estatus del transmisor para aislar el fallo del módulo. 	
	electrónicos	 Conectar un comunicador de campo y comprobar los límites del sensor para asegurarse de que los ajustes de calibración estén dentro del rango del sensor. 	
Salida errática	Cableado del lazo	 Comprobar que la tensión al transmisor sea adecuada. Debe ser de 12,0 a 42,4 V CC en los terminales del transmisor (en todo el rango operativo de 3,75 a 23 mA). 	
		 Comprobar que no haya cortocircuitos intermitentes, circuitos abiertos y conexiones a tierra múltiples. 	
		 Conectar un comunicador de campo e iniciar el modo de prueba de lazo para generar señales de 4 mA, 20 mA y valores seleccionados por el usuario. 	
	Componentes electrónicos	 Conectar un comunicador de campo e iniciar el modo de prueba del transmisor para aislar el fallo del módulo. 	

Tabla 6-1. Solución de problemas de la salida de 4–20 mA

Síntoma o problema	Origen potencial	Medida correctiva
	Salida baja o sin Salida	 Conectar el comunicador de campo e iniciar el modo de prueba del transmisor para aislar un fallo del sensor.
		 Comprobar la variable del proceso para ver si está fuera del rango.
		 Comprobar que la tensión al transmisor sea adecuada. Debería de ser de 12,0 a 42,4 V CC (sobre el rango de funcionamiento completo de 3,75 a 23 mA).
		 Comprobar si hay cortocircuitos y conexiones a tierra múltiples.
Salida baja o sin salida		 Comprobar que la polaridad en el terminal de señal sea la correcta.
54.144		 Comprobar la impedancia del circuito.
		• Conectar un comunicador de campo e iniciar el modo de prueba del lazo.
		 Comprobar el aislamiento de los alambres para detectar posibles cortocircuitos a tierra.
	Componentes electrónicos	 Conectar un comunicador de campo y comprobar los límites del sensor para asegurarse de que los ajustes de calibración estén dentro del rango del sensor.

6.4 Mensajes de diagnóstico

En las siguientes secciones se encuentran tablas detalladas de los posibles mensajes que aparecerán en la pantalla LCD/pantalla de la LOI, en un comunicador de campo o en un sistema AMS Device Manager. Usar las siguientes tablas para diagnosticar mensajes de estatus en particular.

- Fallo
- Mantenimiento
- Aviso

6.4.1 Estado de fallo

Tabla 6-2. Falló - Fijar ahora

Nombre de alerta	Pantalla LCD	Pantalla de la LOI	Problema	Acción recomendada
Fallo de la electrónica	alarma Disposit Alarma Fallo	alarma Disposit Alarma Fallo	Si los diagnósticos indican una falla de la electrónica, significa que se ha producido un error en la electrónica esencial del dispositivo. Por ejemplo, es posible que el transmisor haya experimentado un fallo en el sistema electrónico mientras intentó almacenar información.	 Reiniciar el transmisor. Si la condición no se resuelve, cambiar el transmisor. Si es necesario, contactar con el Centro de Servicio en campo más cercano de Emerson.
Sensor abierto ⁽¹⁾	ALARMA SNSR 1 ALARMA FALLO	ALARMA SNSR 1 ALARMA FALLO	Este mensaje indica que el transmisor ha detectado una condición de sensor abierto. Puede que este sensor esté desconectado, conectado impropiamente o fallando.	 Verificar la conexión y el cableado del sensor. Consultar los diagramas de cableado en la etiqueta del transmisor para asegurarse de que el cableado sea correcto. Verificar la integridad del sensor y de los conductores del sensor. Si el sensor está defectuoso, reparar o cambiar el sensor.

Tabla 6-2. Falló - Fijar ahora

Nombre de alerta	Pantalla LCD	Pantalla de la LOI	Problema	Acción recomendada
Sensor en cortocircuito ⁽¹⁾	ALARMA SNSR 1 ALARMA FALLO	ALARMA SNSR 1 ALARMA FALLO	Este mensaje indica que el transmisor ha detectado una condición de sensor en cortocircuito. Puede que este sensor esté desconectado, conectado impropiamente o fallando.	 Verificar que la temperatura del proceso esté comprendida en el rango especificado del sensor. Usar el botón Información del sensor para comparar con la temperatura del proceso. Verificar que el sensor esté conectado correctamente a los terminales. Verificar la integridad del sensor y de los conductores del sensor. Si el sensor está defectuoso, reparar o cambiar el sensor.
Fallo en la temperatura del terminal	ALARMA TERM ALARMA FALLO	ALARMA TERM ALARMA FALLO	La temperatura de terminal está fuera del rango de operación especificado de la termorresistencia interna.	 Verificar que la temperatura ambiental esté dentro del rango de operación especificado del dispositivo usando el botón Información de temperatura de terminal.
Configuración no válida	CONFG SNSR 1 ADV ERROR	CONFG SNSR 1 ADV ERROR	La configuración del sensor (tipo y/o conexión) no coincide con la salida del sensor y por lo tanto, no es válida.	 Verificar que el tipo de sensor y la cantidad de cables coincidan con la configuración de sensor del dispositivo. Restablecer el dispositivo. Si el error no se corrige, descargar la configuración del transmisor. Si el error aún está presente, cambiar el transmisor.
Malfuncionamiento del dispositivo de campo	Alarma Disposit Alarma Fallo	ALARMA DISPOSIT ALARMA FALLO	El dispositivo ha fallado o necesita atención inmediata.	 Realizar un restablecimiento del procesador. Ver otras alertas para comprobar si el transmisor indica un problema específico. Si la condición no se resuelve, reemplazar el dispositivo.

1. El Sensor 1 se usa aquí como ejemplo. Si se pidieron sensores dobles, esta alerta puede corresponder a cualquiera de los sensores.

6.4.2 Estado de advertencia

Nombre de alerta	Pantalla LCD	Pantalla de la LOI	Problema	Acción recomendada
Hot Backup [™] activo	HOT BU SNSR 1 HOT BU FALLO	HOT BU SNSR 1 HOT BU FALLO	El sensor 1 ha fallado (abierto o en cortocircuito) y el sensor 2 es ahora la salida de la variable primaria del proceso.	 Cambiar el sensor 1 en cuanto sea posible. Restablecer la función Hot Backup en el software del dispositivo.
Alerta de desviación del sensor activa ⁽¹⁾	ADV DESV ADV ALERTA	ADV DESV ADV ALERTA	La diferencia entre el sensor 1 y el sensor 2 ha rebasado el valor de umbral de alerta de desviación configurado por el usuario.	 Verificar que las conexiones del sensor sean válidas en el transmisor. Si es necesario, revisar la calibración de cada sensor. Verificar que las condiciones del proceso coincidan con las salidas del sensor. Si la calibración falla, uno de los sensores ha fallado. Cambiarlo en cuanto sea posible.
Sensor degradado ⁽¹⁾	ADV SNSR 1 DEGRA SNSR 1	ADV SNSR 1 DEGRA SNSR 1	La resistencia del lazo del termopar ha rebasado el umbral configurado. Esto podría estar ocasionado por una EMF excesiva.	 Revisar que las conexiones de los tornillos de los terminales del 644 no tengan corrosión. Revisar el lazo del termopar para detectar indicaciones de corrosión en los bloque de terminales, adelgazamiento de los cables, cables rotos o conexiones defectuosas. Verificar la integridad del sensor. Las condiciones exigentes del proceso pueden ocasionar fallos del sensor a largo plazo.
Error de calibración	N/D	N/D	El valor introducido para el punto de ajuste del usuario no fue aceptable.	 Volver a ajustar el dispositivo, asegurarse de que los puntos de calibración introducidos por el usuario sean cercanos a la temperatura de calibración aplicada.
Sensor fuera de límites operativos ⁽¹⁾	SAT SNSR 1 XX.XXX ℃	SAT SNSR 1 XX.XXX ℃	Las lecturas # del sensor están fuera del rango especificado del sensor.	 Verificar que la temperatura del proceso esté comprendida en el rango especificado del sensor. Usar el botón Información del sensor para comparar con la temperatura del proceso. Verificar que el sensor esté conectado correctamente a los terminales. Verificar la integridad del sensor y de los conductores del sensor. Si el sensor está defectuoso, reparar o cambiar el sensor.
Temperatura de terminal fuera de límites operativos	SAT TERM DEGRA ADV	SAT TERM DEGRA ADV	La temperatura de terminal está fuera del rango de operación especificado de la termorresistencia incorporada en la tarjeta.	 Verificar que la temperatura ambiental esté dentro del rango de operación especificado del dispositivo usando el botón Información de temperatura de terminal.

1. El Sensor 1 se usa aquí como ejemplo. Si se pidieron sensores dobles, esta alerta puede corresponder a cualquiera de los sensores.

6.4.3 Otros mensajes de la pantalla LCD

Nombre de alerta	Pantalla LCD	Pantalla de la LOI	Problema	Acción recomendada
La pantalla LCD no se muestra correctamente o no muestra nada en absoluto	Rosemount™ 644 HART 7	Rosemount 644 HART 7	Es posible que la pantalla no esté funcionando o puede estar atascado en la pantalla Inicio	Si medidor no parece funcionar, asegurar de que el transmisor esté configurado para la opción de medidor que se desea. El medidor no funcionará si la opción Pantalla LCD no se configura como No se utiliza.
Salida analógica fija	ADV LAZO ADV FIJA	ADV LAZO ADV FIJA	La salida analógica está fija en un valor y actualmente no sigue a la variable primaria HART.	 Verificar que ha sido la intención que el transmisor esté funcionando en "Modo de corriente fija". Desactivar el "Modo de corriente fija" en Herramientas de servicio para hacer que la salida analógica funcione normalmente.
Simulación activa	N/D	N/D	El dispositivo está en modo de simulación y es posible que no transmita la información real.	 Comprobar que la simulación ya no sea necesaria. Inhabilitar el modo de simulación en Herramientas de servicio. Restablecer el dispositivo.

6.5 Devolución de materiales

Para facilitar el proceso de devolución en Norteamérica, llamar al Centro nacional de respuesta de Emerson al número gratuito 800-654-7768. Este centro, disponible 24 horas al día, le prestará asistencia en la obtención de cualquier tipo de información o materiales necesarios.

El centro solicitará la siguiente información:

- Modelo del producto
- Números de serie
- El último material del proceso al que estuvo expuesto el producto
- El centro proporcionará:
- Un número de autorización de devolución de materiales (RMA)
- Las instrucciones y procedimientos necesarios para devolver materiales que hayan sido expuestos a sustancias peligrosas.

Para otras ubicaciones, ponerse en contacto con un representante de ventas de Emerson.

Nota

Si se identifica una sustancia peligrosa, debe incluirse una Hoja de datos de seguridad de materiales (MSDS), que la ley exige esté disponible para las personas expuestas a sustancias peligrosas específicas, con los materiales devueltos.

Sección 7

Certificación de sistemas instrumentados de seguridad (SIS)

Certificación SIS	página 83
Identificación certificada para seguridad	página 83
Instalación	página 84
Configuración	página 84
Niveles de alarma y de saturación	página 84
Operación y mantenimiento	página 85
Especificaciones	página 87

Nota

Esta sección se aplica solo a las salidas de 4-20 mA.

7.1 Certificación SIS

La salida de seguridad crítica del transmisor de temperatura Rosemount[™] 644P se proporciona a través de una señal de 4–20 mA de 2 hilos que representa la temperatura. El transmisor Rosemount 644 puede estar equipado o no con una pantalla. El transmisor Rosemount 644P con certificación de seguridad posee las siguientes certificaciones: demanda baja; tipo B.

- SIL 2 para integridad aleatoria a HFT=0
- SIL 3 para integridad aleatoria a HFT=1
- SIL 3 para integridad sistemática

7.2 Identificación certificada para seguridad

Todos los transmisores Rosemount 644 HART[®] de montaje en cabezal y montaje en campo deben estar identificados como productos certificados para seguridad antes de ser instalados en sistemas SIS.

Para identificar un transmisor Rosemount 644 certificado para seguridad, debe asegurarse de que el dispositivo cumpla los siguientes requisitos:

- 1. Verificar que el transmisor pedido con la salida opción código "A" y la opción código "QT". Esto significa que es un dispositivo con certificación de seguridad para 4–20 mA/HART.
 - a. Por ejemplo: MODELO 644HA.....QT.....
- 2. Buscar una etiqueta amarilla pegada a la parte superior de la carátula del transmisor o una etiqueta amarilla pegada en el exterior de la carcasa si está premontada.
- 3. Comprobar la revisión del software Namur ubicada en la etiqueta adhesiva del transmisor. "SW _._.".

Si la revisión de software de la etiqueta del dispositivo es 1.1.1 o superior, el dispositivo está certificado para seguridad.

7.3 Instalación

Las instalaciones deben estar a cargo de personal cualificado. No se requiere una instalación especial más allá de los procedimientos de instalación estándar descritos en este documento. Siempre asegurarse de que se logra un sellado adecuado instalando la(s) cubierta(s) del alojamiento de la electrónica de manera que los metales hagan contacto entre sí.

El lazo debe diseñarse de manera que el voltaje de los terminales no caiga por debajo de 12 V CC cuando la salida del transmisor es de 24,5 mA.

Los límites ambientales están disponibles en la página del producto del <u>transmisor de temperatura</u> <u>Rosemount 644</u>.

7.4 Configuración

Antes de usar el transmisor Rosemount 644 en modo seguro, usar cualquier herramienta de configuración compatible con HART o la interfaz local del operador (LOI) para comunicarse con el transmisor y verificar la configuración inicial o los cambios realizados a la configuración. Todos los métodos de configuración descritos en la Sección 2 son los mismos para el transmisor de temperatura Rosemount 644 con certificación para seguridad; donde hay diferencias, estas se indican.

El bloqueo de software se debe usar para evitar cambios no deseados en la configuración del transmisor.

Nota

La salida del transmisor no está clasificada para seguridad durante las siguientes situaciones: cambios de configuración, multipunto, operación, simulación, modo de calibrador activo y pruebas de lazo. Se deben utilizar medios alternativos para garantizar la seguridad del proceso durante la configuración del transmisor y las actividades de mantenimiento.

7.4.1 Amortiguación

La amortiguación ajustable por el usuario afecta a la capacidad del transmisor para responder a los cambios del proceso. El **valor de amortiguación + tiempo de respuesta** no deben exceder los requisitos del lazo.

Si se usa un conjunto de termopozo, asegurarse de tomar en cuenta también el tiempo de respuesta agregado debido al material del termopozo.

7.4.2 Niveles de alarma y de saturación

El sistema de control distribuido o solucionador lógico de seguridad se deben configurar de manera que coincidan con la configuración del transmisor. La Figura 7-1 identifica los tres niveles de alarma disponibles y sus valores de funcionamiento.

7.5 Operación y mantenimiento

7.5.1 Prueba de verificación

Se recomiendan las siguientes pruebas de verificación. En el caso de que se encuentre un error en la funcionalidad de la seguridad, se deben documentar los resultados de las pruebas de funcionamiento a plena carga y las acciones correctivas tomadas en <u>Emerson.com/Rosemount/Safety</u>.

Todos los procedimientos de prueba de verificación deben ser realizados por personal calificado.

7.5.2 Prueba de verificación parcial 1

La prueba de verificación parcial 1 consiste en apagar y encender el transmisor, y en comprobaciones de razonabilidad de la salida del transmisor. Consultar el informe FMEDA para conocer los porcentajes de posibles fallos de DU en el dispositivo.

El informe FMEDA se encuentra en la página de producto del <u>transmisor de temperatura Rosemount 644</u>. Herramientas requeridas: comunicador de campo, miliamperímetro

- 1. Desviar el PLC de seguridad y tomar otras acciones adecuadas para evitar un accionamiento falso.
- 2. Envíe un comando HART al transmisor para ir a la salida de corriente de alarma alta y verifique que la corriente analógica alcance ese valor. Esto comprueba problemas de cumplimiento del voltaje, como un bajo voltaje de alimentación del lazo o una mayor resistencia del cableado. Esto también comprueba si hay otras posibles fallas.
- 3. Envíe un comando HART al transmisor para ir a la salida de corriente de alarma baja y verifique que la corriente analógica alcance ese valor. Con esto se comprueba que no existan posibles fallas relacionadas con la corriente inactiva.

- 4. Usar el comunicador HART para ver el estatus detallado del dispositivo para asegurarse de que no haya alarmas o advertencias en el transmisor.
- 5. Realizar pruebas de razonabilidad de los valores del sensor vs. una estimación independiente (por ej., la supervisión directa del valor de BPCS) para demostrar que la lectura actual es válida.
- 6. Volver a poner el lazo en total funcionamiento.
- 7. Quitar la desviación del PLC de seguridad o restaurar el funcionamiento normal.

7.5.3 Prueba de verificación completa 2

La prueba de verificación completa 2 consiste en realizar los mismos pasos que en la prueba de verificación parcial, pero con una calibración adicional de dos puntos en el sensor de temperatura en lugar de la prueba de razonabilidad. Consultar el informe FMEDA para conocer los porcentajes de posibles fallos de DU en el dispositivo.

Herramientas requeridas: comunicador de campo, equipo de calibración de temperatura

- 1. Desviar el PLC de seguridad y tomar otras acciones adecuadas para evitar un accionamiento falso.
- 2. Realizar la prueba de verificación parcial 1.
- 3. Verificar la medición de dos puntos de temperatura en el sensor 1. Verificar la medición de dos puntos de temperatura en el sensor 2 (en caso de que haya un segundo sensor presente).
- 4. Realizar la prueba de razonabilidad de la temperatura de la carcasa.
- 5. Volver a poner el lazo en total funcionamiento.
- 6. Quitar la desviación del PLC de seguridad o restaurar el funcionamiento normal.

7.5.4 Prueba de verificación completa 3

La prueba de verificación completa 3 incluye una prueba de verificación completa y una prueba de verificación simple del sensor. Consultar el informe FMEDA para conocer los porcentajes de posibles fallos de DU en el dispositivo.

- 1. Desviar el PLC de seguridad y tomar otras acciones adecuadas para evitar un accionamiento falso.
- 2. Realizar la prueba de verificación simple 1.
- 3. Conectar el simulador del sensor calibrado en lugar del sensor 1.
- 4. Verificar la precisión de seguridad de las dos entradas de puntos de temperatura en el transmisor.
- 5. Si se utiliza el sensor 2, repetir el Paso 3 y Paso 4.
- 6. Restaurar las conexiones al transmisor.
- 7. Realizar la prueba de razonabilidad de la temperatura de la carcasa del transmisor.
- 8. Realizar pruebas de razonabilidad de los valores del sensor vs. una estimación independiente (por ej., la supervisión directa del valor de BPCS) para demostrar que la lectura actual es aceptable.
- 9. Restaurar el lazo a un funcionamiento completo.
- 10. Quitar la desviación del PLC de seguridad o restaurar el funcionamiento normal.

7.5.5 Inspección

Inspección visual

No se requiere.

Herramientas especiales

No se requieren.

Reparación del producto

El transmisor Rosemount 644 solo se puede reparar reemplazándolo.

Todas las fallas detectadas por los diagnósticos del transmisor o por las pruebas se deben informar. Se puede enviar información electrónicamente en <u>Emerson.com/Rosemount/Contact-Us</u>.

7.6 Especificaciones

El transmisor Rosemount 644 debe hacerse funcionar de acuerdo con las especificaciones de funcionamiento proporcionadas en la <u>Hoja de datos del producto</u> del transmisor Rosemount 644.

7.6.1 Datos para el índice de falla

El informe está disponible en la página de producto del transmisor de temperatura Rosemount 644.

7.6.2 Valores de fallo

Desviación de seguridad (define lo que se considera peligroso en un FMEDA):

- Span \geq 100 °C \pm 2% del span de variable de proceso
- Span < 100 °C ± 2 °C</p>

Tiempo de respuesta de seguridad: cinco segundos

7.6.3 Duración del producto

50 años, basándose en el peor caso de desgaste de los componentes de los mecanismos, no en el desgaste de los sensores del proceso.

Comunicar cualquier información relacionada con el producto en Emerson.com/Rosemount/Contact-Us.

Apéndice A Datos de referencia

Certificaciones del producto	página 89
Información para realizar pedidos, especificaciones y planos	página 89

A.1 Certificaciones del producto

Para ver las certificaciones de producto actuales del transmisor de temperatura Rosemount[™] 644, seguir estos pasos:

- 1. Visitar Emerson.com/Rosemount/Rosemount-644.
- 2. Desplazarse hasta la barra de menú verde y hacer clic en **Documentos y planos**.
- 3. Hacer clic en Manuales y guías.
- 4. Seleccionar la Guía de inicio rápido apropiada.

A.2 Información para realizar pedidos, especificaciones y planos

Para ver la información para realizar pedidos, las especificaciones y los planos actuales del transmisor de temperatura Rosemount 644, seguir estos pasos:

- 1. Visitar Emerson.com/Rosemount/Rosemount-644.
- 2. Desplazarse hasta la barra de menú verde y hacer clic en **Documentos y planos**.
- 3. Para acceder a los planos de instalación, hacer clic en **Planos y esquemas**.
- 4. Seleccionar la Hoja de datos del producto apropiada.
- 5. Para acceder a la información para realizar pedidos, las especificaciones y los planos dimensionales, hacer clic en **Hojas de datos y boletines**.
- 6. Seleccionar la Hoja de datos del producto apropiada.

Apéndice B Estructuras de menús y teclas de acceso rápido del comunicador de campo

B.1 Estructuras de menús del comunicador de campo

Estructuras de menús y teclas de acceso rápido del comunicador de campo

Manual de consulta

00809-0209-4728, rev. SA

Estructuras de menús y teclas de acceso rápido del comunicador de campo

Figura B-5. Estructura de menús del comunicador de campo para Rosemount 644 HART Revisión 7 – Configurar

Manual de consulta 00809-0209-4728, rev. SA

Estructuras de menús y teclas de acceso rápido del comunicador de campo

B.2 Teclas de acceso rápido del comunicador de campo

Tabla B-1. Secuencias de teclas de acceso rápido del panel de dispositivos del comunicador de campo, revisiones de dispositivo 8 y 9 (HART 5 y 7)

Función	HART 5	HART 7
Alarm Values (Valores de alarma)	2, 2, 5, 6	2, 2, 5, 6
Analog Calibration (Calibración analógica)	3, 4, 5	3, 4, 5
Analog Output (Salida analógica)	2, 2, 5, 1	2, 2, 5, 1
Average Temperature Setup (Ajuste de temperatura promedio)	2, 2, 3, 3	2, 2, 3, 3
Burst Mode (Modo burst)	2, 2, 8, 4	2, 2, 8, 4
Comm Status (Estatus de comunicación)	N/D	1,2
Configure additional messages (Configurar mensajes adicionales)	N/D	2, 2, 8, 4, 7
Configure Hot Backup (Configurar Hot Backup)	2, 2, 4, 1, 3	2, 2, 4, 1, 3
D/A Trim (Ajuste D/A)	3, 4, 4, 1	3, 4, 4, 1
Damping Values (Valores de amortiguación)	2, 2, 1, 5	2, 2, 1, 6
Date (Fecha)	2, 2, 7, 1, 2	2, 2, 7, 1, 3
Display Setup (Configuración de pantalla)	2, 1, 4	2, 1, 4
Descriptor (Descriptor)	2, 2, 7, 1, 4	2, 2, 7, 1, 5
Device Information (Información del dispositivo)	1, 8, 1	1, 8, 1
Differential Temperature Setup (Ajuste de temperatura diferencial)	2, 2, 3, 1	2, 2, 3, 1
Drift Alert (Alerta de desviación)	2, 2, 4, 2	2, 2, 4, 2
Filter 50/60 Hz (Filtro de 50/60 Hz)	2, 2, 7, 4, 1	2, 2, 7, 4, 1
First Good Temperature Setup (Ajuste de primera temperatura correcta)	2, 2, 3, 2	2, 2, 3, 2
Hardware Revision (Revisión del hardware)	1, 8, 2, 3	1, 8, 2, 3
HART Lock (Bloqueo HART)	N/D	2, 2, 9, 2
Intermittent Sensor Detect (Detector del sensor intermitente)	2, 2, 7, 4, 2	2, 2, 7, 4, 2
Loop Test (Prueba del lazo)	3, 5, 1	3, 5, 1
Locate Device (Localización del dispositivo)	N/D	3, 4, 6, 2
Lock Status (Estatus de bloqueo)	N/D	1, 8, 3, 8
LRV (Lower Range Value) (LRV (valor inferior del rango))	2, 2, 5, 5, 3	2, 2, 5, 5, 3
LSL (Lower Sensor Limit) (LSL (límite inferior del sensor))	2, 2, 1, 7, 2	2, 2, 1, 8, 2
Message (Mensaje)	2, 2, 7, 1, 3	2, 2, 7, 1, 4
Open Sensor Hold off (Holdoff de sensor abierto)	2, 2, 7, 3	2, 2, 7, 3
Percent Range (Rango porcentual)	2, 2, 5, 2	2, 2, 5, 2
Sensor 1 Configuration (Configuración del sensor 1)	2, 1, 1	2, 1, 1
Sensor 2 Configuration (Configuración del sensor 2)	2, 1, 1	2, 1, 1
Sensor 1 Serial Number (Número de serie del sensor 1)	2, 2, 1, 6	2, 2, 1, 7
Sensor 2 Serial Number (Número de serie del sensor 2)	2, 2, 2, 7	2, 2, 2, 8
Sensor 1 Type (Tipo del sensor 1)	2, 2, 1, 2	2, 2, 1, 3
Sensor 2 Type (Tipo de sensor 2)	2, 2, 2, 2	2, 2, 2, 3
Sensor 1 Unit (Unidad del sensor 1)	2, 2, 1, 4	2, 2, 1, 5
Sensor 2 Unit (Unidad del sensor 2)	2, 2, 2, 4	2, 2, 2, 5
Sensor 1 Status (Estatus del sensor 1)	N/D	2, 2, 1, 2
Sensor 2 Status (Estatus del sensor 2)	N/D	2, 2, 2, 2
Simulate Digital Signal (Simulación de la señal digital)	N/D	3, 5, 2

Tabla B-1. Secuencias de teclas de acceso rápido del panel de dispositivos del comunicador de campo, revisiones de dispositivo 8 y 9 (HART 5 y 7)

Función	HART 5	HART 7
Software Revision (Revisión del software)	1, 8, 2, 4	1, 8, 2, 4
Tag (Etiqueta)	2, 2, 7, 1, 1	2, 2, 7, 1, 1
Long Tag (Etiqueta larga)	N/D	2, 2, 7, 1, 2
Terminal Temperature (Temperatura de terminal)	2, 2, 7, 1	2, 2, 8, 1
URV (Upper Range Value) (URV (valor superior del rango))	2, 2, 5, 5, 2	2, 2, 5, 5, 2
USL (Upper Sensor Limit) (USL (límite superior del sensor))	2, 2, 1, 7, 2	2, 2, 1, 8, 2
Variable Mapping (Mapeo de variables)	2, 2, 8, 5	2, 2, 8, 5
2-wire Offset Sensor 1 (Sensor offset 1 de 2 hilos)	2, 2, 1, 9	2, 2, 1, 10
2-wire Offset Sensor 2 (Sensor offset 2 de 2 hilos)	2, 2, 2, 9	2, 2, 2, 10

	Secuencias de		Secuencia de
Función	teclas de	Función	teclas de
Active Calibrator		Num Pog Proams	
(Calibrador activo)	1, 2, 2, 1, 3	(Núm. preams. req.)	1, 3, 3, 3, 2
Alarm/Saturation (Alarma/Saturación)	1, 3, 3, 2	Open Sensor Hold off (Holdoff de sensor abierto)	1, 3, 5, 3
AO Alarm Type (Tipo de alarma de salida analógica)	1, 3, 3, 2, 1	Percent Range (Rango porcentual)	1, 1, 5
Burst Mode (Modo burst)	1, 3, 3, 3, 3	Poll Address (Dirección de muestreo)	1, 3, 3, 3, 1
Burst Option (Opción burst)	1, 3, 3, 3, 4	Process Temperature (Temperatura del proceso)	1,1
Calibration (Calibración)	1, 2, 2	Process Variables (Variables del proceso)	1,1
Callendar-Van Dusen (Callendar-Van Dusen)	1, 3, 2, 1	PV Damping (Amortiguación de la VP)	1, 3, 3, 1, 3
Configuration (Configuración)	1,3	PV Unit (Unidad de las VP)	1, 3, 3, 1, 4
D/A Trim (Ajuste D/A)	1, 2, 2, 2	Range Values (Valores de rango)	1, 3, 3, 1
Damping Values (Valores de amortiguación)	1, 1, 10	Review (Revisión)	1,4
Date (Fecha)	1, 3, 4, 2	Scaled D/A Trim (Ajuste escalado D/A)	1, 2, 2, 3
Descriptor (Descriptor)	1, 3, 4, 3	Sensor Connection (Conexión del sensor)	1, 3, 2, 1, 1
Device Info (Información sobre el dispositivo)	1, 3, 4	Sensor 1 Setup (Configuración del sensor 1)	1, 3, 2, 1, 2
Device Output Configuration (Configuración de salida del dispositivo)	1, 3, 3	Sensor Serial Number (Número de serie del sensor)	1, 3, 2, 1, 4
Diagnostics and Service (Diagnóstico y mantenimiento)	1, 2	Sensor 1 Trim (Ajuste fino del sensor 1)	1, 2, 2, 1
Filter 50/60 Hz (Filtro de 50/60 Hz)	1, 3, 5, 1	Sensor 1 Trim-Factory (Ajuste fino del sensor 1 - Fábrica)	1, 2, 2, 1, 2
Hardware Rev (Rev. de hardware)	1, 4, 1	Sensor Type (Tipo de sensor)	1, 3, 2, 1, 1
Hart Output (Salida Hart)	1, 3, 3, 3	Software Revision (Revisión del software)	1, 4, 1
Intermittent Detect (Detección de intermitentes)	1, 3, 5, 4	Status (Estado)	1, 2, 1, 4
LCD Display Options (Opciones de la pantalla LCD)	1, 3, 3, 4	Tag (Etiqueta)	1, 3, 4, 1
Loop Test (Prueba del lazo)	1, 2, 1, 1	Terminal Temperature (Temperatura de terminal)	1, 3, 2, 2,
LRV (Lower Range Value) (LRV (valor inferior del rango))	1, 1, 6	Test Device (Dispositivo de prueba)	1, 2, 1
LSL (Lower Sensor Limit) (LSL (límite inferior del sensor))	1, 1, 8	URV (Upper Range Value) (URV (Valor superior del rango))	1, 1, 7
Measurement Filtering (Filtrado de medidas)	1, 3, 5	USL (Upper Sensor Limit) (USL (limite superior del sensor))	1, 1, 9
Message (Mensaje)	1, 3, 4, 4	Variable Mapping (Mapeo de variables)	1,3,1
Meter Configuring (Configuración del medidor)	1, 3, 3, 4, 1	Variable Re-Map (Reasignación de variables)	1, 3, 1, 5
Meter Decimal Point (Punto decimal del medidor)	1, 3, 3, 4, 2	Write Protect (Protección contra escritura)	1, 2, 3
		2-Wire Offset (Desviación de 2 hilos)	1, 3, 2, 1, 2, 1

Tabla B-2. Secuencias tradicionales de teclas de acceso rápido del comunicador de campo, revisión de dispositivo 7

Apéndice C Interfaz local del operador (LOI)

Entrada numérica	página 107
Entrada de texto	página 108
Tiempo de espera	página 110
Guardar y cancelar	página 110
Estructura de los menús de la LOI	página 111
Estructura de menús de la LOI – menú extendido	página 113

C.1 Entrada numérica

Los números de punto flotante se pueden introducir con la LOI. Las ocho ubicaciones de números de la línea superior se pueden utilizar para la entrada numérica. Consultar la Tabla 2-2 en la página 8 para conocer el funcionamiento de los botones de la LOI. A continuación se muestra un ejemplo de entrada numérica de punto flotante para cambiar un valor de "–0000022" a "000011.2"

Tabla C-1. Entrada numérica en la LOI

Escalón	Instrucción	Posición actual (indicado por subrayado)
1	Cuando comienza la entrada numérica, la posición ubicada más a la izquierda es la posición seleccionada. En este ejemplo, el símbolo negativo, "-", destellará en la pantalla.	<u>-</u> 0000022
2	Presionar el botón Desplazamiento hasta que el número "0" parpadee en la pantalla en la posición seleccionada.	<u>0</u> 0000022
3	Presionar el botón Intro para seleccionar el "0" como entrada. El segundo dígito de la izquierda parpadeará.	0 <u>0</u> 000022
4	Presionar el botón Intro para seleccionar "0" para el segundo dígito. El tercer dígito de la izquierda parpadeará.	00 <u>0</u> 00022
5	Presionar el botón Intro para seleccionar "0" para el tercer dígito. Ahora el cuarto dígito de la izquierda parpadeará.	000 <u>0</u> 0022
6	Presionar el botón Intro para seleccionar "0" para el cuarto dígito. Ahora el quinto dígito de la izquierda parpadeará.	0000 <u>0</u> 022
7	Presionar Desplazamiento para navegar por los números hasta que el número "1" aparezca en la pantalla.	0000 <u>1</u> 022
8	Presionar el botón Intro para seleccionar el "1" para el quinto dígito. Ahora el sexto dígito de la izquierda parpadeará.	00001 <u>0</u> 22
9	Presionar Desplazamiento para navegar por los números hasta que el número "1" aparezca en la pantalla.	00001122
10	Presionar el botón Intro para seleccionar el "1" para el sexto dígito. Ahora el séptimo dígito de la izquierda parpadeará.	000011 <u>2</u> 2
11	Presionar Desplazamiento para navegar por los números hasta que el punto decimal "." aparezca en la pantalla.	000011 <u>.</u> 2

Tabla C-1. Entrada numérica en la LOI

Escalón	Instrucción	Posición actual (indicado por subrayado)
12	Presionar el botón Intro para seleccionar el punto decimal "." para el séptimo dígito. Después de presionar Intro, todos los dígitos hacia la derecha del punto decimal ahora serán cero. Ahora el octavo dígito de la izquierda parpadeará.	000011. <u>0</u>
13	Presionar el botón Desplazamiento para navegar por los números hasta que el número "2" aparezca en la pantalla.	000011. <u>2</u>
14	Presionar el botón Intro para seleccionar el "2" para el octavo dígito. La entrada numérica estará completa y aparecerá una pantalla "GUARDAR".	000011.2

Notas de uso:

- Es posible regresar en el número desplazándose a la izquierda y presionando Intro. La flecha izquierda aparece de esa manera en la LOI:
- El símbolo negativo solo está permitido en la posición más a la izquierda.
- El carácter guion alto "-" se usa en la LOI para introducir un espacio en blanco en la entrada de la etiqueta.

C.2 Entrada de texto

Se puede introducir texto con la LOI. Según el elemento modificado, se pueden usar hasta ocho ubicaciones en la línea superior para entrada de texto. La entrada de texto sigue las mismas reglas que la entrada numérica de "Entrada numérica" en la página 107, a excepción de que los siguientes caracteres están disponibles en todas las ubicaciones: A-Z, 0-9, -, /, espacio.

C.2.1 Desplazamiento

Cuando se desea moverse más rápidamente por la lista de opciones de menú o por los caracteres alfanuméricos sin presionar los botones individualmente, se tiene disponible una técnica de desplazamiento más rápida. La funcionalidad de desplazamiento permite al usuario pasar por cualquier menú hacia adelante o hacia atrás, introducir texto o dígitos fácil y rápidamente.

Desplazamiento en los menús

 Simplemente mantener pulsado el botón izquierdo después de llegar a la siguiente opción de menú, cada uno de los menús anteriores se mostrarán uno por uno mientras se mantiene presionado el botón. Para ver un ejemplo, consultar la Figura C-1.

Desplazamiento para entrada de texto o de dígitos

 Navegar rápidamente por las listas de menús de números y texto manteniendo presionado el botón izquierdo igual que en el caso de desplazamiento en los menús.

Figura C-1. Desplazamiento en los menús/desplazamiento para entrada de texto y de dígitos

Desplazamiento hacia atrás

El desplazamiento hacia atrás durante la entrada de dígitos o de texto se describió anteriormente en "Notas de uso" en la sección de entrada de dígitos. Durante la navegación normal por los menús es posible regresar a la pantalla anterior presionando ambos botones al mismo tiempo.

C.3 Tiempo de espera

La interfaz local del operador (LOI) en funcionamiento estándar saldrá del tiempo de espera y regresará a la pantalla de inicio después de 15 minutos de inactividad. Para volver a ingresar al menú de la LOI, presionar cualquiera de los botones.

C.4 Guardar y cancelar

La funcionalidad Guardar y Cancelar implementada al final de una serie de pasos permite al usuario guardar el cambio o salir de la función sin guardar los cambios. Estas funciones se muestran de la siguiente manera:

Guardar

Ya sea que se seleccione un ajuste de una lista de opciones o se introduzcan dígitos o texto, la primera pantalla debe mostrar "¿GUARDAR?" para preguntar al usuario si quiere guardar la información recién introducida. Es posible seleccionar la función para cancelar (seleccionar NO) o la función para guardar (seleccionar SÍ). Después de seleccionar la función para guardar, "GUARDADO" aparecerá en la pantalla.

Guardar una configuración:

Guardar texto o valores:

Cancelación

Cuando se introduce un valor o cadena de texto en el transmisor mediante la LOI y se cancela la función, el menú de la LOI puede ofrecer al usuario la opción de volver a introducir el valor sin perder la información ingresada. Entre los ejemplos de un valor que se introduce se incluyen los valores de Etiqueta, Amortiguación y Calibración. Si no se desea volver a introducir el valor y continuar con la cancelación, seleccionar la opción NO cuando se solicite.

Cancelación

C.6 Estructura de menús de la LOI – menú extendido

Manual de consulta

00809-0209-4728, rev. SA Septiembre de 2018

Oficinas centrales

Emerson Automation Solutions

6021 Innovation Blvd. Shakopee, MN 55379, EE. UU. 1 +1 800 999 9307 o +1 952 906 8888 +1 952 949 7001 RFQ.RMD-RCC@Emerson.com

Oficina regional en Norteamérica

Emerson Automation Solutions 8200 Market Blvd.

Chanhassen, MN 55317, EE. UU. • +1 800 999 9307 o +1 952 906 8888 +1 952 949 7001 RMT-NA.RCCRFQ@Emerson.com

Oficina regional en Latinoamérica

Emerson Automation Solutions 1300 Concord Terrace, Suite 400 Sunrise, FL 33323, EE. UU. 1 954 846 5030 + 1 954 846 5121

RFQ.RMD-RCC@Emerson.com

Oficina regional en Europa

Emerson Automation Solutions Europe GmbH Neuhofstrasse 19a P.O. Box 1046 CH 6340 Baar Suiza +41 (0) 41 768 6111 +41 (0) 41 768 6300

RFQ.RMD-RCC@Emerson.com

Oficina regional en Asia-Pacífico

Emerson Automation Solutions Asia Pacific Pte Ltd
1 Pandan Crescent
Singapur 128461
+65 6777 8211
+65 6777 0947
Enquiries@AP.Emerson.com

Oficina regional en Medio Oriente y África

Emerson Automation Solutions Emerson FZE P.O. Box 17033 Jebel Ali Free Zone - South 2 Dubái, Emiratos Árabes Unidos 9 +971 4 8118100 +971 4 8865465 RFQ.RMTMEA@Emerson.com

Emerson Automation Solutions, SL

Linkedin.com/company/Emerson-Automation-Solutions

Twitter.com/Rosemount_News

Facebook.com/Rosemount

Youtube.com/user/RosemountMeasurement

Google.com/+RosemountMeasurement

Los términos y condiciones de venta estándar se pueden encontrar en la <u>página.</u> <u>Términos y condiciones de venta</u>.

El logotipo de Emerson es una marca comercial y de servicio de Emerson Electric Co. Rosemount y el logotipo de Rosemount son marcas comerciales de Emerson. Todas las demás marcas son de sus respectivos propietarios. © 2018 Emerson. Todos los derechos reservados.

ROSEMOUNT